Online Anomaly Detection over Big Data Streams

Laura Rettig*t, Mourad Khayati, Philippe Cudré-Mauroux' and Michat Piérkowski*

*Big Data and Business Intelligence Competence Center at Swisscom, Bern—Switzerland
{firstname.lastname} @ swisscom.com

teXascale Infolab, University of Fribourg—Switzerland
{firstname.lastname} @unifr.ch

Abstract—Data quality is a challenging problem in many
real world application domains. While a lot of attention has
been given to detect anomalies for data at rest, detecting
anomalies for streaming applications still largely remains an
open problem. For applications involving several data streams,
the challenge of detecting anomalies has become harder over
time, as data can dynamically evolve in subtle ways following
changes in the underlying infrastructure. In this paper, we
describe and empirically evaluate an online anomaly detection
pipeline that satisfies two key conditions: generality and scal-
ability. Our technique works on numerical data as well as on
categorical data and makes no assumption on the underlying
data distributions. We implement two metrics, relative entropy
and Pearson correlation, to dynamically detect anomalies. The
two metrics we use provide an efficient and effective detection
of anomalies over high velocity streams of events.

In the following, we describe the design and implementation
of our approach in a Big Data scenario using state-of-the-
art streaming components. Specifically, we build on Kafka
queues and Spark Streaming for realizing our approach while
satisfying the generality and scalability requirements given
above. We show how a combination of the two metrics we put
forward can be applied to detect several types of anomalies—
like infrastructure failures, hardware misconfiguration or user-
driven anomalies—in large-scale telecommunication networks.
We also discuss the merits and limitations of the resulting
architecture and empirically evaluate its scalability on a real
deployment over live streams capturing events from millions
of mobile devices.

I. INTRODUCTION

Data quality is a challenging problem in many domains
such as medicine, environmental monitoring, or IT infras-
tructures. Assessing the quality of the data requires the
deployment of a number of fundamental data services in-
cluding anomaly detection. Data anomalies can manifest
themselves in many different ways—for instance via missing
values or outliers—and can be caused by erroneous pro-
cedures, system failures or unexpected events. A number
of methods have already been proposed in the literature to
detect and classify anomalies (cf. Section II). The applica-
bility of those methods heavily depends on data dynamics.
Specifically, detecting anomalies is relatively common for
data at rest. For applications where data is on the move,
for example for applications involving several data streams,
the challenge of detecting anomalies has become harder

over time, as data can dynamically evolve in subtle ways
following changes in the underlying infrastructure. In such
cases, being able to detect anomalies in real-time becomes
a crucial feature.

For telecommunication companies, it has become essential
to deploy dedicated quality assurance systems in order to
guarantee that the telecommunication services are provided
with the highest possible quality. The complexity of such
monitoring systems grows together with the complexity of
the communication services being monitored and with the
demand for providing nontrivial monitoring insight in real-
time. In this work, we focus on detecting anomalies on the
signaling traffic of a mobile cellular network, where any
mobile terminal attached to the cellular network produces
signaling messages, which are subsequently captured by the
network infrastructure for the sake of quality assurance. The
characteristics of the signaling traffic we consider falls into
the class of Big Data streams. Specifically, (i) the cumulative
daily volume we consider is in the order of TBs, (ii) the
signaling data is multidimensional, while (iii) the velocity
of the data, measured in number of events per time unit, is
in the order of hundreds of millions per second.

The very nature of modern cellular network infrastruc-
tures, supporting a number of elaborate telecommunication
protocols, implies a high complexity for the signaling traffic.
For instance, the infrastructure of many modern mobile
cellular networks consists of a radio access network (RAN)
and a core network (CN). The latter is split into circuit
switched (CS - voice calls) and packet switched (PS -
data traffic) domains. Mobile devices can attach to CS or
PS, or both at the same time. The radio communication
takes place between a mobile device and a base station
within RAN, serving one or more radio cells, which then
carries the voice and data traffic via fixed networks to/from
CN. Radio cells are the smallest spatial entities in the
cellular network. Depending on the radio bearer, they can
be classified as 2G (GSM/EDGE), 3G (UMTS/HSPA) or
4G (LTE). For the purpose of quality assurance, a passive
monitoring system collects signaling events from the links
between the RAN and CN parts of the network, covering all
2G, 3G and 4G—specifically on the A, Gb, TuPS, TuCs and
S1-MME interfaces. Swisscom built a Big Data streaming

infrastructure providing such data as real-time streams that
can be dynamically fed through dedicated message buses.
We call this new infrastructure the Firehose. It provides inter
alia with multiplexing, parsing, serialization and encryption
to ensure that the signaling data is properly preprocessed
(e.g., anonymized) and ready for further processing.

The state-of-the-art time-series database system we used
so far for quality assurance is InfluxDB. The latter pro-
vides only a relatively basic set of aggregate functions
over unidimensional time series. Although handful, this set
of functions is clearly insufficient to detect a plethora of
anomalies in a dynamic and robust manner.

In the following, we introduce the new anomaly detec-
tion method that we have developed for our needs. Our
solution satisfies two key conditions [1]: generality and
scalability. The method we propose is applicable to both
multidimensional as well as categorical data. In addition,
our solution does not take any assumptions about the data
distribution. Moreover, the method is Big Data friendly as
it can cope with large volumes of data ar rest as well as
on the move through streaming interfaces. In summary, the
main contributions of this paper are:

e a new system implemented over Apache Spark [2]
combining two well-known metrics, relative entropy
and Pearson correlation, to detect anomalies over both
high-velocity streams and/or large volumes of data at
rest;

« an empirical evaluation of our system showing the ef-
fectiveness of the two metrics we leverage for detecting
anomalies. The results of our experiments show that
the entropy metric is well-suited for detecting gradual
changes in data streams, while the correlation metric is
more appropriate for detecting abrupt changes caused
for example by hardware failures;

« an empirical evaluation of our system demonstrating its
graceful scalability when both the number of nodes and
the amount of inspected data increase.

II. RELATED WORK

A number of techniques have been proposed to detect
anomalies in multidimensional data streams or for multidi-
mensional time-series data.

Zhang et al. [3] propose a solution that detects outliers
in multidimensional data. This approach performs anomaly
detection by measuring the distance of a data point in various
subspaces. The authors show that for multi-dimensional data,
changes may be observable on one dimension, over a subset
of dimensions, or overall. We leverage this property to detect
different types of anomalies in the following. However, the
proposed technique based on indexing and subspace pruning
is not applicable to real-time scenarios due to the high
number of iterations over the data.

Dasu et al. [1] present an approach to detect sudden
changes in multidimensional data streams. In their approach,

multidimensional stream instances are represented as kdg-
trees (a combination of kd-trees and quadtrees), while rel-
ative entropy is used as a similarity measure. To detect
changes on unknown distributions, the method resamples
the data using a bootstrap technique in order to obtain
the expected distribution of the data. The relative entropy
between the distributions gives a bound for the relative
entropy (under the assumption that the samples originate
from the same distribution), allowing for a statistically
sound detection of significant changes. The authors intro-
duce two different window comparison models. The first
model compares adjacent windows, which is well suited
for detecting abrupt changes. The second model compares a
sliding window to a previous window, which is convenient
to detect more gradual changes. We use similar techniques
to measure changes between successive time windows over
multi-dimensional data streams. However, we do not rely
on complex and multidimensional data structures that are
difficult to distribute and efficiently update on clusters of
machines.

Li and Han [4] also address the problem of detecting
anomalies in subspaces of multidimensional data by intro-
ducing the time-series data cube as a new data structure
capable of handling the multidimensional space. Using this
data structure, they are able to identify the subspaces that
are most likely to be anomalous. To this end, they measure
the entropy for each attribute and consider attributes with
low entropy, i.e., attributes with mostly homogeneous values,
as suitable for subspaces in which anomalies are easily
detectable. By selecting likely anomalous subspaces, they
elude the curse of dimensionality and avoid having to
search for anomalies in every possible subspace. The authors
apply their technique to detect anomalies in synthetic data
with anomalous time series, defining four different kinds
of anomalies: trend, magnitude, phase, and miscellaneous.
However, their solution works only for larger fluctuations
and is not suitable in case of more subtle differences that
emerge from most real-world applications.

Young et al. [5] detect and classify emergency and non-
emergency events using annotated network data. Similarly
to our work, they compare normal and anomalous days to
detect deviations from a baseline representing some average
behavior. They use autoregressive hidden Markov models to
detect the precise onset of an event. Unlike our solution, they
use a metric that considers only the closest cell tower to the
known event. Furthermore, the applied matrix factorization
is computed on data at rest and not in real-time, unlike the
high-velocity streams we consider in the following.

Anomaly detection techniques have also been proposed
for strictly temporal data. Gupta et al. [6] present an
overview of anomaly detection on various kinds of temporal
data. They define anomalies as outliers and present detection
methods for both the discrete and the continuous cases.
While the overview presents a wide array of different tech-

niques, it also mentions that there is a great deal of different
problems that can be addressed by detecting outliers on time
series data and that solutions need to be adapted to meet
the needs of specific problems. For stream data, the use of
models that update and decay over time is suggested.

Wu and Shao [7] apply an autoregressive process to detect
sudden changes between adjacent windows of network traffic
data. Their use of moving windows allows real-time anomaly
detection. However, their model is limited to detecting major
and sudden changes, such as in denial-of-service attacks to
a network and is not useful for detecting finer variations.

Statistical metrics (e.g., probabilistic data structures) that
represent sliding windows in streams have also been pro-
posed for detecting anomalies. Datar et al. [8] introduce
approximate stream summary statistics for sliding windows.
Since regularities in streams may evolve over time, the
issue of data decay is handled by giving more weight to
recent objects and aggregating, then eventually discarding
older data. The authors store information using exponential
histograms. This data structure uses timestamps as the bins
and the count of an item in the stream as the value for each
temporal range. While their work is suitable for computing
approximate statistics with bounded errors to summarize
aspects of the content of a stream, they do not address the
issue of detecting changes.

Papapetrou et al. [9] introduce the ECM-sketch, a tech-
nique that is suitable for summarizing streams and for
answering complex queries over data streams. Their ECM-
sketch combines the capabilities of stream summary through
key-based counting in a large key space (similar to the
count-min sketch [10]) but extends them with exponential
histograms for synopses of sliding windows. Unlike our
work, ECM-sketch cannot use deterministic data structures,
e.g., hashmaps, due to the potentially very large number of
distinct items (keys) for which a counter (values) has to be
maintained.

Cormode and Muthukrishnan [11] define deltoids as items
where the computed metrics indicate that significant change
took place in monitoring network traffic data. These deltoids
are probabilistic metrics designed to use little space, to
require short update times, and to produce accurate results
based on fixed thresholds. The authors distinguish between
different variations in data streams—absolute, relative, and
variational—and maintain deltoids for each type. Their ap-
proach requires a preconfiguration of the parameters that
are used to detect deltoids leveraging training data. Our
proposed solution, on the other hand, aims at being more
general-purpose and does not require any preprocessing or
training.

III. BACKGROUND

We describe in this section the two measures, i.e., Rel-
ative Entropy and Pearson Correlation, and the Big Data
framework (Spark) we leverage in our system.

A. Relative Entropy

The relative entropy, or Kullback-Leibler Divergence,
D(P||Q) [12] is a non-symmetric measure of information
loss. It is defined on two probability distributions P and @)
as follows:

P(i)
Qi)
where P(i) and (i) are the probability of item 4 in the
respective probability distribution, given by

D(P||Q) = _ P(i)log 1)

i€A

m;
ZaEA Mg

where A is the set of all possible items ¢ in the probability
distributions and m; and m, are the numbers of items ¢ and
a in the current distribution P.

Relative entropy is used to measure the difference between
two probability distributions P and (). This is a generic
method that applies to multidimensional data without re-
quiring any prior domain knowledge about the underlying
distributions P and Q. In our context, D(P||Q) is used
to measure changes between successive time windows over
multi-dimensional data streams, as introduced in [1].

D then represents how different two probability distribu-
tions are. The values of P () and Q(¢) are defined over [0, 1].
A low relative entropy indicates regularity in the sense that
the two distributions are similar. Anomalies are detected in
cases where the value of D increases.

P(i) =)

B. Pearson Correlation

The Pearson correlation coefficient is a statistical value
measuring the linear dependence between two variables X
and Y. It is defined as

n — —
\/21:1(%‘ - 1’)2\/211:1(%' —-7)?
where Z and ¢ stand for the mean of X and Y respectively.

The coefficient 7(X,Y") ranges between 1 and —1. Posi-
tive values from (0, 1] indicate positive correlation between
X and Y, while negative values from [—1,0) indicate nega-
tive correlation. When the Pearson correlation coefficient is
0, there is no correlation between X and Y.

C. Spark

Apache Spark is a general-purpose engine for large-scale
data processing. It offers several advantages over MapRe-
duce, such as faster in-memory execution, especially for
cases where multiple passes are made over the same data
(such as when multiple stages of transforming, mapping
and reducing are applied over the data). It also offers a
higher-level Scala API, greatly facilitating the expression of
complex processing pipelines.

Spark’s main abstraction are resilient distributed data-
sets (RDDs) [13]. In batch processing mode, RDDs are cre-
ated by loading data, for example from HDFS, or by trans-
forming other RDDs. RDDs are immutable abstractions of
distributed data that can be organized in a Directed Acyclic
Graph (DAG) to represent transformations on top of the data.
Since RDDs are evaluated lazily, the transformations are
only applied when materialization becomes necessary. These
transformations are then applied in a manner that minimizes
data shuffling between the executors.

Spark includes a streaming library called Spark Stream-
ing. Spark Streaming is based on micro-batch computa-
tions and introduces another core abstraction, discretized
streams (DStreams) [14]. DStreams are continuous se-
quences of RDDs, with one RDD containing all the data be-
longing to one micro-batch. Many of the functions available
for RDDs are also available for DStreams, abstracting away
the individual processing of RDDs during streaming, such
that transformations can be directly applied on DStreams.
The underlying execution engine, the Spark engine, is the
same for both streaming and batch modes. The execution
engine obtains one RDD from the DStream per micro-batch
time interval and applies the transformations directly to the
RDD. Since both RDDs and DStreams are immutable, the
output of applying a transformation to a DStream is a new
DStream representing a continuous sequence of transformed
RDDs. As part of the code can be reused between the
batch and streaming modes, Apache Spark is well-suited for
cases where both batch and streaming data should be jointly
processed.

The MLIib library from Spark provides an efficient im-
plementation for computing the Pearson correlation between
two vectors. However, this solution assumes a specific
format of the input data. The relative entropy is not available
under Spark.

IV. SYSTEM OVERVIEW

An overview of the system we developed for anomaly
detection is shown in Figure 1. The figure depicts the entire
pipeline starting from cell towers on the left-hand side to the
anomaly detection results on the right-hand side. Signaling
traffic is received from network probes, staged in real-
time, and then written to a dedicated queue for real-time
consumption as well as to HDFS for longer-term storage and
processing. The anomaly detection component consumes
the data—either in real-time (queue) or in batch (HDFS)
mode—, processes it, and outputs both metrics and alerts.
The various components of the architecture are described in
more detail in the following.

A. Data Collection

Signaling traffic carrying various network events is cap-
tured by probes connected to links between RAN and CN.
Those captured events contain non-personal monitoring in-
formation from the mobile terminals. They do not carry any

anomaly
detection

Kafka queues continuously

Spark —— metrics
Streaming / dashboard

Spark Te.
A alerting
for detected ~ = »| system
anomalies

Firehose

¥

network
monitoring
probes

Camus:
15|

HDFS load data

Figure 1. Integration of the anomaly detection component into the Big
Data receiving and processing pipeline.

information about the content transmitted over the mobile
network. There exist different types of probes and different
types of data for the various network components. Incoming
data is processed separately depending on the probe type.
Specifically, for each generation and each network type (e.g.
2G and A or 3G and IuPS), separate probes tap into the
network, producing separate data streams. Low-level, binary
events are first fed to the Firehose, which parses and then
serializes the events using the Avro [15] format. The events
are then written into a series of Kafka queues [16], one
per probe type. Periodically every 15 minutes, events are
pipelined from the queue into HDFS.Both the queues and
the storage consider the same data format and can be used as
input to Spark Streaming and standard Spark, respectively.
As each event is timestamped, it can be treated in the same
way as real-time data and can also be used to simulate
streams. In that sense, our system emulates the so-called
lambda architecture [17] with analogous pipelines for batch
and real-time processing on the same data source.

B. Stream Processing

1) Streaming System: Our system for anomaly detection
on network monitoring events is built using Apache Spark
on top of YARN.

The duration of the micro-batches in Spark Streaming
is chosen experimentally, as it depends on the volume of
data and as we consider several interfaces (e.g., 2G and
3G). Longer micro-batches require more storage, since more
data needs to be cached in-memory. This follows from the
fact that all data from a micro-batch are computed jointly
and hence the processing can only start once all data for
one micro-batch have been received. On the other hand,
shorter micro-batches require faster online algorithms. Since
micro-batches are computed in order, the time required to
process one micro-batch cannot be longer than the duration
of the micro-batch. If it is not the case, micro-batches rapidly
accumulate and lead to data losses.

Streaming receivers, which represent the input interface
of the Spark Streaming component, connect as consumers to
Kafka located in Firehose (see Figure 1). In order to load-
balance the system, multiple receivers can consume events
in parallel. For our detection system, nine parallel receivers
are used and their data streams are then combined for joint-

processing. The consumers are configured to receive every
event only once, beginning at the time when the application
is first started. Output operations have to be defined prior
to starting the stream. Typically, such outputs consist of
transforming the DStream and then applying operations to
each RDD such as returning a value to a network connection
or a file for visualization purposes. In our anomaly detection
system, metrics are written continuously, whereas alerts are
triggered upon detection of an anomalous event.

In order to perform anomaly detection, two metrics are
continuously maintained over the streams: relative entropy
on individual data streams and Pearson correlation across
multiple streams. These metrics form a constant baseline
over non-anomalous data points, from which anomalous
instances can be detected.

2) Relative Entropy Pipeline: Relative entropy is com-
puted separately on each interface by comparing the empiri-
cal distributions of event types at their respective topological
level. The data pipeline for computing relative entropy is
shown in Figure 2. Each batch in the incoming DStream is
mapped into a new DStream of ((location, type), 1) key-
value pairs, where the identifier for the location and the
type of the event form a composite key. We consider three
topology levels (i) cellsite, where the location key is a 4-
character identifier, (ii) LAC (location area code), which is
an aggregate of multiple co-located cells for larger regions
within the country with a unique ID and (iii) globally for the
whole country, discarding the location key. While looking at
lower levels in the topology facilitates the detection of local
anomalies, a more global model is faster to compute due to
the smaller key space. By summing up the values per key in
a reduce operation, the number of events per location and
event type get counted. By grouping per cell, we obtain a
new RDD containing the event histograms, i.e., the counts
per event type and per cell.

These histograms are interpreted as aggregates of
anonymized user-triggered actions, since they capture vari-
ous aspects of human activity (making a phone call, moving
across the network, etc.). The probability P(7) of each event
type ¢ in the current distribution P, as in Equation (1), is
given by dividing the count for this event, m;, by the sum of
the counts m,, in the current histogram for all possible event
types in A. Hence, P(i) represents the relative frequency
of event type ¢ in the current distribution. Finally, for each
location indicator, the relative entropy D (P;||Q¢—a¢) at time
t is computed by summing up the comparison of each
possible event type 7. In streaming mode, the probability
distribution from the previous RDD is stored for comparing
adjacent windows, yielding a distance measure between the
two time periods per location. We do not only compare adja-
cent windows but also compare the histograms of all hours,
both daily and weekly. Hence, we can detect both abrupt
changes and gradual changes over time. While adjacent
window computation with At set to one hour is performed

on both streaming and batch data, the current solution for
comparing with larger values of At, such as one week, is
done purely on data that is loaded from HDFS. As noted
above, Spark’s programming model facilitates code reuse
between both real-time and batch processing and guarantees
comparable results.

Consumers

—{K
union | DStream DStream

DStream
[((cell, eventID), 1)]

[event] filter [event] map
on location

LT

Kafka producers

DStream
[((cell, eventID), m)]

reduceByKey RDD;_4 RDD;

£
3
2
3

Deel, (PHIQ¢-a0
m;
P(i) =
Dcell1(Pt”Qt-At) Laeamae
. P(i)
Z P(i)log WA’)

Figure 2. Relative entropy computation pipeline.

Example 1: We consider streams of messages of the
form [(t1,¢1, Eidy),. .., (tn, cn, Eidy,)], with ¢; is coming
from the set of cells {B,C} and Fid; is coming from
the set of possible event type IDs A = {1, 2}. A micro-batch
[(tO, Cv 1)a (tlv Ca 2)’ (t27 C, 1)7 (t3, B, 2)7 (t47 C, 1)7 (t57 C, 1)}
is obtained at a time ¢ with timestamps ¢; ranging between
t — At, the previous micro-batch computation time, and
t. The partition of the stream at time ¢ is mapped into
(((¢;, Bidy), 1), ((¢j, Pidy),1),...]. We apply a reduce
operation on the composite key consisting of the cell and
the event type to transform this stream into tuples containing
the key and the corresponding count of events in the current
stream as follows: [((C,1),4),((C,2),1),((B,2),1)].
Since we compute the relative entropy for each cell
individually, we illustrate the computation for cell C
only (similar computations are applied to all the other
cells). At time t, the histogram’s counts of cell C' in our
example are respectively 4 for event type 1 and 1 for
event type 2. Using Equation (2) the probabilities in P,

are respectively P(1) = £ and P(2) = L. We compare

5
the distribution P; to the probability distribution from a
previous micro-batch Q;_a¢ from cell C' with Q(1) = 2
and Q(2) = % By applying Equation (1), we get for our

example D(P[Q) = £ log 35 + £ log 153 = 0.044.

3) Pearson Correlation Pipeline: In order to compute the
Pearson correlation coefficient r(Sx,Sy) of two streams
Sx and Sy, we consider sets of receivers consuming events

from at least two separate interfaces. Both streams are
treated separately, mapping each stream onto a DStream
containing anonymized user IDs and then counting the
number of distinct IDs per micro-batch, such that we obtain
one count per RDD. A graphical representation of the data
transformation process for the Pearson correlation pipeline is
shown in Figure 3. By windowing over the counts of micro-
batches over longer durations, we obtain RDDs containing
multiple counts—essentially the vectors X and Y introduced
in Equation (3). At this point, two previously separate
DStreams are combined as a DStream of pairs of RDDs,
one from each DStream, with corresponding timestamps.
Using the pairs of RDDs, containing the unique input counts
r1,...,ZT, and y1,...,y, respectively, a correlation coeffi-
cient for the particular time period considered is computed
according to Equation (3).

Consumers

DStream
[2Gevent]

.. union

Kafka producers
interface 2G

DStream DStream DStream
filter [2Gevent] map (D] transform [ID]
on location |—, user ID I—, distinct

items per RDD [Long] Long | *" | Long
n n
window v
over n RDD

DStreamy Correlation: r(X,Y)
[Long]

X: RDDpg(Xq .- X,
transformWith 260 - X0) |» DStream

[Double]
DStream,, Y: RDDygy1 - ¥p)
[Long]
X

DStream
[BGevent]

......... identical
transformation

=== union

Kafka producers
interface 3G

Pearson correlation computation pipeline.

Figure 3.

Example 2: Given two distinct streams of messages
mapped onto a stream of anonymized user identifiers Uid;
of the following form [Uid,, ..., Uid,], we collect the user
IDs during a short period of time (e.g., 10 seconds), then
count the number of distinct IDs during this period of
time and write the counts to a new stream. Let us assume
stream Sx contains [A, B, B, A, B] and stream Sy contains
[C,B,C,C,D,C,D,E,F,A] in this short window. By ap-
plying a distinct operation on each stream (for Sy, yielding
[A, B]) and then retrieving the length of this window, we
obtain the count of distinct users per timeframe. These
two counts, respectively 2 and 6, are then written to the
respective output (result) streams RSy and RSy. After
40 seconds, the previous output streams contain multiple
counts: RSx, [2,1,1, 3] and RSy, [6,5, 4, 6]. By windowing
over these counts (e.g., every 40 seconds) over both streams,
we obtain two vectors X and Y from the same timespan,
each containing, in this case, 4 counts. Grouping these vec-
tors into pairs of (z;,y;) gives [(2,6),(1,5),(1,4),(3,7)].
Plugging the values into Equation (3) yields a Pearson

correlation score of \/% = 0.94. Consider the case where

the network monitoring probe producing events on Sy fails,

such that we no longer receive events from one area. Then,

by reducing the events on Sy and the count of distinct users

on RSy after a time range, e.g., 20 seconds, an increase in x;

meets a decrease in y;. Thus, the stream of grouped pairs is

as follows: [(2,6), (1,5), (1,2), (3,5)] so that the correlation
5

r(X,Y) for this pair of vectors decreases to v = 05

V. EMPIRICAL EVALUATION

To evaluate the efficiency and the effectiveness of our
anomaly detection pipeline, we conducted experiments over
real-world Big Data streams regrouping events from millions
of mobile devices running on the Swisscom network. The
data we focus on for our experiments is captured at the A and
the TuCS interfaces by the probes monitoring 2G voice and
3G voice links, respectively, which report network events on
Swisscom’s telecommunication network.

In the following, we evaluate the accuracy of our anomaly
detection for two different types of real-world events. The
first events we focus on are events where anomalies originate
from human behavior and that are caused by sports events,
popular concerts, exhibitions or traffic disruptions, etc. The
second events we focus on result from failing IT infras-
tructure components, for which we simulate one data loss
scenario. In order to evaluate our metrics, we suppose that
hardware failures are reported to the responsible monitoring
teams, while large-scale human events are publicly known.

A. Anomaly Detection Accuracy

We start by evaluating the accuracy of our anomaly
detection system below.

1) Relative Entropy Accuracy: As explained in Sec-
tion IV-B1, the event histograms can be interpreted as an ag-
gregate of mobile phone users’ activity within the network.
In the experiment of Figure 4, each histogram is constructed
over the counts of events per event type. Under non-
anomalous circumstances, human behavior is mostly regular,
i.e., there is no major change in the relative proportion of
the counts for each event type in different histograms for
a sufficiently large population of mobile devices. However,
anomalous events, such as sudden differences in movement
patterns, lead to a change in the distribution of the events.
For example, the proportion of events of the type “phone
call” may increase in a situation where vehicular traffic is
blocked and the proportion of events of the type “moved
to another cell” may decrease. By measuring the difference
between usual and current histograms, it is possible to detect
change in the habitual patterns using the relative entropy.

As a real-world example of an anomaly relating to a
human event, we consider the flood event that took place
in Geneva, Switzerland, on May 2, 2015. This event caused
a significant change in the movement patterns of our users as
several bridges had to be closed and as users had to pick new
routes to get to their usual destinations. The change implies

a higher relative entropy, both when comparing adjacent and
fixed windows. When considering the distribution of the
relative entropy, the anomaly could potentially be detected
through the unusual proportion of higher relative entropy
values in the anomalous scenario (on May 2) compared to
the baseline scenario (on all other days with no known major
movement disruption).

In the experiment of Figure 4(a), the relative entropy is
computed between histograms of adjacent windows consid-
ering one hour per cell. We filtered out the incoming streams
to events originating from cells within the city of Geneva.
Figure 4(a) shows the distribution of the mean relative
entropies per cell for one day. For known “normal” days, the
mean entropy D over all cells is computed and the ranges
for the bins on the x-axis are taken as multiples of D, where
D = 0.15. The y-axis shows the relative proportion of cells
with mean relative entropy falling into the range given on the
z-axis. For comparison, we are differentiating between the
data for the known anomalous day and a baseline average
obtained from computing the relative entropy on multiple
days in April and May. The results show that the majority
of cells display low relative entropies for both normal and
anomalous days, although normal days’ entropy values are
closer to D. On the other hand, Figure 4(b) shows that the
proportion of cells where the mean daily relative entropy
exceeds 2D, i.e., bins with ranges greater than 0.3, is clearly
higher on May 2 than on average on known normal days.
The high proportion of very low relative entropy values for
the anomalous day in Figure 4(b) is linked to inactivity at
some cells. This example, which was confirmed in several
similar cases, indicates that high relative entropy values can
be used to detect human anomalies such as the one that
occurred in Geneva on May 2.

In order to detect anomalies automatically, we leverage
domain knowledge about the shift of the distribution to set
thresholds. We consider a multiple of the baseline mean
kD as a threshold and count the number of cells where the
threshold is exceeded. In our deployment, setting k to 2 gives
the best experimental results. By comparing known normal
and known anomalous days, thresholds for anomaly alerts
can be set for the number of cells with a relative entropy
above a certain threshold within a geographical area. For
example, the city of Geneva exceeds the number of cells
with relative entropy above a threshold on a normal day
by ko, where o is the standard deviation to the count of
cells with relative entropy exceeding the threshold on normal
days. In a series of experiments on this scenario, setting k
to 1.5 yielded an accurate detection of the anomaly events
as shown in Figure 4(a).

In the experiment of Figure 4(c), we consider another
event, where a fire in the Lausanne train station interrupted
the entire rail traffic in Western Switzerland during one hour
on June 22, 2015. Compared to the previous event, which
affected only the Geneva area, the region which was affected

0.10

B normal
=3 anomalous

0.05

0.00

fference

—0.05

d

-0.10

-0.15

© 0 ©, 0 0 0 0 © b o b o b o b b
'qo)v)o'go-ee A ‘&)01770\9*’0.&‘90 ‘?QOQO) Q,¢ Q*e 0.‘2,00.9,) Q,V 0_%0@9
> 70,°0,70, %,70_ 0,70 >0 2 70,°0,%0, %,70_%0 >0 0,
Y YT U Y Y

relative entropy D(P||Q) relative entropy range

(b) Difference between normal and
anomalous proportions of cells per range.

(a) Adjacent windows.

0.06
BB normal: global 0.04
=3 anomalous: global

E=® normal: affected area
E==1 anomalous: affected area

0.02
0.00
—-0.02
—0.04
—0.06
—0.08

difference

L global
e—= local

g ‘0 4 2) ‘7.

? : 2 k4) >
% o, Yo, o, o % To, %o, ‘o, “o

Y Y

relative entropy range

relative entropy D(P||Q)

(c) Same hours but different days. Global (d) Difference between normal and anoma-
vs local scale. lous proportions of cells per range, on a
global and on a local scale.

Figure 4. Distribution of the cells’ mean relative entropy and difference
between normal and anomalous days.

by this interruption is much larger. We use the data from the
entire day, which is available from HDFS, and compute the
relative entropy between the hourly event histograms from
June 22 and from a non-anomalous day, as well as between
non-anomalous days as a baseline. For comparing two days
d; and do, we compute the relative entropy between the
histogram summarizing hour h; in cell ¢; on d; and the his-
togram summarizing the same hour h; in the same cell ¢; on
ds. This allows us to take into account periodical behavioral
changes throughout the day and compute the relative entropy
between two histograms that are expected to be similar. We
performed such computations on two geographical scales.
First, the relative entropy is computed per cell globally for
all data available in Switzerland.

Small-scale events affecting few cells (such as the previ-
ous scenario) are typically not observable on a global scale
but only on a local scale. Second, cells from the city of
Lausanne were filtered.

Similarly to the experiment of Figure 4(a), the results are
plotted on a histogram showing the distribution of the cells’
mean relative entropy (averaged over all hourly relative
entropy values for each cell). In the global relative entropy
distribution, we can observe a higher proportion of cells with
higher mean relative entropy in the anomalous case than
in the normal case. As Figure 4(d) shows, the differences
between the normal and the anomalous metrics are more
pronounced when considering only the area of Lausanne
as affected area but are nevertheless visible on a global
scale. The results of Figure 4(c) show that large-scale events
affecting many cells are detectable on a global level. When
using thresholds for anomaly detection, the parameters need

to be defined individually for different geographical scales,
since the global impact will commonly be lower than the
regional impact.

In order to detect local anomalies, one might consider
computing the relative entropy between two geographical
units, e.g., cells. Relative entropy is not suited for this
purpose, since each cell or area has its own distinctive
distribution of event types related to its geographical location
and thus, relative entropy between different locations would
be high in any scenario.

2) Pearson Correlation Accuracy: The physical network
monitoring probes from which we obtain the data are
located close to Swisscom’s core network. There is not one
physical monitoring probe per base station (cell), as each
physical device is responsible for an aggregate of cells.
Probe failures are hence detectable by looking at large-scale
changes, which are obtained by maintaining global Pearson
correlation coefficients. Since none of the probes failed
during the period of this study we resort to a simulation
that aims to imitate a realistic failure scenario of a network
monitoring probe. We simulate the failure of a monitoring
device by filtering out the events in its area, that is, by
removing all events that originate from a certain area for
a given period of time. Due to the high computational cost
of simultaneously processing several streams, this simulation
was executed on events coming from only one LAC. This is a
downscaled failure scenario of the case where the monitoring
component belonging to one specific LAC on one interface
ceases to transmit data.

In the non-anomalous scenario, the data streams coming
from different telecommunication interfaces (2G and 3G,
specifically) are highly correlated in the counts of users
on the interfaces during a period in time. This domain
knowledge helps to maintain correlation coefficients in order
to detect changes that affect components belonging to one
of the two interfaces. Infrastructure failures typically yield
abrupt changes. In our case, since no users are counted
for the area in which the probe has failed, fewer events
get transmitted from the respective monitoring probe and
thus lead to lower user (i.e., input) counts. As a result, we
expect a sudden drop in the Pearson correlation coefficient
r(X,Y). Due to a mostly uniform loss of events, subsequent
vectors again have higher correlation, hence we have detect
the anomaly based on the abrupt drop of events. If the
failure happens precisely between two windows, no decrease
in 7(X,Y) can be observed. We therefore use overlapping
windows to capture every possible failure.

Figure 5 displays the results of computing the Pearson
correlation between the counts of distinct users on the 2G
voice (A) and the 3G voice (IuCS) streams during one
hour with one count every 10 seconds and one correlation
score every 90 seconds. After 30 minutes, we filter out
one third of the IuCS stream counts. The results show
that both before and after the failure, r(X,Y") between the

-

©

e © o o
N

Pearson correlation
>

o
2

10 20 30 40 50 60

o

1600

1400 — IuCsS: distinct users
1200 A A: distinct users
1000 A

800 | y

600 - A M\N\ﬂ/\,‘] Aﬁ

o0 sty bty

200

user counts

0 10 20 30 40 50 60
minutes

Figure 5. Impact of cessation of data transmission from one probe on the
correlation between two streams.

counts over the two streams is consistently high (ranging
between 0.8 and 1). Before the failure, high correlation of
the streams is our baseline for detecting outliers. At failure
time, there is a momentary decrease of the correlation to
0.6 during one 90 second window after which it stabilizes
again to the previous range. This momentary decrease of
0.3 is significant considering the baseline average of 0.91
having a standard deviation o of 0.06. We detected such
cases by identifying correlation coefficients that deviate from
the average by ko; in our deployment, picking k = 4 gives
overall an accurate detection of infrastructure failures in
time.

Pearson correlation performs well for detecting abrupt
changes. However, it is not suitable to detect gradual changes
such as in events caused by human behavior. The anomaly
detection accuracy could be further improved by comput-
ing the correlation between more streams simultaneously,
though such computations are resource-intensive.

B. System Scalability

We now turn to evaluating the scalability of our anomaly
detection system. As our system must be able to scale-out
and to efficiently cope with large amounts of data, we vary
both the number of executors (nodes) and the volume of the
input data in the following.

1) Scale-Out Performance: Parallel processing is a key
feature of Big Data infrastructures. In order to evaluate the
scalability of our implementation, we conduct an experiment
with a varying number of processing executors (nodes).
Since we are running on top of YARN, each executor
corresponds to an isolated memory partition. In our case,
we consider memory partitions of 4GB. All the following
experiments were executed during business hours, where we
can observe a relatively constant data rate. Each stream is
consumed in parallel by nine receivers (see Section IV).
These receivers do not run any task other than receiving data.
Executors used for receiving data do not process the data any
further and directly distribute the data to other executors. In
order to isolate the performance of the processing from the

data receiving, we do not consider the stream consumers
but only the executors performing the transformation and
the subsequent computations. Thus, we add nine executors
for each stream that is being consumed to the total number
of executors but only consider the additional executors for
the scale-up experiments.

Since we are interested in the ability of the system to
process the data streams in real-time, all experiments have
been conducted over a period of 20 minutes. Micro-batches
should on average be computed within very shorts periods
of time. If the execution of the micro-batch task exceeds a
predefined micro-batch time upper bound, then we switch
to a different configuration.

a) Relative Entropy Scalability: In order to evaluate
the scalability of the algorithm for computing the relative
entropy D(P:||Q:—at), we choose a At of 60 seconds,
i.e., we compute the relative entropy between two adjacent
windows of 60 seconds duration.

The experiment in Figure 6(a) shows the processing time
with an increasing number of executors. This experiment
shows that while using only one executor for processing
the data, the algorithm terminates on average below the
duration of a micro-batch, such that it is able to compute
the relative entropy on the stream in real-time. The execution
time and the variance decrease by adding more executors.
A low variance helps to guarantee an upper bound for the
execution time. A low execution time (that is as far as
possible from the maximum execution time given by the
micro-batch duration) is important in the case of failure. In
fact, Spark’s built-in recovery mechanisms guarantee that all
data will be processed, though it may require recomputing
some partitions and hence imposing some overhead compu-
tations. While lower executor counts fulfill the requirements,
the optimum is reached at 128 executors. Increasing the
parallelism beyond 128 executors does not speed up the
processing any further. In our deployment, this is caused
by the overhead of the Spark master when managing a large
number of executors.

o
o
©o
o

i
T w S 80
8%k 870 _
]) !
goe ENT
S 30 + s '
c ca0] |
(s} ! - o .
5 20 4 LT 830 =
3 1 | > -
39 =T L 04 - 220 = - L
517 T e 2 F 50 T
0l- . . : . . . 0
1 8 16 32 64 128 256 8 16 32 64 128 256

number of executors number of executors

(a) Relative entropy algorithm on the A (b) Pearson correlation algorithm between
stream. A and IuCS streams.

Figure 6. Micro-batch processing times per number of executors.

b) Pearson Correlation Scalability: Given the size of
the 3G data and the complexity of receiving and processing
two streams at the same time, we consider only events from

one LAC for the following correlation experiment. The ex-
periment of Figure 6(b) displays the micro-batch processing
time as a function of the number of executors for computing
the Pearson correlation (X, Y’). We limit this experiment
to the respective batch duration considered. In the case of
Pearson correlation, execution with less than 8 executors
was consistently unable to terminate within the given 90
second batch duration. Therefore, these configurations are
not shown in Figure 6(b). The experiment of Figure 6(b)
shows that the average execution time decreases by adding
more executors, until reaching a point where the executor
management overhead decreases the performance. For the
Pearson correlation algorithm, this point is reached at 64
executors, after which execution speed does not increase any
further. The range of suitable configurations for computing
the Pearson correlation between two streams is smaller than
for computing relative entropy on one stream.

Despite the difference between the algorithms of the two
metrics, we observe that the execution times with the optimal
number of executors are similar, although slightly higher for
Pearson correlation than for relative entropy. This results
from the larger quantities of data needed for the computation
of the Pearson correlation coefficient. This indicates that the
algorithms as well as the Spark processing are efficient, both
in terms of computing the algorithms in real-time and in
scaling horizontally, and that a significant fraction of the
processing time is caused by data shuffling and executor
management.

2) Performance over Increased Data Load: For experi-
menting with increased data loads, we use the newest gener-
ation of mobile telecommunication protocols, currently 4G.
4G data has a higher throughput leading to larger amounts
of event data to be processed than previous generations of
mobile technology.

In order to evaluate the scalability of the algorithms over
large volumes of data (measured in hours), we compare
different workloads. Unlike the previous experiments, where
we have considered the relative entropy and Pearson cor-
relation separately, they are in the following experiment
computed together. The number of executors was fixed to
80 and each executor was configured to 4GB of memory.

The computation times for varying data quantities are
shown in Figure 7. We observe that the algorithms scale
linearly with the quantity of the data. Taking around 15
minutes for one day of data, the system is able to process the
data within a reasonable timeframe. With limited computa-
tional resources, we cannot afford computationally complex
processes to handle the data. However, the usage of the
shared resources on which anomaly detection is performed
vary throughout the day. In cases where periodical batch
processing is required, the batches can be processed during
idle resource times, for which 15 minutes time windows
sound reasonable in our case.

1000

800

600

execution time (sec)

=—e our system

0 3 6 9 12 15 18 21 24
hours

Figure 7. Joint computation of relative entropy and Pearson correlation:
processing time vs. number of hours of collected data.

VI. CONCLUSION

In this paper, we introduced a new system leveraging
both relative entropy and Pearson correlation for online
anomaly detection over Big Data streams. Our solution
builds on Spark and can be used for data streams as well
as for data at rest. The results of the experiments we
ran on real world data show that relative entropy is well-
suited for detecting gradual changes caused by large-scale
human activity, whereas Pearson correlation is best-suited
for detecting abrupt changes, caused for example by network
failures. Our proposed anomaly detection system works at
different scales, both geographically (network topology) and
temporally (Iength of windows, batch vs. stream processing).
We also ran experiments showing that our system gracefully
scales with the number of nodes and with the data volume.

In future work, we plan to integrate additional ground-
truth data to automatically determine the correct thresholds
when reporting the anomalies. Another promising direction
is to extend our approach to anomaly clustering. Clustering
would help us to determine the general types of the anoma-
lies as well as to better evaluate the consistency and the
quality of the data.

ACKNOWLEDGMENT

This work was partially supported by the Swiss National
Science Foundation under grant number CRSII2_147609.
The authors would like to thank Swisscom for providing the
data and the infrastructure we used for the experiments. We
would also like to give special thanks to the anonymous
reviewers for their insightful comments.

REFERENCES

[1] T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi, “An
information-theoretic approach to detecting changes in multi-
dimensional data streams,” in In Proc. Symp. on the Interface
of Statistics, Computing Science, and Applications, 2006.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster Computing with Working Sets,” in
Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, 2010, pp. 10-10.

[3] J. Zhang, M. Lou, T. W. Ling, and H. Wang, “HOS-Miner: a
system for detecting outlyting subspaces of high-dimensional
data,” in Proceedings of the 30th International Conference
on Very Large Databases, Toronto, Canada, 2004, pp. 1265—
1268.

(4]

(3]

[6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

X. Li and J. Han, “Mining approximate top-k subspace
anomalies in multi-dimensional time-series data,” in Proceed-
ings of the 33rd International Conference on Very Large Data
Bases, Vienna, Austria, September 23-27, 2007, 2007, pp.
447-458.

W. C. Young, J. E. Blumenstock, E. B. Fox, and T. H.
Mccormick, “Detecting and classifying anomalous behavior
in spatiotemporal network data,” in The 20th ACM Conference
on Knowledge Discovery and Mining (KDD ’14), Workshop
on Data Science for Social Good, New York, NY, 2014.

M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier
detection for temporal data: A survey,” IEEE Transactions
on Knowledge and Data Engineering, vol. 25, no. 1, pp. 1-1,
2014.

Q. Wu and Z. Shao, “Network Anomaly Detection Using
Time Series Analysis,” in Joint International Conference on
Autonomic and Autonomous Systems and International Con-
ference on Networking and Services - (icas-isns’05), 2005,
p. 42.

M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining
stream statistics over sliding windows,” SIAM Journal on
Computing, vol. 31, pp. 1794-1813, 2002.

O. Papapetrou, M. Garofalakis, and A. Deligiannakis,
“Sketch-based querying of distributed sliding-window data
streams,” in Proceedings of the VLDB Endowment, vol. 5,
2012, pp. 992-1003.

G. Cormode and S. Muthukrishnan, “An improved data
stream summary: The count-min sketch and its applications,”
Journal of Algorithms, vol. 55, no. 1, pp. 58-75, 2005.

G. Cormode and S. Muthukrishnan, “What’s new: Finding
significant differences in network data streams,” INFOCOM
2004. Twenty-third Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 3, pp. 1534—
1545, 2004.

S. Kullback and R. A. Leibler, “On information and suffi-
ciency,” Ann. Math. Statist., vol. 22, no. 1, pp. 79-86, 03
1951.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in NSDI’12 Proceedings of the 9th USENIX con-
ference on Networked Systems Design and Implementation,
2012, pp. 2-2.

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and 1. Stoica,
“Discretized streams: fault-tolerant streaming computation at
scale,” in SOSP ’13 Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, 2013, pp. 423—
438.

The Apache Software Foundation, “Apache Avro,” 2015.
[Online]. Available: https://avro.apache.org/

The Apache Software Foundation, “Apache Kafka,” 2015.
[Online]. Available: https://kafka.apache.org/

N. Marz and J. Warren, Big Data: Principles and best
practices of scalable realtime data systems. Greenwich, CT:
Manning Publications Co., 2013.

