CINTIA: a Distributed,
Low-Latency Index for Big Interval Data

Ruslan Mavlyutov
eXascale Infolab
U. of Fribourg—Switzerland
{firstname.lastname } @unifr.ch

Abstract—Intervals have become prominent in data manage-
ment as they are the main data structure to represent a number of
key data types such as temporal or genomic data. Yet, there exists
no solution to compactly store and efficiently query big interval
data. In this paper we introduce CINTIA—the Checkpoint
INTerval Index Array—an efficient data structure to store and
query interval data, which achieves high memory locality and
outperforms state-of-the art solutions. We also propose a low-
latency, Big Data system that implements CINTIA on top of
a popular distributed file system and efficiently manages large
interval data on clusters of commodity machines. Qur system
can easily be scaled-out and was designed to accommodate
large delays between the various components of a distributed
infrastructure. We experimentally evaluate the performance of
our approach on several datasets and show that it outperforms
current solutions by several orders of magnitude in distributed
settings.

Index Terms—Interval Data; Low-Latency; Scalability; Dis-
tributed Data Management

I. INTRODUCTION

Infrastructures for managing sets of intervals have not
evolved much in the last decades. Yet, intervals are increas-
ingly prevalent in cloud and distributed information systems
and are being created by an ever growing number of applica-
tions. Temporal intervals are fundamental to the management
of time varying information [1]. They are for example essential
for correctly capturing and handling online transactions.

Intervals are also omnipresent when managing genomic
data. With the commoditization of DNA sequencing technol-
ogy, very large amounts of short DNA sequences can today
be created at very low cost—the cost of sequencing a raw
megabase (a million DNA bases) being less than 0.1$ in
2015'. Queries on those overlapping intervals have played a
significant role in the development of modern genomics and
are essential for many bioinformatics applications.

Beyond temporal information and genomics, intervals are
often heavily used to efficiently manage spatial or multidimen-
sional data, for example by taking advantage of space-filling
curves (such as Hilbert [2] and Z-order [3] curves) to map
a n-dimensional space onto a one-dimensional space while
preserving some locality.

Despite this growing demand, interval infrastructures have
been lagging behind. Relational database systems, with their

Isee http://www.genome.gov/sequencingcosts/

Philippe Cudre-Mauroux
eXascale Infolab
U. of Fribourg—Switzerland
{firstname.lastname } @unifr.ch

bag (or set) semantics, are ill-designed to store ordered data
and have to rely on secondary structures (such as interval trees,
see Section II below) to handle interval data. A number of
recent systems, such as column [4] or wide column [5] stores,
have the ability to store ordered data natively; yet, they are
unable to efficiently answer queries on top of interval data, as
the complexity of answering queries on overlapping intervals
grows linearly with the number of intervals without a dedicated
index.

After having unsuccessfully tested out all the above solu-
tions for one of our projects?, we decided to develop a new
solution to this problem. In this work, we introduce CINTIA,
the Checkpoint INTerval Index Array, a new data structure
to manage large sets of intervals in distributed settings. We
designed our system from the ground up with two main goals
in mind: i) to allow for low-latency, efficient query execution
over large sets of overlapping intervals—even when the latency
between some of the components of the infrastructure is
high—and ii) to support graceful scale-out, by simply adding
more nodes to the infrastructure when the system reaches
capacity. We met those goals by developing a new interval
index, which scales gracefully even in the worst-case scenario
when all intervals overlap each other, and by integrating and
optimizing our system directly on top of a modern distributed
file system (i.e., HDFS).

In summary, the main contributions of this paper are:

« a new data structure to compactly encode and efficiently
query interval data. Our new index has a construction
complexity of O(N log N) (where N is the number of
intervals in a dataset), a query execution complexity of
O(log(N) + R) (where R is the number of intervals
overlapping the query interval) and a space complexity
of O(N). Our index is cache-efficient, in the sense that
cache-misses are minimized as much as possible thanks
to data collocation;

« two implementations of our index, one for stand-alone,
main-memory usage and another one built on top of a
popular distributed filesystem (HDFS);

« an extensive evaluation of our system on several datasets
showing that it is more efficient than state-of-the-art
solutions both in centralized and in distributed settings.

2the 3D Genome Browser, see http://3dgb.cs.mcgill.ca/

The rest of this paper is organized as follows. We start
below by discussing the related work in temporal, spatial and
distributed systems in Section II. Section III gives a high-
level overview of our solution, including the main techniques
we devised to insert, index and query interval data. We
discuss a number of important implementation considerations
in Section IV. Section V presents the results of an empirical
evaluation of our system on several datasets, and how it
compares to several state-of-the-art techniques and systems.
Finally, we conclude in Section VI.

II. RELATED WORK IN INTERVAL DATA MANAGEMENT

A number of techniques have been proposed for managing
intervals efficiently (see [6], [7], or [8] for surveys), mostly
for relational database systems. To the best of our knowledge,
however, we are the first to propose a solution for managing
interval data based on two interrelated arrays: a main interval
array and a checkpoint array.

We review below the most important pieces of work in
our context, focusing on main-memory and multidimensional
structures and their extensions to secondary storage and dis-
tributed settings.

A. Memory-Resident Structures

The trivial solution to resolve overlap queries (i.e., queries
returning all intervals overlapping a chosen interval) on a
collection of intervals is to do a full-scan on the set/list of
intervals, which has a time complexity of O(N), where N
denotes the number of intervals in the collection. Keeping
the intervals ordered does not help to improve this query
complexity.

A number of data structures were developed to execute
overlap queries in logarithmic time.

The original Interval Tree by Edelsbrunner [9] indexes
intervals on a line by splitting the tree recursively based on the
median of the intervals. The result is a ternary tree, with each
node storing i) pointers to intervals lying completely to the left
and to the right of the point corresponding to the node and ii)
two lists storing all the intervals overlapping the current point,
one sorted on the intervals’ starting points, the other sorted on
their ending points. The Interval Tree has a space complexity
of O(N), and a query complexity of O(M + log N), where
M is the number of intervals overlapping the query.

The Relational Interval Tree (RI-Tree) [10] is a related effort
leveraging common database structures. In its core, it uses
Edelsbrunner’s Interval Tree, although intervals are internally
managed by two relational indices. Another adaptation of the
Interval Tree for external memory is made by Arge et al.
[11]. Since this data structure is able to efficiently serve only
stabbing queries (return all intervals overlapping a point), we
do not consider it in our research.

A number of similar data structures were developed at
the time in the context of computational geometry, among
which the Priority Search Tree and the Segment Tree [12].
The Interval Binary Search tree [13] handles point queries
efficiently and can be balanced easily although it incurs higher
storage costs (O(N log N)). More recently, the Interval Skip

List [14] allowed for efficient online searches, insertions,
and deletions, yet was simpler to implement than previous
structures.

Another recent approach proposed for genome alignment
databases is the Nested-Containment List (NCList) [15]. The
basic idea is to keep intervals fully enclosed by other intervals
as their sublists. The result is a tree-like structure of lists,
which yields a query complexity of O(M + log N) and a
construction time of O(N log N).

We experimentally compare CINTIA to the most relevant
data structures described above in Section V.

B. Multi-Dimensional Solutions

Intervals can also be indexed using general-purpose multidi-
mensional indices. Guttman’s R-tree [16] is often used to store
one-dimensional intervals in practice. A number of variants
were developed over the years, such as the R*-tree [17],
which minimizes the overlap for leaf nodes and which can
efficiently index both point and spatial data at the cost of a
more expensive insertion strategy.

The Segment Index [18] combines the main memory-based
segment tree with the secondary structure of the R-tree and
was specifically designed to improve query performance for
intervals that have non-uniform length distributions. Its per-
formance is pretty similar to the R-tree in practice.

More recently, Fenk et al. proposed a hybrid method to man-
age and query intervals efficiently, by transforming intervals
into a two dimensional space and indexing that space with
a UB-Tree [19]. Queries on intervals are then transformed
into two-dimensional boxes, which are then handled by the
UB-Tree range query algorithm [3]. It performs close to the
RI-tree for point queries in practice.

Other multidimensional methods, such as our own previous
work on indexing two-dimensional trajectories [20] could also
be adapted to index one-dimensional intervals. We compare
our solution to different R-trees configurations in Section V.

C. Distributed Settings

Less focus has been given to the design of interval man-
agement techniques for distributed environments. Bisadi &
Nickerson [21] proposed a distributed range search mechanism
for sets of points distributed on several nodes based on rainbow
skip graphs. This work leveraged message-passing interfaces
and focused on reducing the number of messages, achieving
a message complexity of O(N), where N is the number of
computing nodes in the distributed setting.

The authors of [22] adapted the NClist to cloud environ-
ments and proposed optimization strategies to filter and query
intervals. Unfortunately, we were not able to obtain the source
code of their solution.

The SD-Rtree [23] is a generalization of the R-tree for dis-
tributed environment. Each machine in the cluster represents
one leaf node, which keeps a collection of multidimensional
objects. The SD-Rtree balances the servers load and yields
low message costs for executing insertion and search queries.
To the best of our knowledge, this structure was never imple-
mented. In addition, the authors did not propose any efficient

@

Offset
Index

17 - offset 262'144B
nodes 13, 27, 42

q1:[13:17)

q1:[13:17)
offset 262'144

k
checkpoint ¢

W
=l —_——-
checkpoint(c6 Distributed 83 | 55 3
C?' Et < polnt(ch) > Checkpoint 12+ L5
en 53 7 Array
A _
Filesystem @

Fig. 1: CINTIA overview: querying starts by issuing a query
to a segment index (1) returning, for any interval, the offset
of the file segment corresponding to the right-bound of the
interval. The client then buffer-reads all intervals whose left
bounds fall between the two bounds of the query (2) from
a distributed interval array. Finally, the client retrieves the
remaining intervals that overlap the query but started before
its left bound (3) from a corresponding checkpoint array.

method for storing and searching objects in the leaf nodes,
which makes this solution incomplete.

SpatialHadoop, proposed in [24], is a popular implementa-
tion of spatial data structures and algorithms on top of Hadoop.
It segments a dataset into compact subsets of collocated
objects and puts each subset into a serializable in-memory
data structure. The serialized dictionaries are then distributed
across the cluster nodes. Queries in SpatialHadoop are handled
through distributed MapReduce tasks, where dictionaries are
uploaded into memory and queried. We benchmark CINTIA
against SpatialHadoop in Section V.

III. METHOD

We designed our interval system with two challenging
goals in mind: i) high scalability and ii) very low latency.
We achieved i) by leveraging the fault-tolerance and data
partitioning of a state-of-the-art distributed file system and
by creating two complementary data structures to store and
index intervals compactly while providing a high degree of
spatial locality. We achieved ii) by taking advantage of high-
throughput, buffered reads from the distributed file system
while minimizing the number of data accesses to the bare
minimum (most queries in CINTIA can be answered by only
two accesses to the underlying filesystem).

Figure 1 gives a high-level overview of our system. Clients
can send interval queries to our system over the Network. First,
clients issue a query to an in-memory skip list to determine
the segment in the distributed interval array responsible for
indexing the right bound of the query in the file system. The
skip list is small even for very large interval sets, and can
either be placed on the directory (e.g., NameNode) of the
underlying file system or be cached on the client-side. The

client then locates the corresponding machine in the cluster
and starts reading a distributed interval array sequentially,
starting at the file segment corresponding to the right bound
of the query and continuing backwards until it reaches the
file segment corresponding to the left bound of the query. At
this point, the client collected all intervals whose left bounds
overlap the query. Then it continues backwards until it reaches
a checkpoint record, pointing to lists of intervals overlapping
the query but starting before its left bound. The client retrieves
checkpoint data (if needed) from a second distributed array,
the checkpoint array (3). At this point the client retrieved all
intervals overlapping the query.

We describe our data structure as well as our construction
and query processing algorithms in more detail below, after
introducing some notations.

A. Notations

We consider large sets of N intervals Z = {iy,...,iy}. All
the intervals we consider in the following are left-bounded,
left-closed and right-open®. An interval is defined by its start
and end points (left and right bounds) [is, %), and by its as-
sociated payload or value ¢,,. We consider overlapping queries
which take the form of interval queries [gs, g.) retrieving all
the intervals overlapping the region between their start and
end points.

B. Data Structures

We introduce two main data structures:

1) an interval array storing all intervals (along with their
values) sorted by the value of their left bound in ascend-
ing order;

2) a sequence of checkpoint arrays, storing for every k-th
record (called checkpoint) in the interval array copies
of the records that overlap its interval, but that are
located before it in the interval array. The records in the
checkpoint arrays are sorted in descending order of the
right bounds of their corresponding intervals.

Both the interval and the checkpoint arrays are cache-efficient,
compact structures providing a high degree of spatial locality.
They both can be easily distributed on several machines for
fault-tolerance and scalability. We consider in the following
that the value 7, attached to each interval is small and of
fixed-size. In case of large values (e.g., for multimedia files
indexed using intervals) or values varying in length, we store
pointers to the values instead of the values themselves in both
arrays in order to reduce the storage overhead.

We illustrate our two main data structures with an example.
Figure 2 gives a set of 20 intervals Z = {41, ..., 420 }. Figure 3
illustrates how a checkpoint interval index would store and
index those intervals. The 20 intervals are sorted by the
value of their left bound in the interval array (bottom part
of Figure 3). Each k' interval in that array is selected as
a checkpoint (yellow record in Figure 3). There might be
various strategies for selecting k, and thus the number of

3We note that extending our method to other types of intervals would be
straightforward

11 |
12 |
13
14 |
15 |
16 |
17 |
18 |
19
110 |
111 |
112 |
113
114 |
115 |
116 |
117 1
118
119 |
120 |
left borders coordinates

Fig. 2: Example interval set

checkpoint array | 12
[|
17
119
2]
126

checkpoint array

— 111

|\15| 14 | 16 |\17| 1 ||11| 19 ||12|I19|\20| 15 |I16| 12 ||13||10|\14| 18 ||18| 17 | |3|

o main index array
[checkpoint intervals

Fig. 3: Corresponding checkpoint interval index

checkpoints, which directly influence the performance of our
approach. We discuss how to find an optimal value of k& below
in Section III-D.

For the first checkpoint corresponding to interval 19, the
checkpoint array contains records I1, 74, I11 and I17. All
of them overlap I9 (see Figure 2) and are located before it
in the main interval array. For the same reason /12 is not
in the checkpoint array, though it overlaps I9. The order in
the checkpoint array is defined by the right bounds, so the
intervals 74 and /17 occupy the first two positions.

checkpoint array

- query interval

intervals starting
before query range

LI LT Jel
®

intervals starting
inside query range

intervals starting
after query range

main index array
|§| intervals that
overlap query range

Fig. 4: Query example

C. Query Execution

Given the two main structures described above, Algorithm 1
describes the query execution strategy to retrieve all intervals
that overlap a query q. Figure 4 illustrates it. On the figure, the
intervals that overlap the query—and thus must be returned—
are denoted by red dots.

Algorithm 1: Query algorithm

Input: main interval array M, array of checkpoint arrays
Ch, checkpoint step ChS, query [gs, gc)

Output: R - set of intervals overlapping [gs, ¢)

/* via binary search or query to
B-tree: */

POS + Index of last interval starting before g,

while POS > 0 do

if M[POS].end > ¢5 then

L R.add(M[POS])

if M[POS].start < qs and 1sCheckpoint(PO.S)
then
ChIndex < M[POS].checkpoint ArrayIndex
ChPOS + 0
while ChPOS < Ch[ChIndex].size do
if Ch[ChIndez|[ChPOS].end < g5 then
| break

R.add(Ch[ChIndex)[ChPOS))
ChPOS + ChPOS + 1

break
// Full stop

| POS < POS -1

return R

The example query ¢ is processed as follows: First, the
system determines the last interval in the interval array that
starts before the right bound of the query g. (by using binary
search or a skip list). This record corresponds to point (1)
in the figure. Next, the system moves back in the interval
array and retrieves all intervals until it reaches an interval
whose left bound starts before ¢, (point (2) on the picture).
At this point, the system has retrieved all intervals starting
inside the query. The system continues reading the interval
array backwards, until it reaches a checkpoint (point 3 on the
picture). The intervals read in that phase (i.e., the intervals
stored between (2) and (3)) may or may not overlap the query.
Each of them is checked by the system and returned as a result
only when it indeed overlaps the query. Finally, the systems
reads the checkpoint array. Intervals in the checkpoint array,
whose right bounds are larger than g5, overlap the query and
are also returned as results. As the intervals in the checkpoint
array are sorted by their right bound, the algorithm scans only
those records that overlap the query, and stops as soon as
it comes across an interval whose right bound is smaller or
equal to ¢s. The main performance overhead of this procedure
in incurred when walking from point (2) to point (3) in cases
where there is a prevalence of intervals that do not overlap the

query. The length of the walk between (2) and (3) is however
limited by the size of the checkpoint step (C'hS), which is
discussed below in Section III-D.

In the extended version of the paper [25] we prove that
the algorithm is complete and sound. We also show that the
query complexity is O(log N + R), where N is the number of
intervals stored in the index, and R is the number of intervals
overlapping a query interval.

D. Optimizing the Checkpoint Step

There exist many potential strategies for selecting positions
for the checkpoints. In the context of CINTIA, we decided that
the very first record in the main index is a checkpoint, and sub-
sequent checkpoints are positioned after every C'hS records. In
the following, we call ChS the Checkpoint Step as it denotes
the number of records between two consecutive checkpoints.
Our motivation behind this choice was to minimize space
consumption (we do not need any additional field), to ease
query process (no need to support a dedicated data structure
signaling the position of the closest checkpoint) and to support
optimized processes for the placement of the checkpoints (see
below). We also implemented further techniques for setting
the locations of the checkpoints (e.g., variable checkpoint
steps), but do not describe them in this paper because of space
constraints.

The value of the checkpoint step C'h.S has a strong influence
both on the efficiency of our structures and on its memory
consumption. On one hand, high values of ChS create some
significant overhead when answering queries as discussed
above in Section III-C. The lower the degree of overlap
between the intervals, the higher this overhead. In the worst
case—when intervals do not intersect each other and queries
are uniformly distributed—this overhead is equal to ChS/2.

On the other hand, lower values of C'hS lead to a higher
memory consumption due to the creation of multiple check-
point arrays. To quantify this space overhead, we introduce the
notion of Space Factor SF, which is defined as the relative
space overhead of our indices to the original size of the data
considered:

SF = (size(Index) — size(Data))/size(Data). (1)

In practice, the value of SF is limited by disk or memory
constraints S Fy, 4. The minimum value O corresponds to the
case when we do not keep any additional information on top
the original data set.

Hence, we are faced with a discrete optimization task under
constraint, which can be summarized as follows:

min ChS

2
subject to SF(ChS) < SFpax @

Due to the very nature of our system, all space overhead are
caused by the checkpoint arrays. The lower the value of ChS,
the more arrays will be created, and (in general) the more
memory will be consumed. The function SF(Ch.S) is discrete
and non-monotonic but follows a decreasing hyperbolic trend.

The further the distribution of the intervals’ borders moves
from a uniform distribution, the less monotonic SF(ChS)
becomes.

We developed an algorithm for calculating the optimal
value of the checkpoint step. The algorithm is described in
the extended version of the paper [25]. It has complexity
O(Nlog(N)) and guarantees that the of value of SF is lower
than SF,qz.

E. Index Construction

Batch Construction. The two main structures or our system
can be built efficiently when considering batch insertions. The
index construction can be broken into three steps:

1) the construction of the interval array storing the inter-
vals sorted by their left borders. Sorting this array has
O(NlogN) complexity;

2) the selection of an optimal value for the checkpoint
step; the complexity of this step is also O(NlogN), as
described above in Section III-D.

3) the construction of the checkpoint arrays, which is de-
scribed below.

The construction of the checkpoint arrays is analogous to
the calculation of the optimal value of the checkpoint step. We
swipe across the interval array and use a heap to store already
visited records. We use the right bound of the record’s interval
as a comparison key for the heap. For each new record, we
pop all records from the heap that have a right bound smaller
than the left bound of the current record’s interval. After this
step, the heap contains all records that are located to the left
of the current record in the interval array and overlap it. Upon
reaching the next checkpoint, we make a copy of the heap and
pop all values in order to get the list of records to put in the
checkpoint array, sorted by their right border. We just need to
reverse that list to get a final checkpoint array.

Since each interval is pushed and popped once from the
heap (pushing an element and popping the minimum have
complexity O(log(N))), the complexity of this process is
O(Nlog(N)). The amount of times the initial intervals are
copied to checkpoint arrays is limited by the Space Factor and
is bounded by SpaceFactor * N. The final time complexity
of the construction is hence O((SpaceFactor+log(N))*N).

The total space complexity is O((SpaceFactor + 1) x N),
which might be reduced to O(SpaceFactor x N). During
construction, the overlapping profile has N elements, and the
heap never stores more than N records, so it does not affect
the space complexity.

Append Operations. Appending new intervals that start after
(or at the same time as) the last considered interval is straight-
forward. The append operation resembles the construction
process described above, the main differences being that we
directly add a new interval to the main array and that we
maintain a heap of currently opened intervals to support online
append operations.

Random Inserts. Random inserts in CINTIA are expensive,
as entire portions of the arrays might have to be rewritten. This
is a common issue of read-optimized structures. One standard

way of coping with this issue would be to consider an in-
memory, write-optimized store that handles all random inserts,
and to periodically merge the write-optimized and the read-
optimized stores as implemented in recent column stores [4].

IV. IMPLEMENTATIONS

We implemented two fully-functioning prototypes of CIN-
TIA, one is for testing our index in main memory, and one
for large-scale deployments on top of the HDFS file system.
Both versions are freely available online*.

A. In-Memory Implementation

The in-memory version of CINTIA was developed in C++,
and is a direct implementation of the structures and methods
described above in Section III. std : vector is used in this
version to implement both the interval and the checkpoint
arrays. The first stage of query processing, i.e., finding the
last interval in the interval array that starts before the right
bound of the query, is simply resolved by binary search in
this case.

B. Distributed Implementation

The distributed version was built on Hadoop 2.3. Like
many recent distributed file systems, the Hadoop File System
(HDFS) splits files in large, replicated blocks. The block size
is adjustable and is equal to 128MB by default. When a read is
initiated, the client first queries a NameNode to get the required
block location. It then picks a DataNode storing one of the
block replicas, creates a TCP connection and download the
desired chunk of data from that replica. Information about
block locations and TCP connections are subjects to caching,
such that the number of calls to the NameNode are minimized
over time.

The fixed costs associated to initiating a read are thus high:
contacting the NameNode and initiating a TCP connection
to a DataNode if the location and connections are not yet
cached, then transferring the packet(s) from the DataNode.
One of our main goals with CINTIA is hence to minimize the
number of requests to the filesystem in order to amortize those
initial costs. Taking this into consideration, we implemented
CINTIA as follows on top of HDFS:

« the main interval array is serialized in a file. Records in
that file are of fixed length, and consist of three fields:
the left and right bounds of the interval and a value
field (that can also be a pointer in case of variable-
length or large payloads). The checkpoints in this array
do not contain any interval record. Instead, they store the
position to the corresponding record in the checkpoint file
(see below), as well as the value of the right border of
the first interval in the checkpoint array. The last value
allows to avoid reading from the checkpoint file in case
there is no intervals that overlap the query;

« the checkpoint arrays are stored in a second file, which
has the same structure as the interval array (sequence

“https://github.com/XI-lab/interval_index.git

of fixed-size records). Each checkpoint array is stored
sequentially and ends up with a null-record;

« index construction is performed through a sequence of
MapReduce tasks;

o« we perform reads from the index files by blocks of
records. Our experiments on HDFS show that there is
no significant difference when reading shorter or larger
segments on a warm cluster and when TCP-connections
are cached. Also, we consider the chunk processing time
to be negligible compared to its download time. Hence,
we read as much data as possible during each read from
the cluster. Specifically, we chose a reading block size
equal to the maximum packet size in the cluster;

« unlike the in-memory implementation, we do not perform
a binary search on the main interval file during query
execution, which would require O(log N) calls to HDFS.
Instead, we keep an in-memory skip list of the main
interval file read blocks (described above). For each
block, we keep its offset in the file and a left-bound value
of the first record interval. One record in the skip list
consumed 16B, such that the skip-list size for 1 billion
records in only 7.5MB. In our implementation, clients are
pre-loading the skip list upon start-up.

Distributed query processing proceeds in general as de-
scribed in Algorithm 1. The first part of the query processing
is resolved by looking-up the skip list, in order to get the
location of the reading block storing the last interval starting
inside the query. Next, and according to the algorithm, we
keep uploading blocks from the main interval file until we
reach a checkpoint record, at which point we switch to the
checkpoints file.

When an optimal value of ChS is selected (see Sec-
tion III-D), most queries can be executed through only one
or two HDFS reads (one for the main array and one for
the checkpoint array). For larger queries, this method also
allows us to return the first results early, and then to continue
returning results as we read more intervals from the distributed
file system.

While we implemented the above in HDFS only, we note
that the same structures and techniques could be adapted to
many recent distributed file systems such as OneFS>, QFS®,
or to the Google File System [26].

V. EXPERIMENTAL EVALUATION

We empirically assess the performance of our index below.
We proceed in two steps: First, we start by a series of micro-
benchmarks testing our in-memory solution against a number
of other interval structures with varying parameters. Then, we
deploy CINTIA in a distributed setting and compare it to
state-of-the-art solutions both on real and synthetic data.

A. Experimental Setup

Datasets & Queries: We use various interval datasets in order
to test our approach. In addition to standard parameters like
number of intervals (/V), we consider two specific parameters:

Shttp://www.emc.com/storage/isilon/isilon-onefs-operating-system.htm
Shttp://quantcast.github.io/qfs/

o the overlapping profile giving, for each interval in a
dataset, the number of intervals that started before the
interval and that are overlapping it (see Section III-D).

o the average overlapping standing for the average of the
overlapping profile values. This parameter characterizes
the density of a dataset, which is important for our
solution, since it directly influences the optimal value of
the checkpoint step (higher density leads to a bigger value
of ChS).

Unless stated otherwise, all synthetic datasets in our exper-
iment contain 1M intervals and have a uniform distribution of
left borders in [0, 10M). The lengths of the intervals follow a
normal distribution with a mean value of 100 and a standard
deviation 10. Those parameters yield an average overlapping
of about 10.

To assess the performance of query execution, we issue
100K interval queries for each setup. The queries have their
left border uniformly distributed between [0, 10M) (similarly
to the intervals) while their length is by default equal to 100.
We repeat each experiment 10 times. Confidence intervals are
not shown on the graphs, since for a confidence level of 95%
they were negligibly small.

We also performed micro-benchmarks on a number of real
datasets; due to space limitations, we refer the reader to the
full version of this paper [25] for results pertaining to those
experiments.

Compared Approaches: We compare our approach—

implemented as described in Section IV—with the following

popular interval data structures:

Interval Tree: We use Erik Garrison’s canonical implemen-
tation’ of the data structure.

NClist: The novel approach proposed by [15] and based
on the idea of nested lists. We use the implementation
provided by the authors.

R-Tree: We use Greg Douglas’ C++ implementation®. This
version has two optional parameters: minimum and max-
imum elements in node. We experimented with different
values and picked the values yielding the best perfor-
mance in our context (i.e., 32 and 64 for minimum and
maximum number of elements respectively).

Segment Tree: We use our own implementation of the Seg-
ment Tree’, implemented by following as strictly as
possible the original description of the data structure
from [27].

The machine on which all experiments were run has an
Intel(R) Core(TM) i7-2600 processor, 32Gb of main memory,
2Tb of disk space, and Ubuntu 12.04.4 LTS as OS.

B. Micro-Benchmarks

1) Query Execution Analysis: Figure 5 gives the memory
consumption of our approach (in red) as well as the query
execution time (in black) for our synthetic dataset. Query
execution is broken down into several phases: 1) binary search

7https://github.com/ekg/intervaltree
8https://github.com/nushoin/RTree
%https://github.com/mavlyutovrus/segment_tree

0.09

— Fulltime .
— Space Factor

-- BS | ;
*-x' BS +'Walk (1)-(2)'
+-+ BS +'Walk (1)-(3):

10.08
9.0
10.07 0,
e Joos
: : : =]
ST : : © H0.05°
‘ ‘ ‘ ‘ ‘ 9
10.04 ©
3

Space Factor

e it e R ERE I EA
Lo 10.02S

10.01

1120 40 60 80 100 120 140 0.00

Checkpoint Step
Fig. 5: Performance and memory consumption as a function of
the value of the checkpoint step. BS: binary search, (1) right-
most interval starting inside the query interval, (2) rightmost
interval starting before the query, (3) closest checkpoint to the

query.

to find the last interval starting inside the query interval, 2)
phase 1, plus backward swipe until the first interval starting
before query is met (1—2), 3) phases 1-2, plus backward swipe
until a checkpoint is met, and finally 4) phases 1-3, plus walk
through the checkpoint array until an interval that ends before
the query is met.

The graph shows that the memory overhead grows fast when
picking low checkpoint values; It is not surprising, since the
number of checkpoint arrays is inversely proportional to the
value of the checkpoint step.

The optimization algorithmfinds 11 as an optimal value of
the checkpoint step for the space factor of 1.

The performance trends show that query execution time is
nearly constant as long as the checkpoint step is sufficiently
small, and grows linearly otherwise. We now briefly analyze
the impact of each part of the algorithm separately.

The binary search is a time-consuming operation but bears
a nearly constant cost for a given dataset. Its cost grows
logarithmically with the size of the main array.

The time delta between phase 2 and phase 1 (i.e., the time
taken to search back for the first interval starting before the
query) stays nearly constant, as the algorithm buffer-reads
inside the queries’ bounds. The time taken to search back
for a checkpoint (i.e., the time between phase 3 and phase
2) grows linearly with the size of the checkpoint step. Phase 3
and 2 are both cache-efficient, since they consist of sweeping
through collocated memory regions.

Finally, the time delta taken for analyzing the checkpoint
array goes down with the checkpoint step initially, and then
stays constant. The reason is that the amount of records we
read from the checkpoint array is equal to the number of
intervals that overlap the checkpoint and the query intervals.
The bigger the checkpoint step, the lower the number of
intervals in the checkpoint array that overlap both.

We fix the space factor to 1 for the further experiments.

2) Influence of dataset size on query performance: Figure 6
shows the influence of dataset size on query performance.
For that experiment, we increase the range of the intervals

left borders with the size of the dataset to keep the average
overlapping equal to 10 in all datasets. Results for the Segment
tree are omitted, since they are considerably higher than for
other data structures (for the 10M dataset it is approximatively
80x slower than our solution).

CINTIA significantly outperforms other data structures.
This can be explained by a lower number of out-of-cache
seeks compared to trees and Nested Containment lists. We
can expect even worse trends for those structures in distributed
settings where locality is crucial.

3) Influence of query length on performance: Figure 7
shows the influence of query length on performance. We report
the average query time per interval in the response instead of
the overall query time, since for all data structures the overall
trends are almost linear. We observe that for all data structures
(except for the Segment tree, which reports intervals several
times), the relative query time goes down linearly with the
query length (X-axis is logarithmic).

CINTIA performs better than other solutions. The time spent
on binary search and processing intervals that start before the
query does not depend on the query length and stays nearly
constant, while the number of intervals starting inside the
query interval is proportional to its length. So, as the number
of returned intervals increases, the relative time spent on the
former decreases, while the time spent on the latter stays
almost constant.

4) Influence of average overlapping on performance :
Figure 8 shows the influence of the average overlapping on
performance. For each average overlapping value, we created
a distinct dataset with intervals of different average length.
The other parameters stayed constant.

2.0

— CINTIA
*»—Interval Tree
1.5 4= NClist

v Rree!
=—s Segment Tree

Time per 100K queries [s]

10° 10° 10
Dataset size (log)

Fig. 6: Query time as a function of dataset size

First, we observe that CINTIA again outperforms other
solutions (except for the case when the average overlapping
is equal to 1, for which the results are the same as for the
NClList).

We also observe that the overall query execution time does
not significantly increase. In fact, the reason for the slower
execution time is the growing number of intervals starting
before a query interval and the resulting higher number of
returned intervals. Higher overlapping values have however a
much stronger influence on the other data structures.

o
N
<)

o
=
%}

o
A
o

o
o
il

10 10° 10
Query length (log)

°
o
-
==t
2

Time per returned interval [microsec]

Fig. 7: Query time as a function of query length

2.0,

15 - R

F A - R S

Time per 100K queries [s]

0.00

200 400 600 800
Average overlapping

1000

Fig. 8: Query time as a function of average overlapping

C. Distributed Setting

As described above, CINTIA outperforms former interval
solutions thanks to its high cache locality and the limited
number of seeks (or cache line evictions) required when
answering interval queries. Those qualities bode well in dis-
tributed settings, where “seeks” can be orders of magnitude
more expensive than in centralized settings and might require
contacting another machine. We experimentally validate this
point below.

There exist unfortunately very few distributed solutions
to handle interval data. To the best of our knowledge, no
distributed implementation of the Interval Tree or related tree
structures is available. We compare our solution to Spatial
Hadoop 2.2.'%—which is a popular extension of Hadoop
designed to handle big spatial data—on one hand, and to a
dedicated solution running on top of MapReduce on the other
hand. Other cloud solutions described in Section II were either
never implemented, or were not available (as we could not get
access to the source code of the CNCList+ [22]).

Spatial Hadoop implements spatial indices and distributed
query processing. The interval data is in that case distributed
among the machines as serialized R+-trees. During query
execution, the query is distributed to all machines in the
cluster, which then upload and query the R+-trees in parallel.
Spatial Hadoop also include a pre-selection step, which only
selects those trees whose minimal bounding box overlap the
query.

To consider another baseline and compare Spatial Hadoop
over a non-indexed solution running in the Hadoop environ-

10http://spatialhadoop.cs.umn.edu/

Dataset description: Construction time [ms]
- size,

average overlapping SpHadoop CINTIA
10M, 10.0 285101 90 154
10M, 100.0 292578 87054
10M, 10000.0 282961 91532
100M, 10.0 390 526 416 545
100M, 100.0 388770 438 440
100M, 10000.0 385126 533213
1000M, 100.0 1179601 | 5756181
Exome alignement dataset 385051 977983

TABLE I: Distributed benchmarks & construction time

ment, we implemented a MapReduce solution on our own.
This approach distributes interval data over HDFS and then
runs a dedicated MapReduce job, which scans all intervals in
parallel and reports those that overlap the query.

The two proposed baselines benefit from parallel processing,
but suffer from the high costs of launching a parallel job
and then collecting results. Our solution works differently,
minimizing the computation performed by the cluster and
leveraging dedicated indices in the file system to retrieve
the results directly. This allows CINTIA to execute queries
on large datasets distributed over a cluster of machines in
milliseconds only.

We ran our distributed experiments on a Hadoop v2.3 cluster
of 10 machines. The machines have an Intel(R) Core(TM) i7-
2600 processor, 32Gb of main memory, 2Tb of disk space,
Ubuntu 12.04.4 LTS as OS, and are interconnected through a
gigabit ethernet switch.

For the distributed experiments, we generate interval
datasets of various size (from 10 millions to 1 billion), average
overlapping (10, 100, 10°000) and queried them using sets of
queries with different lengths (100 and 10°000).

We also built a real dataset for the distributed experiments,
namely the exome alignments of 23 human chromosomes,
which constitutes 222M intervals with an average overlapping
of 1649. Since the baseline methods are very slow (around
20 seconds per query) we were not able to compare query
execution time on the full set of the exome targets. For that
reason we sampled from the exome targets a set of 30 intervals
with length 120 (which is the mode of the intervals length,
as more than 30% of exome targets have that length) and
measured the average time to query a target.

Table I shows the index construction time for Spatial
Hadoop and CINTIA. The results show that the dataset size
has a stronger impact on CINTIA’s index construction than
on Spatial Hadoop. This can be explained by the fact that
CINTIA first sorts all intervals. Spatial Hadoop, on the other
hand, does not sort intervals but assign them to a certain
mapper according to the position of its minimal bounding box.
Though computationally more efficient, this can lead to severe
skews in the distribution of the intervals depending on the
positions of their bounding rectangles.

Table II gives query performance results. We repeated each
experiment 30 times for both Spatial Hadoop and MapReduce,
and 100 times for CINTIA.

For CINTIA we report results both on cold and hot data
(after 100K queries), since warming-up the cluster noticeably
affects the query performance. It is not the case for Spatial-
Hadoop and MapReduce, however.

We observe a tremendous difference in query performance:
CINTIA is more than three orders of magnitude faster than
our two baselines.

The baseline approaches are only marginally affected by the
average overlapping and by the size of the dataset, though the
biggest dataset (1B intervals) makes them both significantly
slower. The query execution time of CINTIA, on the other
hand, is directly proportional to the number of reads from the
distributed file system (the average number of reads is given
in the last column of the table), which is determined by the
size of the checkpoint step and by the average overlapping
as explained above. Average overlapping impacts the query
performance of CINTIA on both warm and cold data. For
cold data, the delays are higher as reads from HDFS are more
expensive in that case.

Results also show that the dataset size has an effect on the
performance of CINTIA. Executing queries on 1B intervals is
almost 3 times slower than on 10M intervals on cold data. It is
only around 30% more expensive on warm data. The number
of reads issued to the file system stays constant in all cases.
We assume that the speed difference is hence connected to the
higher costs incurred when executing larger reads on HDFS.

Finally, we note that the results on the Exome data are
similar to the results on our synthetic dataset with similar size
and average overlapping.

VI. CONCLUSIONS

Intervals have become prominent as they are the main
structure to represent a number of key data types today. In
this paper, we proposed a new data structure called CINTIA
(Checkpoint INTerval Index Array) for storing and querying
interval data. To the best of our knowledge, it is the first
index designed for running low-latency queries on large-
scale interval data. We introduced a series of algorithms to
compactly store and efficiently query interval data using our
structure and discussed their complexity. We also described
two open-source implementations of CINTIA, and empirically
showed their superior performance both for in-memory and
distributed settings.

CINTIA’s first deployment is dedicated to the management
of large-scale bioinformatics data!'!. We plan to continue
working on our system, in order to improve its construction
time as well as the efficiency of its random inserts. In addition,
we plan to extend our solution to handle multidimensional data
by taking advantage of space-filling curves such a Z-curves of
Hilbert curves.

VII. ACKNOWLEDGMENT

This work was supported by the Swiss National Sci-
ence Foundation under grant numbers PPOOP2_128459 and
200021_143649.

http://3dgb.cs.mcgill.ca/

[1]

[2]

[3]

[4]

[5]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

Dataset description: Avg. intervals | Query execution time [ms] CINTIA:

- size, er quer . CINTIA: CINTIA: avg. reads

- average overlapping, per Aty MapReduce | Spatial Hadoop cold cluster | warm cluster frogm HDFS
- query length per query
Synthetic datasets

10M, 10.0, 100.0 10.2 21958+184 17 589+280 2.064+0.04 1.60+0.03 1.0
10M, 10.0, 10000.0 19.7 | 24260+2188 17978+718 2.2540.06 1.64+0.03 1.0
10M, 100.0, 100.0 97.3 202501257 17125+36 5.021+0.28 1.75£0.04 1.0
10M, 100.0, 10000.0 106.8 20248+233 17132+£35 6.11+0.28 1.73+0.05 1.0
10M, 10000.0, 100.0 9977.9 220244930 17662+£486 | 14.32+0.35 11.66+0.07 3.5
10M, 10000.0, 10000.0 9987.4 20216+249 17332+£240 | 19.19+£1.10 11.914+0.48 3.4
100M, 10.0, 100.0 10.7 | 26 547+£2605 17951+£389 3.56+0.37 2.1840.23 1.0
100M, 10.0, 10000.0 110.8 237801695 17696+537 4.071+0.39 2.1440.23 1.1
100M, 100.0, 100.0 101.0 22 7554437 17082+134 4.2140.33 2.001+0.10 1.0
100M, 100.0, 10000.0 201.1 238624547 17 849+397 4.651+0.41 2.1940.22 1.1
100M, 10000.0, 100.0 10051.4 | 24135+1104 17903£732 | 16.17£0.73 12.134+0.12 3.5
100M, 10000.0, 10000.0 10151.5 24 984+652 17801£489 | 16.96+0.79 12.494+0.39 3.5
1000M, 100.0, 100.0 114.2 | 77285+1903 17293+64 | 13.3041.22 2.331+0.11 1.0
1000M, 100.0, 10000.0 1117.6 | 76699+1038 18026£484 | 17.29+1.25 5.671+0.46 1.5
Exome alignment dataset

222M, 1649.9, 120.0 [483.3 [25087+216 [18 146+389 [5.134+1.30 [2.9740.31 [1.6

TABLE II: Query execution time for distributed setting

REFERENCES

M. H. Bohlen, R. Busatto, and C. S. Jensen, “Point-versus interval-
based temporal data models,” in Proceedings of the Fourteenth
International Conference on Data Engineering, Orlando, Florida,
USA, February 23-27, 1998, 1998, pp. 192-200. [Online]. Available:
http://dx.doi.org/10.1109/ICDE.1998.655777

J. K. Lawder and P. J. H. King, “Querying multi-dimensional data
indexed using the Hilbert space-filling curve,” ACM Sigmod Record,
vol. 30, no. 1, pp. 19-24, 2001.

F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer, “In-
tegrating the UB-Tree into a Database System Kernel,” in Proceedings
of 26th International Conference on Very Large Data Bases (VLDB),
A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel,
G. Schlageter, and K.-Y. Whang, Eds. Morgan Kaufmann, 2000, pp.
263-272.

M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. R. Madden, E. O’Neil, P. O’Neil,
A. Rasin, N. Tran, and S. Zdonik, “C-Store: A Column Oriented
DBMS,” in Proceedings of the International Conference on Very Large
Data Bases (VLDB), 2005.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

Y. Manolopoulos, Y. Theodoridis, and V. J. Tsotras, Advanced Database
Indexing. Norwell, MA, USA: Kluwer Academic Publishers, 2000.
T. Bozkaya, “Index Structures For Temporal And Multimedia
Databases,” PhD thesis, Department of Computer Engineering and
Science, Case Western Reserve, University, Tech. Rep., 1998.

Z. M. Kharaji and B. G. Nickerson, “Distributed Spatial Data Struc-
turess,” 2014.

H. Edelsbrunner, “Dynamic Data Strcutures for Orthogonal Intersection
Queries,” TU Graz, Tech. Rep. Tech. Report., 1980.

H.-P. Kriegel, M. Potke, and T. Seidl, “Managing Intervals Efficiently
in Object-Relational Databases,” in Proceedings of 26th International
Conference on Very Large Data Bases (VLDB), 2000, pp. 407-418.

L. Arge and J. S. Vitter, “Optimal external memory interval manage-
ment,” SIAM Journal on Computing, vol. 32, no. 6, pp. 1488-1508,
2003.

F. P. Preparata and M. 1. Shamos, Computational Geometry: An Intro-
duction. New York, NY, USA: Springer-Verlag New York, Inc., 1985.
E. N. Hanson and M. Chaabouni, “The IBS-tree: A Data Structure for
Finding All Intervals That Overlap a Point,” Technical Report WSU-
CS-90-11, Wright State University, Tech. Rep., 1990.

E. Hanson and T. Johnson, “Selection Predicate Indexing for Active
Databases Using Interval Skip Lists,” Information Systems, vol. 21, pp.
269-298, 1996.

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

A. V. Alekseyenko and C. J. Lee, “Nested Containment List (NCList):
a new algorithm for accelerating interval query of genome alignment
and interval databases,” Bioinformatics, vol. 23, no. 11, pp. 1386-1393,
2007.

A. Guttman, “R-trees: A Dynamic Index Structure for Spatial
Searching,” in Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’84. New
York, NY, USA: ACM, 1984, pp. 47-57. [Online]. Available:
http://doi.acm.org/10.1145/602259.602266

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The
R*-tree: An Efficient and Robust Access Method for Points and
Rectangles,” in Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD °90. New
York, NY, USA: ACM, 1990, pp. 322-331. [Online]. Available:
http://doi.acm.org/10.1145/93597.98741

C. P. Kolovson and M. Stonebraker, “Segment Indexes: Dynamic Index-
ing Techniques for Multi-dimensional Interval Data,” in Proceedings of
the 1991 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’91. New York, NY, USA: ACM, 1991, pp. 138—
147.

R. Fenk, V. Markl, and R. Bayer, “Interval Processing with the UB-
Tree,” in International Symposium on Database Engineering and Appli-
cations, 2002.

P. Cudre-Mauroux, E. Wu, and S. Madden, “TrajStore: An adaptive
storage system for very large trajectory data sets,” 2014 IEEE 30th
International Conference on Data Engineering, vol. 0, pp. 109-120,
2010.

P. Bisadi and B. G. Nickerson, “Orthogonal Range Search using a
Distributed Computing Model.” in CCCG, 2011. [Online]. Available:
http://dblp.uni-trier.de/db/conf/cccg/cccg2011.html#BisadiN11

Z. Wang, K. Gong, S. Jin, W. Li, and Z. Liu, “An Efficient Interval
Query Algorithm Based on Inverted List in Cloud Environment,” in
International Conference, ICCIP, 2012.

C. Du Mouza, W. Litwin, and P. Rigaux, “Large-scale indexing of spatial
data in distributed repositories: the SD-rtree,” The VLDB Journal—The
International Journal on Very Large Data Bases, vol. 18, no. 4, pp.
933-958, 2009.

A. Eldawy and M. F. Mokbel, “A demonstration of SpatialHadoop: An
efficient MapReduce framework for spatial data,” Proceedings of the
VLDB Endowment (PVLDB), vol. 6, no. 12, pp. 1230-1233, 2013.

R. Mavlyutov and P. Cudre-Mauroux, “Technical report: A distributed,
low-latency index to efficiently manage big interval data,” http://
exascale.info/papers/cintia_report.pdf, accessed: 2015-03-18.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in ACM SIGOPS Operating Systems Review, vol. 37, no. 5. ACM,
2003, pp. 29-43.

J. L. Bentley, “Solutions to Klee’s rectangle problems,” Technical report,
Carnegie-Mellon Univ., Pittsburgh, PA, Tech. Rep., 1977.

