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Abstract

David Gauch

Binary Tree Models for Reinforcement Learning Continuous
Control

Neural networks are widely used for machine learning due to the large amount
of data available, especially in deep learning. However, when it comes to solving
non-continuous control tasks in the field of reinforcement learning, neural networks
can be suboptimal since they are continuous. To address this issue, this project ex-
plores the hypothesis that binary trees, as discontinuous models, could have an ad-
vantage in solving these tasks. To further develop this model, the project introduces
an insertion strategy that allows the tree to grow dynamically when tasks become
too complex for its current structure. This technique should be a first step toward
autonomous architecture search for binary trees. The approach has been tested on
two benchmarks and the results indicate that a growing binary tree could be an effi-
cient model for solving control tasks. The project provides valuable insights into the
use of the binary tree as an alternative model for reinforcement learning and high-
lights the potential benefits of using dynamic structures such as growing the trees
for efficient and effective learning.

Keywords: reinforcement learning, black-box optimization, binary trees,
architecture search
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Chapter 1

Introduction

Machine learning, particularly deep learning using neural networks, has greatly
benefitted from the availability of large amounts of data. Neural networks have
demonstrated significant potential in solving a wide range of tasks. By examin-
ing the potential of binary trees, this thesis aims to provide insights into alternative
models that could complement or even surpass the performance of traditional neu-
ral networks in specific reinforcement learning scenarios.

1.1 Neural Networks

Neural networks are a type of machine learning model that takes inspiration from
the structure and function of neurons in the human brain. The model is composed of
layers of interconnected artificial neurons, which process and transmit information.
In neural networks, the input data is first passed through the first layer, and then
each subsequent layer receives the output from the previous layer as input.

Neural networks learn by adjusting the weights of the connections between neu-
rons based on the input data and the desired output. The output of a single neu-
ron is calculated by linearly combining the inputs from the previous layer with the
corresponding weights, and activating a nonlinear function. Common activation
functions include the logistic function, hyperbolic tangent (tanh), and rectified lin-
ear unit (ReLU). The choice of activation function depends on the specific task and
the architecture of the network.

A neural network can be represented as a computational graph that combines a
sequence of simple functions to produce complex and high-dimensional representa-
tions, which capture the underlying function that enables the network to make accu-
rate predictions. This ability to learn multiple levels of abstraction through function
composition is one of the key strengths of neural networks and sets them apart from
traditional linear models. Figure 1.1 illustrate a human-readable way to represent
neural networks.

The most widely used optimization algorithms for the learning process are based
on stochastic gradient descent, which finds the optimal weights by minimizing the
error between the network’s predictions and the desired output. Backpropagation
is a powerful tool for efficiently calculating the gradient of the loss function with
respect to the weights. This is done through a forward pass, where the predicted
outputs and intermediate node values are determined, followed by a backward pass,
where the gradient of the loss function with respect to each weight is calculated
using the chain rule of calculus. The gradient is then used to update the weights
through gradient descent until the weights converge to values that minimize the
loss function. For backpropagation to be effective, the activation functions of the
artificial neurons must be continuous and easily differentiable [1].
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FIGURE 1.1: Neural network. Input data is processed through a
structure consisting of two hidden layers, one with three neurons and
one with two, and an output layer with a single neuron. The output
produced by neurons in this output layer is the final output of the

network.

The structure of a neural network, including the number of layers and number of
neurons per layer, significantly impacts its ability to solve tasks. A larger number of
layers allows for the approximation of more complex functions, but can also result in
overfitting, where the model performs well on training data but poorly on new data.
The field dedicated to finding optimal structures is referred to as neural architecture
search.

1.2 Binary trees

Trees are a type of data structure that are commonly used in computer science and
mathematics. They consist of nodes connected by edges. Trees can be seen as a spe-
cial type of graphs that are connected and acyclic, meaning that nodes are connected
by edges, but there are no loops or cycles in the graph.

The top node, with no parent, is called the root, while the bottom nodes with no
children are called leaves. The distance from the root node determines the level of
the node, with the root at level 0 and its children at level 1, and so on. Nodes on the
same level are called siblings.

Binary trees are a specific type of tree in which every node, except for leaves, has
at most two children, which are called the left and right nodes. Binary trees are easy
to understand and visualize, making them useful for a variety of applications. An
example of a binary tree is shown in Figure 1.2.

In addition to binary trees, there are other types of trees that are commonly used
in computer science and data structures. One example is the "n-ary" tree, which
allows nodes to have any number of children. Another example is the "balanced"
tree, which is designed to keep the tree’s height as small as possible, while still al-
lowing for efficient searches and insertions. Balanced trees come in several different
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varieties, such as red-black trees and B-trees, each with their own specific balancing
algorithms and performance characteristics [2].

For this project, a specific type of binary tree will be used, in which all nodes
except the leaves have exactly two children, rather than at most two children like in
classical binary trees.

FIGURE 1.2: Binary tree where the blue nodes illustrate leafs and the
red node is the root.

Binary trees offer several advantages over other data structures, such as their
ability to efficiently search, insert, and delete elements, and their simplicity and in-
terpretability, as the structure of a binary tree is easy to understand and visualize.
This makes it easier to understand how decisions are made and identify errors in
the model. In the context of reinforcement learning, binary trees can provide better
approximation of discontinuities by allowing for different actions depending on the
chosen path. This will be one of the motivations of the project discussed later.

1.3 Architecture search

Still a challenging task is finding the optimal architecture, which involves determin-
ing the ideal number of layers and nodes, for a neural network to effectively solve
a problem. One approach is to try different architectures and evaluate their perfor-
mance, which can be time and effort consuming when dealing with deep, complex
neural networks as the structure needs to be designed by hand. Another approach
is to use neural architecture search (NAS), which automates the process of finding
an appropriate architecture for a specific task. Researchers continue to investigate
effective methods for architecture search, with evolutionary algorithms, reinforce-
ment learning, gradient-based optimization, or a combination of these techniques,
being commonly used to explore the space of possible architectures [3].

Neural architecture search algorithms tend to be slow and expensive due to the
need to train a large number of candidate networks to inform the search process.
The paper by [4] showed that a possible solution to speed up this process would
be to perform neural architecture search without any network training. The authors
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implemented a search algorithm called "NASWOT," which only makes observations
on the initial untrained networks in the scope of convolutional networks.

The process of architecture search, which involves searching for structures that
improve model performance without manual intervention, has been widely applied
to neural networks. However, it can also be applied to binary tree models. In par-
ticular, for complex reinforcement learning tasks, a larger binary tree increases the
search space for policies and improves the probability of finding good solutions.
Therefore, it is important to adapt the size of the tree according to the complexity of
the task.

One approach to achieving this is by dynamically incrementing the size of the
tree, using various strategies to add or remove nodes. For example, nodes could be
added until the level is full, and then proceed to the next layer; or they could be
added to a randomly selected leaf. In this project, the latter approach is taken.

A challenge to consider is the timing at which the dynamic adaptation of the
tree should occur, as changing the size of the tree too rapidly could lead to the al-
gorithm not having enough time to search for solutions in the actual search space.
Conversely, waiting too long could result in the algorithm getting stuck in a local
optimum and wasting time. Therefore, it is important to strike a balance and change
the size of the tree at the right moment.

Another important consideration is what functions the newly created nodes should
have. Should they be the same as their parent nodes, or should they be different?
This decision can have a significant impact on the performance of the model.

Finally, an unexpected consideration is whether the newly added nodes should
be leaves or not. In this project, the decision is made to not add leaves, but the impact
of this decision is discussed further in the project.

All of these decisions and more must be made and possibly compared when
deciding which inserting strategy to implement. It is important that, even if the tree
structure changes, the model remains invariant, which can be a challenging aspect
to implement and can also limit the strategies that can be used.

1.4 Discontinuous Models in Reinforcement Learning

Continuous control refers to tasks where the observation and action space are con-
tinuous and the control actions can take on any value within a continuous range
of values. Examples of such tasks include robotic arm control and autonomous ve-
hicle navigation. On the other hand, discontinuous control problems have discrete
action spaces, which means that only a limited number of actions can be executed.
Examples of such tasks include playing chess or running through a maze [5].

Neural networks, which are commonly used for modeling continuous control
tasks, require continuous functions in backpropagation. The backpropagation al-
gorithm adjusts the weights of the network by calculating the gradient of the loss
function with respect to the weights, with the goal of minimizing the error of the
network, which is repeated for many iterations until the model converges to a set of
weights that minimize the error.

An example of a non-continuous control problem is the swing-up cartpole task.
This task involves a pendulum attached to a cart with a fixed joint above and a loose
joint below, which needs to be swung up and then stabilized (see Figure1.3). When
attempting to approximate the function that models this task, it becomes apparent
that the function will have a discontinuity between the two behaviors. The agent
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must be able to recognize when the first task is complete and the second one begins.
In the real world, there are many control problems that are not continuous.

The hypothesis of this project is that discontinuous models would have an ad-
vantage in addressing these tasks. Binary trees are used to approximate discontinu-
ities by using a hyperplane to partition the observation space, and depending on the
chosen subtree (by going to the left or right child), a different policy will be used. To
test this hypothesis, multiple individuals can be evaluated in the environment (by
running them through the fitness function) and their performance analyzed, along
with other metrics such as the number of individuals that successfully solve the task.
Hyperparameters also play an important role in improving the performance of indi-
viduals in the environment.

(A) Swinging pendulum. In the initial task the
pole is pointing downwards and needs to be
swung up by moving the blue cart on the hori-

zontal line.

(B) Inversed pendulum. The cart has success-
fully managed to swing the pole up and now
needs to stabilize it vertically in a second phase.

FIGURE 1.3: Cart-pole swing up problem which can be divided into
two different behaviors and illustrates a non-continuous control task.

1.5 Contribution

This thesis builds on prior work titled "Alternative Models for Direct Policy Search
in Reinforcement Learning Control Problems" [6], which proposes using binary trees
as an alternative to neural networks for reinforcement learning tasks. The main
contributions of this work are:

• Refactoring the initial code provided to make it work and separating the mod-
ules into a more organized project structure.

• Implementing CMA-ES as an optimizer for more complex problems.

• Writing a setup to run experiments from scratch and using two environments
with configuration files to make the project more customizable and easier to
understand.

• Introducing a novel function that dynamically increases the size of the binary
tree, which is a crucial step towards enabling architecture search for binary
trees and has the potential to significantly improve their performance in solv-
ing reinforcement learning tasks.

The contributions of this work aim to provide an alternative to neural networks
for reinforcement learning tasks. Binary trees could potentially offer this alternative
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and this work aims to give a first insight into architecture search for binary trees,
which could further improve their performance.
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Chapter 2

Reinforcement Learning
Continuous Control

2.1 Reinforcement learning and continuous control

2.1.1 Reinforcement learning paradigm

A learning paradigm is a formal description of a framework that enables the learning
process by defining the sources of information to learn from, establishing criteria
for assessing the effectiveness of a learning solution, and identifying the available
resources that can enhance the learning process. Essentially, a learning paradigm
provides a formal description of the underlying principles and assumptions that
guide how we learn and improve our knowledge and skills.

The reinforcement learning paradigm describes the interaction between two main
components: an agent and an environment. The environment represents the "world"
in which the agent operates and provides information about its current state. The
agent, on the other hand, is responsible for taking actions within the environment.
It acts on the environment by performing available actions and controls, perceives
and assesses the changes occurring in the environment via the senses at its disposal,
and engages in a feedback loop that informs and modifies its future behavior. Each
interaction between the agent and the environment follows a sequence: the agent re-
ceives observations based on the current state of the environment, selects an action
to take, and transmits that action to the environment. In response, the environment
updates its internal state and provides feedback to the agent in the form of updated
observations and a reward signal. The reward signal indicates the success or suit-
ability of the agent’s action in completing a task, while the updated observations
provide information about the new state of the environment. The reward function,
also called the fitness, is the only signal required for this learning method to im-
prove and estimate how good a solution is. Figure 2.1 depicts a single timestep of
interaction between the agent and the environment.

Reinforcement learning is different from other machine learning approaches such
as supervised learning, which uses labeled data to predict outputs for unseen data,
and unsupervised learning, which seeks to find patterns in unlabeled data. Rein-
forcement learning is both a problem that can be addressed with specific solution
methods and a field of study that examines the problem and its potential solutions.
Unlike supervised learning, there are no labeled data available in reinforcement
learning, so the agent learns by maximizing its performance based on the reward
signal [7, 5].
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FIGURE 2.1: Main interaction of the agent and the environment
in reinforcement learning. At the beginning (timestep t) the agent
gets the observation St and the reward Rt from the environment. The
agent performs then action At and sends it to the environment. The
environment changes its state and returns a new observation St+1 and

a new reward Rt+1.

2.1.2 Continuous control

A control problem involves a dynamic system described by state variables, and the
goal is to determine a strategy that leads the system to its desired target state. The
agent, which takes actions and is part of the environment, sends actions to determine
the future behavior of the system. In continuous control problems, the system is
observable at all times, and there is continuous interaction between the agent and
the environment. Continuous actions are actions that can take on a continuous range
of values, as opposed to discrete actions that can only take on a limited set of values.

An example of continuous control is the stabilization mode available in most
drones nowadays that enable them to keep a stable position. In order to maintain
stability, the drone’s control system continuously adjusts the speed of the four rotors
to keep the drone level and hovering in place. This is an example of continuous
control because the drone’s orientation can take on a continuous range of values,
and the control system must make small adjustments to the rotor speeds to maintain
stability. The drone must therefore continuously adjust inputs in the form of external
factors like the wind or the gravity and change accordingly the rotor speed to remain
stable.

To simplify the analysis of dynamic systems, time is often discretized into time-
steps. This approach provides a way to break down the system’s behavior into man-
ageable intervals that can be analyzed and optimized. In practice, the accuracy of
the analysis is often limited by the control frequency, which is the rate at which the
system’s inputs can be adjusted. If the control frequency is sufficiently high, the dis-
cretization of time becomes less critical, as the system’s behavior can be accurately
captured by the rate at which the inputs are adjusted. Therefore, the use of time-
steps provides a useful tool for simplifying the analysis of dynamic systems, but the
accuracy of the analysis ultimately depends on the system’s control frequency [8].

Both continuous control and reinforcement learning aim to design systems with
richly structured perception, perform planning and control that adapt effectively to
environmental changes, and exploit safeguards in the face of new scenarios [9]. Con-
tinuous actions are particularly important in continuous control and reinforcement
learning as they allow for greater precision and flexibility in controlling the behavior
of the system.
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2.2 Classical reinforcement learning

Some challenges cannot be solved through traditional problem-solving methods or
supervised learning algorithms, and reinforcement learning is necessary to tackle
them effectively. The Classical Reinforcement Learning framework [7] is a compre-
hensive system designed with the sole purpose of enabling optimal interactions be-
tween agents and their environment. The framework is founded on the principle
of trial-and-error learning, where the agent learns through experience by interacting
with the environment, and receiving feedback in the form of rewards or penalties.
The framework is structured to optimize the agent’s behavior, allowing it to learn
the best actions to take in any given situation. This broad framework is applicable
across a range of contexts, and it has been successfully employed in various fields
such as robotics, game-playing, and autonomous vehicles, among others.

In reinforcement learning, the policy is a key element of the framework that de-
termines the actions an agent should take in different states of the environment.
The policy is represented by a mapping from states to actions, and it can be either
deterministic or stochastic. Deterministic policies specify a single action to take in
each state, while stochastic policies specify probabilities for different actions to oc-
cur. The reward an agent receives depends on the chosen policy, and the sequence of
states reached by the agent is called a Markov chain. In the Classical Reinforcement
Learning framework, all reinforcement learning algorithms describe the problem as
a Markov chain, which captures the essential properties of the agent’s environment.
This mathematical concept models systems that change over time in a way that de-
pends only on the current state and not on the history of past states [7, 5]. The
algorithms then analyze the interactions between the agent and its environment, fo-
cusing on observations, actions, and rewards. The rewards are often modeled to
simplify the policy, which is the strategy that the agent uses to decide on its actions
based on the current state of the environment. The modeling of rewards can be done
using various techniques, including value functions or Q-functions, among others.

The value function is a key concept in reinforcement learning that allows us to
evaluate the effectiveness of different policies. Vπ(s) defines the expected total re-
ward that an agent can expect to receive by following the policy π, starting from
state s. One way to compute the value function is using the Bellman equation (2.1),

Vπ(s) = R(s, π(s)) + γ ∑
s′∈S

Pπ(s)
s,s′ Vπ(s′) (2.1)

which expresses the value of a state in terms of the values of its successors [10].
R(s, π(s)) describes the reward obtained by doing the action chosen by π(s) in state
s. γ enables to give more or less importance to the rewards that occur later. Pπ(s)

s,s′
describes the probability of reaching s′, after executing the action chosen by π(s) in
the state s and Vπ(s′) stands for the future reward collected by the agent following
policy π starting from the state s′. It is also important to note, the Bellman equation is
defined recurrently, which makes it challenging to compute. The value function can
be used to define an optimal policy, which is the policy that is expected to maximize
the reward over time.

Another way to analyze policies is using the Q-function. Qπ(s, a) is defined as
the expected total reward acquired by the agent following policy π starting from
state s and taking action a. The Q-function can be related to the value function
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through the equation Vπ(s) = Qπ(s, π(s)). A common method for finding the op-
timal Q-function is Q-learning, which is an iterative process that updates the Q-
function based on experience [11].

Reinforcement learning is well-suited for autonomous systems that learn to achieve
a desired outcome through trial and error. However, this paradigm highlights a
unique challenge that is rarely adressed in supervised or unsupervised learning:
balancing exploitation and exploration. Exploitation refers to the process of repeat-
ing actions that have resulted in positive rewards in the past, in order to maximize
the cumulative reward. On the other hand, exploration involves trying new actions
in order to potentially discover higher rewards and avoid getting stuck in local op-
tima. Finding the right balance between these two approaches is crucial for the suc-
cess of the learning process. There are many strategies for this, including ϵ-greedy
selection and Q-learning, but still research continuous to search for more effective
solutions [12].

Reinforcement learning has been effective on a range of tasks, from simple games
to complex real-world problems in fields such as robotics, games and autonomous
driving. However, it has also encountered challenges in these real-world applica-
tions [13]. Nevertheless, the paradigm is sufficient for addressing the desired tasks
in this thesis.

In conclusion, reinforcement learning offers a powerful tool for training agents
to make decisions in dynamic environments and optimize for a given reward sig-
nal. It can effectively address a range of problems while also presenting the unique
challenge of balancing exploitation and exploration.

2.3 Direct Policy Search

Direct policy search is a powerful technique for solving reinforcement learning con-
trol problems that does not rely on value function approximation. Instead, it opti-
mizes the policy directly, making it well-suited for problems with high-dimensional
and continuous action spaces. In contrast to value-based methods that use a value
function to estimate the quality of actions, direct policy search learns the optimal
policy by searching directly in the space of policies.

Suppose you want to teach an agent how to navigate through a complex maze.
The agent can move in four directions: up, down, left, and right. The maze has many
obstacles, dead ends, and hidden paths, so it is not easy to find the shortest path to
the goal.

Using direct policy search, the agent would start by taking random actions and
evaluating how well they work. It might try going up, then down, then left, and so
on until it reaches the goal. Over time, it would learn which actions work best in
different parts of the maze and develop a policy for navigating through the maze
efficiently.

One of the key advantages of direct policy search is its ability to handle complex
and continuous control tasks, such as robotics and autonomous systems, which are
typically difficult to solve using value-based methods. By separating the network
into two components, one for learning intermediate representations of the input and
another for learning the policy, smaller networks can be used to learn the policy, im-
proving performance and reducing computation time [14]. This separation enables
the use of smaller networks dedicated to policy learning.

Direct policy search can be implemented using various techniques, including
gradient-based optimization methods and evolutionary algorithms. However, the
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use of direct policy search requires a learning algorithm that uses the reinforcement
learning paradigm, without any framework set up. The choice of method depends
on the specific problem and constraints and may involve trade-offs between compu-
tational efficiency and solution quality.

2.4 Black-Box Optmization

In mathematics, optimization refers to the process of finding the maximum or min-
imum value of an objective function. Neural networks, for example, try to find
the best weights for approximating an underlying function by minimizing its error
function using techniques such as backpropagation and gradient descent. However,
these techniques require knowledge of the derivative of the function, which may
not always be available or may be too complex to compute [15]. Black-box opti-
mization is a method that does not rely on any assumptions about the function or its
properties, and can be used to optimize any function approximator. It is based on a
feedback score similar to reinforcement learning, and the parameter set is improved
based on this score [16].

For example, suppose you have a neural network that classifies images, and you
want to optimize the weights of the network to improve its accuracy. You can use
black-box optimization methods to try different combinations of weights and ob-
serve the resulting classification accuracy. By iteratively adjusting the weights and
observing the resulting accuracy, you can gradually converge to a set of weights that
yield the highest accuracy.

Black-box optimization methods are generally less efficient than traditional tech-
niques such as gradient descent because they do not take advantage of information
about the structure of the function being optimized. This means they must explore
a larger space of possible solutions, which can be time consuming. However, black-
box optimization methods can be effective in situations where the function being op-
timized is highly complex or has a large number of variables, and traditional meth-
ods may not be applicable. They are also flexible and can be applied to a wide range
of problems without requiring any knowledge of the function being optimized.

In optimization problems, techniques typically hypothesize a single optimum,
which is referred to as unimodality. On the other hand, multimodality refers to
the presence of multiple distinct optima in the objective function, which is more
common in real-world applications. Solving multimodal problems requires explo-
ration in addition to the exploitation used in unimodal problems. For example,
gradient descent only uses exploitation and can only find another local optimum
(exploration) by restarting with a different initialization.

Black-box optimization methods, which do not depend heavily on knowledge of
the function, can be well-suited for handling multimodal problems because they can
explore a larger space of possible solutions. However, one challenge in multimodal
landscapes is avoiding getting stuck in a local optimum before reaching the global
optimum. A solution to this challenge is to generate multiple viable parametriza-
tions, each exploring a different area in the optimization space. This technique gives
a better understanding of the landscape and provides direction for where the most
improvement can be obtained. An example of a method for generating parametriza-
tions with improving scores is evolutionary algorithms.
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2.4.1 Random weight guessing

The simplest version of an optimizer is to randomly select the set of weights, also
known as random initialization, and maintain the best performing individuals found
so far. Algorithm 1 illustrates as pseudo code how random weight guessing [17]
works. By randomly initializing the weights, the network is able to explore a wide
range of possible solutions, increasing the chances of finding a good global mini-
mum. Even with its simple implementation, random weight guessing has shown
some great results in Classic Control benchmarks from the OpenAI Gym [18]. It’s
important to note that the initialization of the weights can have a significant impact
on the performance of the neural network. Thus, the chosen range for the randomly
selected weights will have an impact on the result. Choosing a suitable range for
the randomly selected weights is important to ensure that the network can learn
useful features and avoid getting stuck in a poor local minimum during the train-
ing process. However, it should be noted that random weight guessing will have
some limitations with complex problems due to the large search space, because of
the large number of possible weight combinations, which can make it difficult for
the algorithm to find the global optimum.

Algorithm 1 random weight guessing

1: best_ind← None ▷ No best performing individual at the beginning
2: best_ f it← −in f ▷ fitness of best performing individual
3: while stopping criterion not reached do
4: generate a set of random initializations (candidate solutions)
5: evaluate fitness of each solution
6: if fitness of solution > best_ f it then
7: best_ind← solution
8: best_ f it← f itness o f solution

2.4.2 Evolution strategies

Evolution strategies are a class of evolutionary algorithms that are specialized for
optimization of continuous variables. Inspired by natural evolution, an evolution
strategy is a black-box optimization algorithm that uses a process of mutation and
selection to search for good solutions to a given problem.

An individual in the context of evolution strategies refers to a specific set of pa-
rameters being optimized by the algorithm. A population is a group of individuals
being considered by the algorithm at a given time, and a generation refers to one
iteration of the main loop. The fitness of an individual is a measure of its perfor-
mance or quality, based on the feedback score provided by the algorithm. During
the execution of that algorithm, new individuals are created by mutating the parent
individuals of the current generation.

The main loop of an evolution strategy algorithm consists of creating new indi-
viduals from the parent individuals of the current generation, evaluating their fit-
ness, and selecting the best performing individuals to be the parent individuals for
the next generation. This process continues until an acceptable solution is found, as
determined by a stopping criterion.

To solve a simple example using an evolution strategy, consider the function
f (x) = x2. The goal is to find the value of x that minimizes the function. The algo-
rithm would start by creating a population of random individuals (i.e., values of x).
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In each generation, the individuals would be mutated and evaluated based on their
fitness (i.e., the value of f (x)). The best performing individuals would be selected as
parents for the next generation. This process would continue until a satisfactory so-
lution is found. Because evolution strategies explore multiple individuals and paths
of the optimization space, it has the potential to find the global minimum value of
the function, even on multimodal problems.

Algorithms differ in the number of offsprings created per generation, the number
of selected individuals for the next generation, and how the mutation process is per-
formed. Other than gradient descent-based methods, evolution strategies generates
multiple individuals and by that explores different areas or paths of the optimization
space independently, which can be beneficial for avoiding local optima and solving
real-world problems that may require sophisticated exploration mechanisms. It is
important to note that the efficiency of evolution strategies highly depends on fac-
tors like the population size, or the mutation and selection methods used. To maxi-
mize their performance, experimenting on these factors with different configuration
settings might be useful [19].

2.4.3 Covariance Matrix Adapation Evolution Strategy

CMA-ES (Covariance Matrix Adaptation Evolution Strategy, [20] is a stochastic op-
timization algorithm that is used to optimize complex non-linear functions. It is a
derivative-free optimization method that is particularly well-suited for high-dimensional
problems. The algorithm works by maintaining a distribution of candidate solutions
(i.e. a population of possible solutions) and adapts the distribution based on the per-
formance of the solutions. It is an evolution strategy algorithm and uses a covariance
matrix to adapt the distribution. The algorithm iteratively updates the distribution
until it converges to a solution that is close to the global optimum.

The algorithm has several hyperparameters that can be adjusted to optimize its
performance and highly influence its efficiency. Some of the most important ones
include: population size, step size (represented by the "sigma" parameter), number
of generations, number of parents (represented by the "mu" parameter), and so on.
The "mu" parameter represents the number of solutions (or parents) that are selected
from the population to generate the next generation of solutions and it determines
the balance between exploration and exploitation in the search process. The "sigma"
parameter represents the step size of the search, it controls the scale of the search
and determines how far the algorithm moves away from the current best solution
in each generation, it also adjusts the standard deviation of the multivariate nor-
mal distribution that guides the search. CMA-ES is a robust optimization algorithm
that is widely used. Figure 2.2 illustrates the evolution of the search distribution for
CMA-ES on a simple quadratic function, which is a minimization task. The function
is defined as (x − 5)2 + (y − 5)2. The background of the plot indicates good solu-
tions with dark red colors and less good solutions with lighter colors. The red cross
represents the optimal solution at coordinates (5, 5).

The CMA-ES algorithm starts with a standard deviation of one and an initial
population initialized with zeros. In the early stages of the optimization process,
the search distribution will grow, leading to a high level of exploration. The search
distribution is represented by a yellow ellipse, where the center of the ellipse is the
mean of the current solutions and the width and height of the ellipse are twice the
standard deviation of the search distribution. As the optimization progresses, the
search distribution becomes more focused on finding the best individuals and con-
verging towards the global optimum.
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FIGURE 2.2: Optimization of a 2D problem. Illustration of a pop-
ulation reaching the global optimum in twelve generations. The
background displays the fitness landscape, with red colors indicating
higher scores. The red cross indicates the optimal score. The popu-
lation is represented by black dots, and the yellow ellipse represents

the search distribution.
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2.5 Neuroevolution

Neuroevolution is a technique that utilizes black-box optimization, such as evolu-
tionary algorithms, to determine the parameters of a neural network [21]. For in-
stance, imagine we have a neural network with two input nodes, one hidden layer
with two nodes, and one output node. In order to train this network using neuroevo-
lution, we first define a fitness function that evaluates the network’s performance.
We then represent the network’s weights as a list of values, which we can mutate
and select to generate new individuals. These individuals will be used to create a
population that will be evaluated using the fitness function.

In reinforcement learning, neuroevolution can be used for direct policy search,
which eliminates the need for supervised learning. For example, let’s say we want to
train an agent to play a game where it must navigate a maze to reach a goal. Using
neuroevolution, we can define the reward function such that the agent receives a
positive reward for reaching the goal and a negative reward for hitting a wall. We
can then use this reward function to evaluate the agent’s performance and use an
evolutionary algorithm to generate new agents until we find one that performs well.

However, there are limitations to consider when using neuroevolution. Firstly,
these algorithms can be computationally expensive and may not be as efficient as
gradient-based algorithms. Additionally, since the performance of randomized al-
gorithms depends on random events such as mutations, their performance can vary
significantly across runs, and there are no guarantees. Furthermore, neuroevolution
algorithms only use the cumulative reward at the end of an episode and miss the
correspondence between individual actions and per-step rewards.

For this project, a similar concept is applied but using binary trees instead of
neural networks. The proposed name for this method is "Treeevolution".

2.6 Benchmarks for reinforcement leaning control problems

A benchmark environment in the context of reinforcement learning is a standard
and well-defined scenario that serves as a reference point for evaluating and com-
paring the performance of different reinforcement learning algorithms. These envi-
ronments usually provide a clear definition of the state space, action space, reward
structure, and other problem specifications. Furthermore, having a standard bench-
mark environment promotes the reproducibility of research and facilitates the shar-
ing of results among the RL community. It also allows for the development of a
set of best practices for tackling specific types of reinforcement learning problems,
as well as identifying new areas of research and potential improvements to existing
algorithms. By utilizing a common benchmark environment, researchers and prac-
titioners can build upon each other’s work, accelerating the pace of innovation and
discovery in the field of reinforcement learning [5]. A common benchmark environ-
ment is OpenAI Gym [22], which will be used in this project.

2.6.1 OpenAI Gym

Open Ai Gym is a toolkit that provides a variety of environments for developing
and comparing reinforcement learning algorithms. One of its main advantages is
that is uses the same interface for every task which enables an easy comparison
and reproduction of results. It offers a range of environments for training agents,
including classical control problems, Atari games, and physics simulations which



16 Chapter 2. Reinforcement Learning Continuous Control

vary in difficulty. OpenAI Gym offers tools for evaluating and visualizing the per-
formance of the algorithms such as pre-built plotters and metrics. All of this gives
advantages for the research community in the field of reinforcement learning [23].
There are many different categories of environments available. The less complex
environments are the classical control problems and can usualy be solved rapidly.
The environments used in the context of this project are of the category of Box2D
environments. Those problems are harder to solve and are highly configurable. An-
other category are Atari games, which are a collection of classic video games from
the 1980s that were released for the Atari 2600 console. These games are relatively
simple by modern standards, but they are still challenging for machine learning al-
gorithms because they require the agent to learn to make decisions in a complex and
dynamic environment.

Some of the Atari games included in OpenAI Gym are Pong, Breakout, Space In-
vaders, and Pac-Man. These games have become popular benchmarks for reinforce-
ment learning algorithms because they are simple enough to be used as a starting
point for research, but complex enough to pose a challenge [22]. Figure 2.3 illustrates
some of the Atari games available in OpenAI Gym.

FIGURE 2.3: Some Atari games of OpenAI Gym Illustration of a sub-
set of the Atari environments available in OpenAI Gym. The repre-
sented environments from left to right and from the top to the bottom
are: Air Raid, Alien, Pitfall, Montezuma Revenge, Asteroids, Atlantis,

Ms Pacman, Skiing, Space Invaders, Breakout and Adventure.

To start working with the toolkit, the first step is to generate an instance of a
specified envrionment. This can be done with the predefined function gym.make()
to which we pass the name of the environment we want to generate as parameter.
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The environment can then be stored as a variable and can be reset to its initial state
with the reset() function which is typically done at the beginning of an episode
and gives out the observations of the current state and some extra information. The
observation is often used to get an action from a model which is then passed as
argument to the predefined function step(). This function returns the next state,
the reward obtained, a boolean indicating wheter the episode is over and some extra
information too. These are just some basic functions that enable to start developing
and evaluating reinforcement learning algorithms with the help of OpenAI Gym.
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Chapter 3

Method

This chapter presents the core contribution of the project, focusing on the binary tree
model with a particular emphasis on two key functions. The efficiency of the model
was tested on two OpenAI Gym environments, which will be discussed. Addition-
ally, some basic reinforcement learning components and their adaptations for this
project will be presented. The code for this chapter is written in Python and can be
found on Github 1.

3.1 Model

Models are tools used to represent a range of functions, and the number of functions
a model can represent depends on the specific model used. However, every model
can only approximate a finite number of functions.

This project employs binary trees as a unique method to approximate control
policies using the reinforcement learning approach. Compared to traditional neural
network models, binary trees offer potential benefits, including improved perfor-
mance and interpretability. Additionally, binary trees do not require back-propagation
or continuous functions, which makes them a more efficient and effective solution.

The binary tree model is being used to solve continuous control problems in this
project. It takes information about the current state of the environment as input and
outputs the appropriate action for the agent to take. The goal is to use the binary tree
to approximate the best action for the agent to take given the current state, making
the model an effective tool to approximate control policies.

3.1.1 Node module

A node in a binary tree is composed of a pointer that points to its parent node,
a function from a defined function class, and an assigned weight that adjusts the
importance of the decision or computation made at that node. Additionally, the
node has two pointers, one to its left child and one to its right child, that are used
to traverse the tree and make decisions based on the input data and the functions
applied at each node. The basic function of this module was already implemented
at the beginning of the project. An important addition that needs to be made is to
have a pointer to the parent, which was not necessary before having a method to
dynamically increase the tree size. Each node in the tree needs to know its parent
node in order to transmit the updated number of weights and nodes once new nodes
are added to the tree, as you will see in 3.1.4. Figure 3.1 illustrates a binary tree with
a single node to show the different elements that compose a node in this model and
the pointers that are assigned to it.

1$https://github.com/DavidGauc/btree_model/$

$https://github.com/DavidGauc/btree_model/$
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FIGURE 3.1: Components of a single-node tree Representation of a
binary tree with a single node. The root pointer points to the node,
and the parent pointer points to nothing as it is a single-node tree.
The main components of the node are a function fn that is imple-
mented in the function module, an amount of weights nw it contains,
and two pointers to its left and right child (left, right) which point

to None in this case, making this node a leaf.

3.1.2 Functions module

Each node in the binary tree contains a function that is used to make decisions or
perform computations based on the input data. In the project, three function types
were implemented: constant, linear, and perceptron.

The constant function returns the weights as output regardless of the input val-
ues, while the linear function returns the dot product of the weights and the obser-
vations it received as input. The perceptron uses the logistic activation function

1
(1 + exp(−x))

(3.1)

to transform the dot product between the weights and observations (denoted as x)
nonlinearly to perform computations.

Each instance of the function class stores the number of inputs and outputs, the
weights used by the function, and the number of times the function has been acti-
vated. The weights can be learned or fixed, and the input and output values can take
a specific range.

The module also includes a way to set the required amount of weights needed
for each function and return the unused weights. Additionally, it increases a counter
each time a function is activated in the tree. This allows us to see which nodes
and functions were activated the most during the process, which is important for
analysis, especially when determining which tree structure is most convenient for
solving different problems.

An important add-on that was implemented in this project is the ability to copy
a function. This feature will be used in the node insertion strategy presented later.

For non-leaf nodes in the tree, it is convenient to use linear functions because
their output will be a scalar value that is useful for traversing the tree. The details
of how the functions, weights, and pointers are used to make decisions and perform
computations in the tree can be found in the activate function in 3.1.3.
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3.1.3 BTree module

This module implements the binary tree model. A binary tree is composed of in-
terconnected nodes, each of which holds a function. The illustration in Figure 3.2
shows a binary tree with a root node and two child nodes. A binary tree is a struc-

FIGURE 3.2: Components of a tree with three nodes Representation
of a tree with a root node that contains a linear function and two child
nodes with perceptrons. Each node displays its pointer to the corre-
sponding function instance (represented by yellow blocks) and the
connections to each other. The number of weights nw of the parent
node is incremented by the number of weights of its children nodes.

ture made up of linked nodes that contain functions that are used to make decisions
or perform computations based on input data. Each node in the tree has a function,
which can be one of the types implemented in the project: constant function, linear
function, or perceptron. It also has two child nodes that can be either leaf nodes or
internal nodes.

The module enables the retrieval of basic information about the binary tree, such
as its current structure, the number of weights or nodes it has, and the activations
that occurred during an experiment. The main contribution of this project is enabling
the tree to grow dynamically with a specific node insertion strategy, which will be
presented in 3.1.4.

3.1.4 Model functioning

The process of using the tree to make decisions or perform computations is referred
to as activation. This procedure enables the use of a classical data structure like
the binary tree for solving reinforcement learning problems. The model uses the
reinforcement learning paradigm by getting observations as inputs and outputting
actions for the agent to take through the activation of the binary tree. The resulting
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activation of the model is a good policy approximator which makes use of the ad-
vantages discussed in the introduction. An important role is taken by the function
that determines how to traverse the tree in such a way that the observations result
in convenient actions for the agent to take by getting information about the current
state of the environment. The function implemented for this model is represented as
pseudocode in Algorithm 2.

The activate_function starts at the root of the tree and navigates through the
links between nodes based on the output of the current node’s function. The func-
tions that are not leaf nodes use a linear function in the case of this project. This
means the function takes the observations as inputs and gives out a scalar. If the
value of the scalar is positive, the left child node is chosen, else the right child node
is chosen. By repeating this, the function will eventually get to the bottom of the tree.
When reaching a leaf node, the function will return the output obtained by passing
the observations as input to the function implemented in that particular node. In
the case of this project, leaf nodes will either use a constant function or perceptrons.
The outputs will need to be interpreted differently depending on whether the action
space is discrete or continuous, as explained in section 3.4. But basically, this will tell
the agent which actions it should perform.

The construction of the tree involves determining the decision points in the tree,
which are selected based on the input data and the problem to be solved. The tree
can be trained and updated by adjusting its functions, weights, and links between
nodes.

Compared to other models like neural networks and decision trees, binary trees
have both advantages and limitations. One advantage is interpretability, as the deci-
sion points and functions used in the tree can be explained. However, the efficiency
of the tree is sensitive to its size, which can be a limitation. This can be mitigated
through pruning techniques or other methods that optimize the tree structure.

Algorithm 2 activate function

1: function ACTIVATE(obs)
2: node← root ▷ starting from the root
3: while True do
4: if node is a leaf then return node. f n(obs) ▷ output of node’s function
5: else if node. f n(obs) >= 0 then
6: node← node.le f t ▷ go to the left child node
7: else
8: node← node.right ▷ go to the right child node

The difficulty of tasks can vary, making it necessary to have the ability to adjust
the size of the tree accordingly. For instance, simpler problems like the Cartpole
in OpenAI Gym can be solved with a smaller tree, while more complex problems
demand a larger tree. Increasing the size of the tree enables more complex decision-
making and can enhance the model’s performance. However, it also increases the
risk of overfitting.

In this project, a function has been implemented to dynamically increase the size
of the tree as the complexity of the problem increases. This process of finding an
optimal structure is referred to as architecture search. The implemented function
demonstrates only one of many possible techniques for growing the tree structure.
This technique is a simple approach and will add only a minimal amount of com-
plexity while maintaining the model’s invariance. It is important to note that the
strategy is restricted in the sense that it can only add nodes and not remove them,
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the functions of the added nodes are taken from the previous tree, and the nodes
are added by randomly selecting the place where they will be added. All of these
factors can be changed in order to create new strategies that will further develop
architecture search for binary trees.

The initial idea was to add one new node at a time, but it was quickly abandoned
because it would not maintain the invariance of the model. For example, imagine an
initial tree with five nodes, where the output of the linear function in the root decides
to go to the left node and from there on, the linear function of that node decides to
go to its right node. If we add one new node as a left child of that particular node,
the model of the node would have changed because the relative position of the node
before the addition is not maintained. This is a problem in our case where we want
to add the minimal amount of new complexity while keeping the model invariant.

Therefore, another solution was to add two new nodes directly as child nodes,
but this also presented difficulties in maintaining the same model within the new,
larger tree structure. In this case, the node that has the same relative position to
its parent as the node had before the insertion to its parent would need to take
over the function and properties of the old leaf in order to maintain this invariance.
That’s when the idea of having one of the newly inserted nodes as the parent of
the leaf node where the nodes will be inserted, and the other new node as its sib-
ling emerged. In this way, the leaf node will remain a leaf while keeping the whole
model invariant.

Another decision that had to be made was whether to maintain the activations
upon growing the tree. Initially, the idea was to reset the activation counter when
adding the nodes. However, with the new implementation, it was more accurate to
take over the current activations for the node that was set as the new parent and to
set the counter to zero for the node put as the sibling. This approach helped maintain
the model invariant.

Finally, the number of weights and nodes needed to be updated throughout the
tree when inserting the new nodes. This issue surfaced once the tree implementation
was completed, and it did not work correctly because the nodes did not get the
correct amount of weights for their functions to perform. A pointer for each node of
the tree was added to its parent node in order to resolve this. This allowed traversing
the tree from bottom to top while updating the number of weights and nodes during
the traversal.

The actual strategy for randomly selecting the place to add two new nodes pro-
ceeds as follows:

• Begin by traversing the tree randomly until reaching a leaf node(Algorithm 3).

• Verify if the selected leaf is the root of the tree or not.

• If it is, a new parent node is created.

• If not, the leaf’s parent node is duplicated to create a new parent node.

• The new parent node is then set as the parent of the current leaf node.

• Then the links to that new parent node are updated in order to maintain the
relative position to its parent node.

• Lastly the information about the new number of weights and nodes added
during the process is propagated up so that every node is updated with this
information.
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The new nodes are added to the tree in such a way that the current leaf node’s
relative position to its previous parent node remains unchanged. In order to keep
track of the relative position of the reached node, the 3 stores the last direction taken
before reaching the leaf. For more details about the implementation the pseudo code
of the function is shown in Algorithm 4.

Algorithm 3 pick_random_leaf function

function PICK_RANDOM_LEAF

current← self.root ▷ starting from the root
last_direction← None
while current is not the leaf do

if random >= 0.5 then ▷ random is between 0 and 1
current← current.le f t ▷ go to the left child node
last_direction←′ le f t′ ▷ store relative position of current node to its

parent
else

current← current.right ▷ go to the right child node
last_direction←′ right′

return (current, last_direction)

It is important to note that the function does not add two child nodes directly to
the leaf node, but instead adds one node as the parent of the leaf node and the other
as its sibling. As shown in Figure 3.3, this is an example of adding two nodes to a
binary tree. Figure 3.3a shows a binary tree with five nodes before using the node
adding strategy. Figure 3.3b then shows the binary tree incremented by two new
nodes with their position in the tree. After the addition of these new nodes, all the
links in the tree must be updated, and information regarding the number of weights
and the number of descendants must be refreshed. To achieve this, the function
employs a process of propagating the information from the current leaf node to the
root of the tree.

The function for expanding the size of the tree adapts to the complexity of the
problem by growing based on a fitness stagnation threshold, which is determined by
a lack of improvement in the score for a certain number of steps. A larger tree has a
greater search space, which enables it to handle more complex problems. However,
it also increases computational time, making it crucial to strike a balance between
expanding the tree too rapidly or too slowly.

3.2 Environments

For this project, two environments from the Box2D category of OpenAI Gym were
utilized2. These environments are more complex than the "Classical Control" prob-
lems and offer greater configurability. Box2D is a 2D physics engine designed for
games that enables objects to move in a realistic manner, enhancing game interactiv-
ity [24].

3.2.1 Lunar Lander

The Lunar Lander environment simulates a scenario where a rocket must land be-
tween two flags on the surface of the Moon. The rocket has three engines that can

2https://www.gymlibrary.dev/environments/box2d/

https://www.gymlibrary.dev/environments/box2d/


3.2. Environments 25

(A) Illustration of the initial binary tree before
the addition of the new nodes. The red node
represents the randomly selected leaf node, from

which the node addition process will start.

(B) Representation of the tree after adding two
nodes using the add_node function. The yellow
node is the newly created parent node and the
green node is the sibling of the previously exist-
ing red nodes. It is important to note that the
red node retains its relative position to the par-

ent node.

FIGURE 3.3: Addition of two nodes in a binary tree with the add_node
function which adds two new nodes as parent and sibling node of a

randomly reached leaf node.

either be fired at full speed or turned off. This environment is available in both a
continuous and a discrete version. In this project, the discrete version was utilized.
For the continuous version to work the output needs to be normalized in order to
give out values in the range of -1 and 1. The figure shown in Figure 3.4 depicts the
various states that the rocket can be in during the landing process.

(A) Illustration of the rocket at
the beginning of the task

(B) Lander firing its main engine
in order to adjust its trajectory

(C) Successful landing between
the two flags

FIGURE 3.4: Different states of the Lunar Lander environmment.
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Algorithm 4 add_node function

function ADD_NODE

current, last_direction = pick_random_lea f () ▷ go to a leaf (current) randomly
if current is the root then

create new_parent node with a linear function
take over the number of activations from current to new_parent
last_direction←′ le f t′ ▷ doesn’t matter if its the root
root← new_parent ▷ new_parent is the root

else
new_parent← current.parent
take over the number of activations from current’s parent to new_parent

create copy_node ▷ copy of current
if last_direction is ’right’ then ▷ maitain relative position to parent node

new_parent.right← current ▷ set current as right child of new_parent
new_parent.le f t← copy_node

else if last_direction is ’left’ then
new_parent.le f t← current
new_parent.right← copy_node

else
raise error

new_parent.parent← current.parent ▷ fix parent links
current.parent← new_parent
copy_node.parent← new_parent
if new_parent is not root then

if last_direction is ’right’ then
new_parent.parent.right_child← new_parent

else if last_direction is ’left’ then
new_parent.parent.le f t_child← new_parent

else
raise error

if new_parent is not root then
parent_iter ← parento f new_parent ▷ starting point for progating up
while True do

parent_iter.nweights += weights of newly created nodes
parent_iter.nnodes += weights of newly created nodes
if parent_iter is root then

break
else

Set parent_iter to its parent ▷ Go one node upwards
new_parent.nweights += number of weights of its two children nodes
new_parent.nnodes += number of nodes of its two children nodes

Action space

The environment has four available actions: do nothing, fire the left engine, fire the
right engine, or fire the main engine pointing downwards. The strength at which the
engines fire cannot be adjusted and is fixed, resulting in a discrete action space with
a dimension of 4. In practice the action with the biggest value obtained through the
model is chosen and an action number from 0 to 3 is sent to the environment.
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Observation space

The observation space for the Lunar Lander contains eight values. Two of them are
booleans that indicate whether the corresponding leg of the lander is touching the
Moon’s surface or not, while all the other values are continuous.

TABLE 3.1: Observation values for the Lunar lander

Name Description Min Max

state[0] coordinates of the lander in x -1.5 1.5
state[1] coordinates of the lander in y -1.5 1.5
state[2] linear velocity in x -5.0 5.0
state[3] linear velocity in y -5.0 5.0
state[4] angle -3.14 3.14
state[5] angular velocity -5.0 5.0
state[6] left leg touching ground 0 1
state[7] right leg touching ground 0 1

Rewards

For the agent in the Lunar Lander environment, it receives a reward for successfully
landing on the landing pad starting from the top of the screen. The reward points in
the default implementation are calculated as follow:

• −100×
√

state[0]× state[0] + state[1]× state[1]: This calculates a penalty for
the horizontal position and velocity of the lander, where state[0] and state[1]
are the normalized horizontal position and velocity, respectively. The closer
the lander is to the center of the viewport, the closer the value of state[0] will
be to 0, and the less penalty it will incur. The penalty is scaled by -100 to make
it a significant factor in the reward.

• −100×
√

state[2]× state[2] + state[3]× state[3]: This calculates a penalty for
the vertical position and velocity of the lander, where state[2] and state[3] are
the normalized vertical position and velocity, respectively. The calculation is
similar to the one for the horizontal position.

• −100× |state[4]|: This calculates a penalty for the angle of the lander, where
state[4] is the angle of the lander with respect to the vertical axis. The more the
lander is tilted, the higher the penalty.

• 10× state[6]: This adds a bonus for having the first leg of the lander in contact
with the ground, where state[6] is equal to 1 if the first leg is in contact, and 0
otherwise. The bonus is scaled by 10 to make it a relatively small factor in the
reward.

• 10× state[7]: This adds a bonus for having the second leg in contact with the
ground. The calculation is similar to the one for the first leg.

• −0.30×main_engine: This calculates a penalty for each frame the main engine
is firing. In the case of a discrete action space main_engine is either 1 or 0.

• −0.03× side_engine: This calculates a penalty for each frame the a side engine
is firing. In the case of a discrete action space side_engine is either 1 or 0.
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An additional reward of -100 or +100 points for crashing or landing safely respec-
tively is obtained at the end of the episode. The final reward is the sum of all of these
terms. The design of the reward encourages the agent to land the lander safely on
the landing pad with minimum velocity, at a suitable angle, and with both legs in
contact with the ground.

The task is considered solved when the agent accumulates a total reward of 200
points or higher. It is worth noting that the exact rewards given for each action, state
or event are not fixed and can be adjusted to fine-tune the agent’s behavior, based
on the specific implementation of the environment.

3.2.2 Bipedal Walker

This environment simulates a two-legged robot attempting to walk as far as possible
on uneven terrain. There are two versions available: a "normal" version (Figure 3.5a)
and a more challenging "hardcore" version (Figure 3.5b) which includes obstacles.
The robot is composed of a hull and two legs, each with two joints, one connecting
to the hull (hip) and the other allowing the leg to bend (knee). Figure 3.5 illustrates
the robot in action on both versions.

(A) Bipedal walker in the "normal" environment
version where the soil is relatively flat

(B) Bipedal walker in the "hardcore" environment
version which includes some obstacles

FIGURE 3.5: Bipedal walker performing on both environment ver-
sions provided by OpenAI Gym.

Action space

The actions of the bipedal walker are continuous, with four actions available, corre-
sponding to the motor speed values of each joint. The values range from -1 to 1 and
determine the movement and stability of the robot. It’s possible to adjust the range
of values in different implementations of the environment.

Observation space

The observation space for the bipedal walker has a dimension of 24 and consists of
continuous values, as well as a few boolean values that indicate whether the legs are
in contact with the ground or not. The observation space includes information such
as the angle, angular velocity, linear velocity, and position of the torso of the robot.
It is worth noting that the exact position of the robot is not explicitly stated in the
observation space, but it can be derived from other observations, such as the linear
and angular velocities of the joints.
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TABLE 3.2: Observation values for the Bipedal Walker

Name Description Min Max

state[0] hull angle speed -3.14 3.14
state[1] angular velocity -5.0 5.0
state[2] horizontal speed -5.0 5.0
state[3] vertical speed -5.0 5.0
state[4] - state[7] position of joints -3.14 3.14
state[8] - state[11] joints angular speed -5.0 5.0
state[12] left leg contact with ground 0 1
state[13] right leg contact with ground 0 1
state[14] - state[23] 10 lidar rangefinder measurements -1.0 1.0

Rewards

A reward is given to the robot when it is able to move forward without falling.
Falling is defined as the hull touching the ground (horizontal position less than 0)
and it is penalized by -100 points. If the bipedal walker reaches the end of the envi-
ronment, it accumulates 300 points. The episode is also terminated if the horizontal
position of the walker is greater than the length of the terrain. The default calcula-
tions for the reward are following:

• 130× pos[0]/SCALE: This encourages the agent to move forward. pos[0] is the
normalized horizontal position of the walker and SCALE is a normalization
factor that enables to receive 300 points on completion of the task.

• −5.0× |state[0]|: This calculates a penalty for deviating from keeping the head
straight. state[0] is the normalized angular velocity of the walker’s head. The
more the walker’s head deviates from being straight, the higher the penalty.

• −0.00035×MOTORS_TORQUE× np.clip(|a|), 0, 1): This calculates a penalty
for the use of motor torque by the agent the calculation is done for each motor
of the walker. MOTORS_TORQUE is a constant that represents the maximum
torque that a motor can apply. The larger the torque applied by a motor, the
larger the penalty. The use of np.clip ensures that the torque used is clipped
to the range [0, 1].

The "normal" version is considered solved when 300 points are earned within
1600 time steps. For the "hardcore" version, the same amount of points has to be
earned within 2000 time steps. The goal is to achieve the highest possible reward
while avoiding falling and moving as efficiently as possible. Similarly to the Lunar
Lander, the values can be adjusted to fine-tune the agent’s behaviour.

3.3 Control Loop and Performance Evaluation

To evaluate the efficiency of a model in solving tasks in a given environment, an
interface is needed between the model and the environment, that extracts actions
from the model which are then evaluated in relation to its performance in solving
the given problem. It is a crucial component in reinforcement learning algorithms,
providing the mechanism for feedback and evaluation of the agent’s performance,
allowing it to learn and optimize its behavior.
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The fit function, at the core of this interface, implements the control loop, eval-
uating the quality of the agent’s actions based on the rewards provided by the envi-
ronment. The action is extracted from the model. A distinction is also made between
environments with a discrete action space and those with a continuous action space,
as will be explained in section 3.4. Once the agent performs the action provided by
the model, it receives feedback on the execution of its action. This feedback contains
information about the new state of the environment, including the agent itself, as
well as a reward that determines if the action was suitable for solving the task. If the
problem is solved, the loop finishes.

The efficiency of the agent is calculated by summing the rewards received over
the course of a single episode, which is the output of the fit function. This score
is used to guide the learning process and update the agent’s parameters, helping it
to continually improve its performance. The pseudo-code in Algorithm 5 illustrates
the basic elements of the fit function.

Algorithm 5 fit function

function FIT(ind)
reset the environment and get initial observation
set weights of ind in to the model
score← 0
done← False
for number of step nsteps do

action← get_actions(model, obs)
get new state of environment
score += reward from the action step
if done then

break
return score ▷ in our case −score as we use CMA-ES

3.4 Action Selection for Discrete and Continuous Control Tasks

When we are trying to control things, like robots or machines, we need to make
decisions about what actions to take. These actions can be either specific things to
do or more continuous movements. Environments with either a discrete or contin-
uous action space, as well as discrete or continuous observation spaces, need to be
distinguished.

OpenAI Gym helps us by telling us whether we are dealing with specific actions
or continuous movements. If we are dealing with specific actions, we just use the
number of actions in the program. If we are dealing with continuous movements,
we need to rescale our actions to make sure they fit within the allowed movements.
We create a special program for this, called a lambda function. This lambda function
should take as input an action that needs to be between zero and one (e.g., logistic
function) and rescale that action into the boundaries allowed for the function.

Next, a function is created to extract the action from the environment and re-
adapt the output to be consistent with the type of action space. This function is
used by the control loop to retrieve the action from the model that the agent should
execute. The function takes the model and the current observation of the environ-
ment as inputs. It first obtains the action through activation of the binary tree. If the
environment is determined to be continuous by the above procedure, the action is
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rescaled and returned as the output. This means that all outputs of the binary tree
are used and they correspond to the signal to send to each control, which requires
regression to approximate an action based on the given outputs. If the environment
is discrete, the function selects the action with the highest activation by examining
the leaf reached by the activation of the binary tree. The procedure is outlined in
pseudocode in Algorithm 6.

Algorithm 6 get_action function

function GET_ACTION(model, obs)
action← model.activate(obs) ▷ action obtained from model activation
if environment type is continuous then

rescale the action within the action boundaries
else if environment type is discrete then

pick action with highest activation
else

raise Error
return action

3.5 Challenges

Node insertion. The main difficulty was encountered in implementing the node
insertion strategy. The goal is to generate a model that is functionally equivalent to
the previous best performing model but still capable of further improvement. This
is achieved by adjusting more weights. If improvement is not achieved, the tree can
be incremented in size until the critical complexity is reached and better scores are
obtained. When adding new nodes, it’s important to maintain the direction chosen
during activation and the number of times each node’s function was activated before
the node addition. This means that if a node’s function chose to go to the left child
node during activation, the new larger tree should also go the same way, and the
activation should lead to the same leaf but within a larger tree. The code memorizes
the last direction chosen when randomly going through the tree, and when adding
new nodes, the randomly selected leaf keeps its relative position to its new parent
nodes. The implementation of a strategy that adheres to these constraints resulted in
a reduced number of possibilities for the project, leading to some challenges. As an
illustration, the addition of nodes had to be done in pairs, contrary to the initial plan
of adding them individually. Furthermore, the newly inserted nodes were placed
as the parent node of the selected leaf node for insertion and as its sibling node,
instead of being added as child nodes. Additionally, the need to maintain the relative
positions of the nodes prior to insertion, which implies preserving all the links, is a
direct outcome of these constraints.

parameter tracking. Another challenge was ensuring that each node always knew
the number of weights it and its descendants had. This information is crucial for
the functions within the nodes. When adding new nodes to a tree, the number of
weights for all ancestor nodes of the newly added nodes is no longer correct, as they
must now include the number of weights of those newly added nodes. The same
holds true for the number of nodes, which also needs to be updated. The parameter
about the number of nodes refers to the amount of descendants of the node con-
taining this parameter, including itself. In the implementation of the function that
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dynamically increases the size of the binary tree, this information was propagated
upward through the tree starting from the parent node of the one of the two newly
inserted nodes (the one that is set as parent of the leaf which was chosen randomly).
The number of weights and nodes of the newly inserted nodes was added to the
current node iteratively. Finally, the number of weights and nodes of the new par-
ent node, which was not included in the loop, was also increased by the number of
weights of its two children. This latest implementation was arrived at after several
unsuccessful attempts. It involved the addition of a new link pointing from each
node to its parent node, which was determined to be the most effective way for the
propagation of both new weights and new nodes.



33

Chapter 4

Experiments

In this chapter, the objective is to address the research questions of this study through
a series of experiments. The experiments performed in this study involve solving the
"Lunar Lander" and "Bipedal Walker" control tasks from the OpenAI Gym library us-
ing a binary tree model. The results obtained from these experiments are analyzed
and discussed in terms of the efficiency of the binary tree model in solving these
control tasks.

4.1 Setup

A basic scientific experiment involves several steps that ultimately lead to a conclu-
sion based on the observations made. The first step is to observe a phenomenon and
formulate a hypothesis about how or why it works. Next, an experiment is designed
and executed to validate or disprove the hypothesis. A crucial step is to then analyze
and interpret the data obtained from the experiment and, finally, draw a conclusion.
It is important to note that in computer science, the process can be more complex
because experimentation often involves creating something that did not exist pre-
viously. However, the same scientific methods must still be applied to study and
understand the newly created system.

This experiment aims to see if the implemented node insertion strategy gives
better results in solving control tasks.

1. The first thing the experiment should show is if the environment can be solved
with binary trees as an alternative model to neural networks.

2. In the second stage, the experiment should determine if the actual node inser-
tion method gives a significant advantage.

4.2 Experimental Design and Implementation

The initial structure of the tree was set to a single-node tree, with either a perceptron
or constant function. The function to add node to the binary tree was implemented
to allow the tree to have linear functions in its decision-making nodes, and either
perceptrons or constants at its leaves when the tree has more than one node. The
experiment was optimized using random weight guessing and CMA-ES. Although
random weight guessing showed promising results, especially in the early stages of
solving the environments, the analysis will focus on CMA-ES as it showed more po-
tential for these problems. A target score was set for each environment, and the ex-
periment would stop once this target score was reached. The node insertion function
was called when a stagnation threshold was reached, which grew proportionally to
the tree size to allow for rapid exploration of the optimal solution in smaller trees,
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and slower exploration as the tree grew and the search space became larger. By in-
creasing the threshold, the search time for policies in small trees can be reduced, as
they are likely to be less efficient in the context of complex problems. However, some
time should still be allocated to searching for optimal policies in larger trees, which
have a larger search space, to prevent unnecessary tree growth. In this project, the
threshold was increased proportionally to the tree size with a constant factor, which
was sufficient for the task’s complexity.

As CMA-ES works with a covariance matrix, its size was adjusted when nodes
were added to the tree, with a new matrix created and the best-performing individ-
ual reset. This allowed us to see how the individual with the best fitness evolved
with changes to the tree structure. The control loop searched for individuals that
performed well with the current tree size, and if the threshold was reached, it would
grow the tree and continue until the target score was reached. The values for specific
tasks can be adjusted in configuration files.

4.2.1 Visualization

To evaluate the performance of the binary tree in solving the environments, two
plots were used. First, a score over generations line plot was used to indicate the
current best performing individual. The scores were negated to have positive scores
on the plot, as CMA-ES is a minimization algorithm. This plot shows if the tree with
increased size tends to have more individuals reaching high scores.

The second plot is a log-scale histogram of the mean scores. For this, the mean
score of each population is calculated. This plot shows if the model overall tends to
have more individuals achieving high scores or not.

4.3 Results

The experiments for the lunar lander were all run on an Acer Spin SP513-52N with
an Intel Core i7-8550U CPU and 7.7 GB RAM, and did not need an external server
as they were solved rapidly. No other programs were run at the same time during
the execution of the experiments. The bipedal walker experiments were run on a
remote server of the University of Fribourg as the time to run them was longer. The
server has 256 processors of the brand AMD with each having 64 CPU cores and 251
GB RAM. Both plots described in 4.2.1 were used to analyze the performance of the
models solving the two environments.

4.3.1 Lunar Lander

The Lunar Lander was solved rapidly using the binary tree implementation, with a
target score of 270 (-270 with CMA-ES) chosen to indicate a smooth landing between
the two flags in the environment. The initial tree structure, a single node tree with
a perceptron function, was quickly found to be too simple and unable to solve the
task in most runs. The use of one linear function as the root and two perceptrons as
child nodes was found to be effective in reaching the target score when using CMA-
ES as the optimizer. However, this was not the case with constant functions for the
leaves, where a larger structure was required to achieve the same result. The number
of steps, which indicates the maximum number of steps the agent can execute per
episode, was set to 300.

For the CMA-ES optimizer, the initial standard deviation (also called sigma) was
set to 0.3, and the starting point (also called mu) is an array with a size equal to the
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number of weights in the binary tree, with their values chosen randomly between
-1 and 1. The optimum is suggested to lie within mu± 3 ∗ sigma, according to the
documentation 1. Furthermore, an option was set to determine the maximum num-
ber of iterations done by the optimizer. This value allows the tree to grow whenever
the maximum number of iterations is reached. As explained before, the number of
iterations should be small for a small tree structure with few weights and longer for
a larger tree. This was achieved by setting the maximum number of iterations to
be the multiplication of the number of weights of the current tree and a scalar. The
scalar for this experiment was set to two as it showed the best balance.

Figure 4.1a shows the evolution of the best-performing individual over gener-
ations in a line plot. The large score reductions in the plot indicate the use of the
add_node function, which increases the size of the binary tree. With the increasing
tree size, both the best-performing individual and the covariance matrix of CMA-ES
are reset. This means that the best score obtained by an individual is reset to minus
infinity, and once a population passes through the experiment, the score of its best-
performing individual is overtaken as the best score. This method enables us to see
if the new structure of the tree reaches high scores quicker than the preceding one.

The plot shows that the initial tree structure, a single-node tree with a perceptron
function, achieves low scores. However, by adding two nodes to the tree, which
means having a linear function as the root and two child nodes with perceptrons,
scores over 200 points are quickly reached. Also, the steepness of the slope that
shows the rapidity at which those scores were reached for tree sizes with more than
one node is similar. This shows that further increases (after having a tree with three
nodes) in the size of the binary tree do not significantly increase the scores and the
execution time to reach high scores. The figure also shows that the single-node tree
was searched for optimal solutions over a few generations, and that the number of
generations searching for solutions increases with the size of the tree. This can be
seen by the distance between the depressions of the graph. The bars in the graph
that result from these separations represent the evolution of the best scores obtained
with a certain tree structure.

Figure 4.1b shows a log-scaled histogram of the mean scores achieved. The y-axis
shows the mean scores, and the x-axis shows the scores achieved by the populations
in log-scale. The mean is calculated over 15 individuals representing one population.
The plot shows that relatively few populations achieve low scores in this environ-
ment. Most populations have a score of about 0 points, although populations with a
high mean remain high. The graph shows the mean of the populations over all tree
sizes.

4.3.2 Bipedal walker

The Bipedal Walker was not solved with the current implementation, as 300 (-300 for
CMA-ES) points were not obtained throughout the experiment. However, a larger
tree seemed to find more individuals with high fitness. In this experiment, the initial
structure showed better results when starting with a constant as the single node’s
function rather than with a perceptron. The maximum number of steps was set to
1600. For the CMA-ES optimizer, the same values were chosen for the parameters as
for the Lunar Lander experiment. The stag_step variable, explained in 4.3.1, was set
to 0.2 in this case.

To assess the impact of tree size on performance, the experiment was run for 45
minutes. Figure 4.2a shows the line plot of scores over generations. Similar to the

1https://cma-es.github.io/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html
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(A) Score over generations lineplot of the lunar
lander environment. Evolutions of the best per-
forming individual in the lunar lander environ-
ment with an increasing binary tree size over the

generations.

(B) Log-scale histogram of the mean scores ob-
tained in the lunar lander environment The
scores where obtained with a growing binary tree
until one individual obtained a score of at least

270 points.

FIGURE 4.1: Performance plots of the lunar lander experiment.

Lunar Lander, large reductions in the plot indicate an addition of nodes to the tree.
With small trees, the individuals perform poorly (less than zero points). From the
fifth bar onwards (which corresponds to a binary tree with nine nodes, as we start
with one node and always add two nodes with the add_node function), the score of
the best-performing individuals with the model increases rapidly, achieving scores
over 100 points. However, it is important to note that this is not always the case.
Some experiments achieve lower scores even with big tree structures. For example,
when the experiment was run for one hour, the results in Figure 4.2b showed dif-
ferent results. The fourth and sixth bars indicate very high scores (seven and eleven
nodes), but the fifth and seventh bars show that the individuals had scores of less
than zero points (nine and thirteen nodes). This shows that an increasing size of the
tree does not necessarily mean that individuals with high scores will be generated.
In the case of this example, the highest scores were obtained with a tree structure of
seven nodes.

(A) Score over generations lineplot of the
bipedal walker. Evolutions of the best perform-
ing individual in the bipedal walker environment
run for 45 minutes with an increasing binary tree

size over the generations.

(B) Score over generations lineplot of the
bipedal walker. Evolutions of the best perform-
ing individual in the bipedal walker environment
run for one hour with an increasing binary tree

size over the generations.

FIGURE 4.2: Score over generations line plot of the bipedal walker
environment after running the experiment for 45 minutes and 1 hour.
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The log-scaled histogram in Figure 4.3a provides the mean scores of the popula-
tions, as calculated over 15 individuals. The experiment was run for 45 minutes. The
histogram shows that, given the complexity of the environment, a large proportion
of populations had low mean scores. Most of the means were below zero points and
the amount decreased as the mean scores increased. There were no populations with
a mean score over 20 points after 45 minutes of the experiment, which indicates that
the task is still far from being solved (the target score is 300 points). The results of
the same histogram after running the experiment for one hour (Figure 4.3b) showed
similar results.

(A) Log-scale histogram of the mean scores ob-
tained in the bipedal walker environment run
for 45 minutes. The scores where obtained with
a growing binary tree for one hour even if the en-

vironment was not solved.

(B) Log-scale histogram of the mean scores ob-
tained in the bipedal walker environment run
for 1 hour. The scores where obtained with a
growing binary tree for one hour even if the en-

vironment was not solved.

FIGURE 4.3: Log-scale histogram of the mean scores obtained in the
bipedal walker environment after running the experiment for 45 min-

utes and 1 hour.

It is important to note that all of these experiments were run using the default
reward functions, without fitness shaping. In the case of the more complex Bipedal
Walker environment, this led to suboptimal results. The walker often became stuck
in local optima, which prevented it from exploring better ways of moving. For ex-
ample, the walker often remained balanced on its two legs without falling, as shown
in Figure 4.4. This is because it does not receive a large penalty for remaining in that
state, whereas taking a step forward, which could lead to learning a more efficient
way to walk, would result in a fall and a penalty.

FIGURE 4.4: Different states of the Bipedal walker environment
where the walker got stuck in local optima.
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Chapter 5

Conclusion

5.1 Conclusion

In this work, we improved the binary tree model as an alternative to neural networks
in learning policies in reinforcement learning problems by adding a function that
enables tree size to scale dynamically depending on the complexity of the task to be
solved. Following conclusions can be made:

• The first goal of the project was to make the model work, which was success-
fully achieved as the project enabled testing the model on two different Ope-
nAI Gym environments.

• Using CMA-ES instead of random weight guessing showed some interesting
results, as it improved the model’s ability to solve tasks. However, updating
the covariance matrix of the optimizer each time the tree grows in size was a
challenge, as the shape of the matrix would also need to be increased. To ad-
dress this, we created a new covariance matrix whenever the tree size changes.
A more accurate solution to this problem could further improve the model’s
efficiency in solving complex tasks.

• The code of this project was refactored to enable easy introduction of new envi-
ronments by creating a new configuration file, and to allow for rapid changes
of each component of the model, as most functions perform a single task.

• The newly implemented function that enables the model to increase the size
of the tree by randomly selecting the place to add new nodes was also suc-
cessfully implemented. During experiments, the tree grew in size if its score
stagnated for a while without obtaining better scores, and the activations of
the tree during the task were also printed. This information could be benefi-
cial in implementing new strategies, as it shows which paths of the tree are
more likely to be activated for a certain task.

The model, together with the node insertion strategy, was able to solve the Lunar
Lander environment with discrete actions rapidly. However, for the Bipedal Walker
environment, which has a continuous action space, it had more difficulties, often
getting stuck with relatively low scores. Despite this, the simplicity of the add_node
function makes it a comprehensive approach and a first step towards architecture
search for binary trees.

Overall, the binary tree model shows some interesting advantages in theory and
is able to solve some relatively simple problems from OpenAI Gym with a simple
implementation. However, without fitness shaping, it was not yet capable of solving
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the Bipedal Walker environment of OpenAI Gym. Therefore, it would be interest-
ing to continue working on binary trees and architecture search combined with it, to
see how they perform in the future as an alternative to neural networks.

5.2 Future Work

The continuation of this work includes multiple directions. Some ideas for future
work are listed here:

• One approach could be to introduce fitness shaping to determine if the Bipedal
Walker task can be solved with the current implementation of the binary tree.

• After that, it would be interesting to modify the covariance matrix of the CMA-
ES optimizer instead of recreating it from scratch each time the tree grows in
size. Recreating the matrix each time results in losing all the learning from
previous runs, which is suboptimal. Instead, it would be better to keep the
invariant matrix values, modify the changing ones, and add the new ones that
did not exist before.

• It would also be valuable to investigate the model’s performance on other en-
vironments to evaluate its robustness in solving reinforcement learning prob-
lems and gain insights into its capabilities and limitations.

• Furthermore, exploring other methods for architecture search using binary
trees would be a crucial aspect. The current project’s scope is limited to ran-
domly selecting the place to insert new nodes, adding new nodes when a linear
threshold based on the tree’s size is reached, and setting the functions of the
nodes equally for all nodes of the tree (only distinguishing between leaf and
non-leaf nodes), among other aspects. All of these aspects could be modified
and tested to improve architecture search for binary trees.

• Once the model demonstrates robust capabilities in solving the tasks, it would
be interesting to compare the performance of the binary tree model to that of
traditional neural networks on various tasks, providing a better understand-
ing of the potential advantages and disadvantages of using binary trees as an
alternative.

Binary trees remain one candidate for an alternative to neural networks. Seeking
other models that address the current limitations of neural networks is a promising
focus for future research.
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