
Rethinking the Switch Architecture
for Stateful In-network Computing

Alberto Lerner
University of Fribourg

Fribourg, CH

Davide Zoni
Politecnico di Milano

Milan, IT

Paolo Costa
Microsoft Research
Cambridge, UK

Gianni Antichi
Politecnico di Milano

Milan, IT

ABSTRACT
Programmable switches are a disruptive technology that
has seen increasing adoption in the past decade. Since their
inception, however, there has been tension regarding how
to design these switches. Classic programmable switches
operate at line rate but impose significant limitations on the
expressiveness of their programming models. In contrast,
alternative designs relax the strict line rate requirement but
are more easily programmable. The common belief is that a
switch’s performance and its programmability are at odds.

In this paper, we argue that the tension is elsewhere. Many
applications use the network to coordinate sets of flows
known as coflows, while current switches are designed to
be individual flow directors. We believe that this conceptual
gap—the need to handle coflows rather than independent
flows—is what prevents us from creating expressive and fast
switch designs at once. We introduce a new device we call an
Application-Defined Coflow Processor (ADCP) and discuss
how it starts to bridge this gap.

CCS CONCEPTS
• Networks→ Programming interfaces.

KEYWORDS
Programmable Dataplane, RMT Model

ACM Reference Format:
Alberto Lerner, Davide Zoni, Paolo Costa, and Gianni Antichi. 2024.
Rethinking the Switch Architecture for Stateful In-network Com-
puting. In The 23rd ACM Workshop on Hot Topics in Networks (HOT-
NETS ’24), November 18–19, 2024, Irvine, CA, USA. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3696348.3696897

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1272-2/24/11
https://doi.org/10.1145/3696348.3696897

1 MOTIVATION
The Reconfigurable Match-Action Table (RMT) switch archi-
tecture has ushered us into a new era of programmable net-
works [4]. For the first time, it demonstrated that hardware-
based switches could be programmed through software and
still perform per-packet operations at line rate. RMT switches
also demonstrated how limited amounts of data lifted from
prior-forwarded packets could be kept on the switch. Us-
ing this feature, known as stateful processing, a switch pro-
gram can resort to past contextual information to make bet-
ter future forwarding decisions. For instance, in a typical
data center switch, a traffic-aware load balancing application
can maintain flowlet-level information lifted from the pack-
ets seen up to that point to make path selection decisions
that avoid congestion through load balancing—all in soft-
ware [20]. Arguably, programmable per-packet operations
and stateful processing are the features that allow one to
encode traditional networking protocols via software.
These same features have also proven beneficial for ap-

plications, allowing cleverly written programs that are not
strictly networking protocols to process packets in more
general-purpose ways [25]. These programs attempt to ma-
nipulate packets based on the their semantics—the reason
they are being sent in the first place—rather than strictly
forwarding them using their destination addresses. Exam-
ples of such application classes that can be offloaded to a
switch abound: caching [19], coordination (e.g., locking [33],
consensus [7], replication [35]), inter-process communica-
tion [22], relational [17, 23, 28] and graph data manipula-
tion [14], and even data aggregation to support machine
learning [9, 26, 34]. The list above is far from exhaustive, and
more complete surveys can be found elsewhere [21].
Having such a wide range of switch applications may

overshadow the challenges developers face in writing them.
Whilemany datamanipulations are possible in RMT switches,
several seemingly trivial ones are currently considered un-
feasible [10]. As a result, the community has been striving to
create switch designs that can support more expressive per-
flow oriented programming models. These resulting archi-
tecture variations range from fully software-based switches
to hardware-based ones with fewer restrictions than RMT.

https://doi.org/10.1145/3696348.3696897
https://doi.org/10.1145/3696348.3696897

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Alberto Lerner, Davide Zoni, Paolo Costa, and Gianni Antichi

Application Coflow Communication Pattern
ML Training and Inference
[9, 26, 34]

The weight calculations in a Machine Learning training scenario are distributed across several
servers. The servers occasionally engage in an all-to-all exchange of these parameters via aggregation.

Database Analytics
[23, 28]

Servers with local storage engage in a pattern of filter-aggregate-reshuffle of data to solve queries over
large amounts of data in parallel.

Graph Pattern Mining
[14]

Large graphs are partitioned across several servers who then engage in a BSP-style communication
exploring increasingly large patterns in the graph at each iteration.

Group Communications
[16]

The switch initiates group data transfer within servers running the same application even if some of
the servers have different NIC capabilities.

Table 1: Example of applications that benefit from programmable switches and rely on coflows

Some studies document these architectural variations thor-
oughly (e.g., [2, 12]) but we summarize them briefly as fol-
lows. Regarding the software-based category, the most no-
table example is arguably BMv2 [3]. These switches replace
the line rate goal with a run-to-completion discipline, which
holds a packet in the switch until an arbitrary length compu-
tation is completed. Regarding the hardware-based category,
Trio [32] is a representative commercially-available exam-
ple that replaces the notion of processing pipelines with
threads. This approach still compromises line rate, even if
to a lesser extent than software-based switches. Before Trio,
dRMT [5] was another hardware-based variation that added
shared memory capabilities on top of an otherwise unaltered
RMT switch. That switch, however, was never commercially
available.

While it may seem reasonable to improve hardware or sac-
rifice line speed in order to perform more or more complex
computations per flow, we believe that basing new architec-
tures on such attempts is bound to achieve limited success.
The reason is that for many relevant applications today, the
flows are not independent (§ 2). These applications run on
interconnected servers and exchange data through several
coordinated flows into what is known as coflows [6]. If a
switch is to be involved in coflow processing, its architecture
needs to accommodate computations that can operate on an
entire coflow as an input, manipulate data scattered across
its component flows, and produce an output coflow that is
different from the input. Various applications that use this
coflow paradigm are presented in Table 1.

To make the above architectural assertion more concrete,
consider parameter aggregation for machine learning train-
ing, arguably one of the most prominent examples of switch
programmability. Every server sends the switch a different
flow containing a vector of machine learning model weights.
The parameter server running on the switch coordinates an
aggregation operation among all participating servers over
the weights, sending out the results in a very different output
flow scheme than the input coflow. RMT switches can imple-
ment a parameter server in some form but, as hinted above,
it can only do so by drastically restructuring the application
to fit the switch [26].

In this paper, we revisit the classic RMT architecture and
propose a new design that embraces the notion of coflows by
lifting several programmability restriction of the classic RMT
model (§ 3). This required addressing several challenges in
different areas of the switch.

The first challenge was allowing applications to organize
stateful data in the switch arbitrarily. The motivation for this
feature comes from the RMT architecture, which forces appli-
cations to segregate packets either according to their input
port or their assigned egress port. Only by using a method
called recirculation the flows can be reshuffled arbitrarily but
at a great bandwidth and application complexity cost. In con-
trast, the ADCP offers a new region, called the global area, in
which applications can easily rearrange coflows arbitrarily
without performance loss (§ 3.1).

The second challenge was to break the notion that a packet
is a unit of information. In most applications listed in Table 1,
a packet holds multiple data elements. For example, in the
parameter server case, a packet carries an array of weights,
each requiring a separate match-action table (MAT). In some
cases, these MATs may each need a table copy, reducing the
effective table sizes the switch can hold. The ADCP architec-
ture supports array processing techniques in packet parsing
and MATs (§ 3.2).
The third architectural challenge involved breaking an-

other fundamental RMT assumption: that increases in port
speeds can be compensated by increasing the clock rate, the
minimum packet size, or both. None of these options are sus-
tainable. Clock rates cannot be increased much further, and
designing for larger packets penalizes applications, which
often transfer little data at a time, e.g., one or a few key/value
pairs. We address this issue through a novel pipeline archi-
tecture that can handle increasing port speeds without com-
promising clock rates and/or minimum packet sizes (§ 3.3).

The proposed ADCP architecture may initially appear to
require a large amount of area for implementation. However,
we have identified several mitigation measures in the design
that can make the architecture feasible. Although the com-
plete ADCP design is still in progress, we can already discuss
these feasibility measures (§ 4).

Rethinking the Switch Architecture for Stateful In-network Computing HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

The architectural solutions we discuss here are just a sub-
set of what is needed to move past the RMT architectures,
and we suggest how the community can take part in address-
ing them with us (§ 5).

2 BACKGROUND AND RMT LIMITATIONS
We start our discussion by examining specific aspects of the
RMT architecture. The reason for choosing RMT is that, out
of all the available architecture options, RMT is considered
the most established when it comes to processing packets at
a line rate. Throughout our discussion, we will focus on the
specific regions within the architecture that are affected by
the changes we will introduce later in the paper.
The main components of a typical RMT switch are de-

picted in Figure 1. The servers (not shown) are connected to
the switch through n ports, each with a receive (RX) and a
transmit (TX) sides (left and right in the figure, respectively).
The packets arriving at the RX ports are parsed and buffered
independently, and the resulting data from 𝑛/𝑝 ports is mul-
tiplexed into a single ingress pipeline (left MUX symbol in
the figure). Although we show only two ingress pipelines
in the figure (long rectangles on the left), switches with 64
ports tend to have 4 or more.

n RX
ports

pipelines
at frequency f

p x p
shared
memory

scheduler

…

…

…

…

n TX
ports

p ingress p egress

constrained
global
area

2 scalar
processing

only

severely
limited

scalability

…

 pipelines
at frequency f

…

P
H
V

Stage
P
H
V

Stage
P
H
V

…

13

Figure 1: RMT architecture and some of its limitations
when it comes to processing coflows

In a sense, a pipeline is to a switch what a CPU is to a
server. However, while CPUs have shared-memory cores
that can communicate freely, pipelines have shared-nothing
stages arranged in a strict sequence. Each stage communi-
cates with the next through large register files called packet
header vectors (PHV) placed between every pair of stages
(bottom insert in Figure 1). The PHV naming is misleading;
its elements are scalars extracted from the packets.
The pipelines run at a given clock frequency f. This fre-

quency is low compared to CPUs, typically ranging from
1.2 to 1.6 GHz. Given that the switch is line speed, the clock
frequency determines the maximum packet rate of a pipeline;

a 1.2 GHz one can process 1.2 Bpps. When data arrives at
the end of the ingress pipeline, it is deparsed into a packet
taking the data modifications into consideration.

The resulting packet is sent to the traffic manager (shown
in the middle of Figure 1). The TM is a switching element
responsible for forwarding the packet to the pipeline to
which its designated TX port is connected. A packet’s egress
pipeline is calculated on the ingress one. The TM can be im-
plemented as a shared-memory area and work as an output-
buffered scheduler [1]. It determines how to forward each
packet via a predefined scheduling algorithm and holds them
until they can be shipped. Note that forwarding a packet may
entail moving it to a different egress pipeline than the ingress
one from which it came.
The egress pipelines function mostly like their ingress

counterparts. The main difference is that, at the end of egress
pipelines, the reconstructed packets are demultiplexed across
𝑛 TX ports (right DEMUX symbol on Figure 1).

As revolutionary as the RMT architecture has been for net-
working protocols and some applications, there are lacking
capabilities that create several issues for other applications,
especially those that process coflows (numbered circles in
Figure 1). We discuss them in turn next.

1○CoflowPipeline Semantic.As briefly noted above, RMT
switches lack an area where coflows data could be organized
arbitrarily. Figure 2 depicts this difficulty. Regarding the
ingress pipelines, coflow data can only be colocated there if
the flows come from ports physically attached to the same
pipeline. The figure shows why coflow 𝑖 and 𝑗 cannot con-
verge on the ingress pipeline.

… …

flows coming from
far away ports

cannot be access together
on the ingress pipelines

these flows can only converge
on the egress pipeline

but then their egress port
cannot be further changed

✓
❌

port i: light green flow

port j: dark green flow

Figure 2: Egress-pipeline processing limitations

Flows that need to be processed together could potentially
be sent to the same egress pipeline. However, this choice
comes with limitations. For instance, the resulting flow can
only be output to ports connected to that specific pipeline,
as shown in Figure 2. Further, delaying computations until
the egress pipeline would forego using the ingress pipeline
stages, reducing the total stages involved in the flow’s com-
putation by half.

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Alberto Lerner, Davide Zoni, Paolo Costa, and Gianni Antichi

Ultimately, having the results of a coflow operation dis-
tributed across RMT egress pipelines predetermines how the
resulting coflows can be sent to the servers. A much better
option would be sending the results to servers independently
of how they are arranged in pipelines.

2○ The need for array support. As also noted above, RMT
switches are designed to handle computations over scalar
values only. The limitation here is that if a packet carries
two or more data elements (e.g., key/value pairs that need
to be aggregated), only one element at a time may be used
as the input of a match-action table or a register. If we need
to match many keys against the same table and those keys
came from the same packet, that table must be replicated.
Figure 3 portrays this scenario.

pipeline

ingress
parser buffer P

H
V

Stage
P
H
V

Stage …

Match
Action
Unit

replicated data

packet carrying
a 4 element array

P
H
V Se

le
ct

or P
H
VSe

le
ct

or

Figure 3: Replication due to scalar processing

Because match-action table memory is scarce and having
replicated data would be using it poorly, many RMT appli-
cations design their packet formats to carry scalar values
only. For instance, the only accurate way to create a hash
table over coflows is to use scalar-data packets, to the best of
our knowledge. These single-input packets are often small
and thus have subpar goodput. They also severely limit the
throughput of the operations because, even though current
RMT-based switches have 12.8 Tbps throughput, they can
“only” process 5-6 billion packets per second. The switches,
however, do have 16 match action units per stage. In other
words, requiring an application to go scalar misses a potential
16× performance boost.

3○ Scalability. A third issue with RMT switches we need
to address is loosely related to coflows. The problem is that
increasing port speed in RMT setups can be challenging. To
understand why, let us analyze how increasing the switch
throughput constraints its pipelines’ frequency. The origi-
nal RMT paper proposed a single pipeline of 64x 10 Gbps

ports. This is viable because the combined traffic amounts
to a maximum of around 952 Mpps. Therefore, running this
pipeline at 952 MHz can achieve line speed. As the ports
speed increases, fewer ports can be multiplexed into a single
pipeline, lest its frequencies be kept in check. For instance,
64x 100 Gbps ports can generate just about 9.5 Bpps. Clearly,
a 10 GHz processor is not a viable options in this scenario.
To support faster port speeds, newer switches resort to

a combination of (a) multiplexing fewer ports per pipeline,
(b) using more pipelines, and (c) increasing the assumed
average packet size, which caps the maximum packet rate.
Table 2 illustrates some common compromises to maintain
clock speeds at 1.25 or 1.62 GHz, to pick some arbitrary but
reasonable values.

Switch
Throughput

port speed
(Gbps)

of
pipelines

ports per
pipeline

minimum
packet (B)

pipeline
freq. (GHz)

640 Gbps 10 1 64 84 0.95
6.4 Tbps 100 4 16 160 1.25
12.8 Tbps 400 4 8 247 1.62
25.6 Tbps 800 8 8 495 1.62
51.2 Tbps 1600 8 4 495 1.62

Table 2: Port multiplexing poor scalability

The table shows that for 100 and 400 Gbps port speeds,
switches needed to increase the minimum packet size and
reduce the number of ports per pipeline but remained viable.
To reach the next level of bandwidth and port speed, the
minimum packet may raise to 495 B, and, even so, only four
1.6 Tbps ports would fit into a 1.62 GHz pipeline. This path
is not sustainable.

The reasonwe bring up issue 3○ is that it seems impractical
to focus on coflow needs in our ADCP architecture without
solving the port speed scalability problem. Fortunately, the
design modifications made by ACDP for coflows have also
made it feasible to tackle the scalability issue.

3 ADCP HARDWARE ARCHITECTURE
The ADCP architecture retains many aspects from RMT,
mainly the ones connected to preserving line rate, but brings
a small number of very fundamental changes that address
the concerns and issues raised above. Figure 4 depicts our
proposed architecture. In the figure, we have highlighted the
proposed changes in red to make it easier to identify them.
The first notable change is the introduction of a second

traffic manager. This change essentially creates a central
pipeline on the switch and gives it properties missing from
both the ingress and egress pipelines. In this central pipeline,
packet data from different flows can be manipulated together
without any of the constraints we discussed previously, ad-
dressing the issue 1○. We call this region of the switch the
global partitioned area (§ 3.1).

Rethinking the Switch Architecture for Stateful In-network Computing HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

…

shared memory
scheduler

pipelines
at frequency f

n RX
ports n TX

ports

shared memory
scheduler

nm x nm ingress nm x nm egressn x m central

P
H
V Stage

P
H
V

Table/Array
Mem P

H
V

……

… …

Stage

Table/Array
Mem

Figure 4: The proposed architecture with modified or
augmented areas in red

The second modification was made at the pipeline level
in response to 2○. We have added a special memory area
in each stage that can be accessed by all the match action
units simultaneously. This memory area allows treating the
previously independent match-action units as a unit capable
of matching an array at once (§ 3.2).
The third modification revolves around demultiplexing

ports into two (or more) pipelines rather than, as in RMT,
multiplexing them. Note that the muxes in Figure 1 appear
as demuxes in Figure 4. This change addresses the scalability
issue 3○ and presents unique scalability opportunities (§ 3.3).

3.1 Global Partitioned State Support
The global partitioned area is created by adding a second traf-
fic manager, forming a central set of pipelines. It is deemed
global because an application can place data across its pipeli-
nes without compromising future forwarding options. As
Figure 5 shows, the first trafficmanager can be used to reshuf-
fle data, for instance, by ranges or hashes over a given data
element on each packet. The second traffic manager can
then forward the data to any egress port, which, as seen in
Figure 2, is impossible with an RMT pipeline scheme.
There is at least one interesting observation and one op-

portunity about this design. The pipelines used here are, just
as in RMT, independent of each other, which is why we con-
sider the area partitioned. Therefore, the application needs to
define the criteria by which the first TMwill forward packets
across the pipelines. The observation is that this criteria is
most likely different from the one used by the second TM.

While the second TM is more likely to behave as a classic
scheduler, the first TM could have better application capabil-
ity. We may want to use the first TM to, for example, impose
an order to packets based on application criteria. This is
not to say that the first TM can do general-purpose sorting,

…

schedule according
to range or hash

schedule according
to egress port

Global Partitioned Area

✓
✓
✓
✓… …

Figure 5: Independent processing and forwarding
thanks to the global partitioned area

but it could keep a sort order while it merges flows that are
themselves sorted. The opportunity is that we can expand
the semantics of what we consider scheduling in the TM.

Using our parameter aggregation application example, this
means that we can place a given weight to aggregate on a
pipeline based on the weight’s ID hash. However, this choice
does not force us to output the aggregated weight to the
port connected to that pipeline. Thanks to the second traffic
manager, we can forward the aggregated weight to any port,
or even to multiple ports.

3.2 Array Support
A global area is useful but does not solve the issue that pack-
ets may carry data arrays, with each array element needing
to be matched against the same match-action table. There-
fore, the ADCP architecture allows a group of match-action
units within a stage to simultaneously match an array of
values. It does so by interconnecting the match table mem-
ory of several match action units. Figure 6 depicts such an
arrangement.
The main challenge with this design is to avoid adding

physical memory to the stages. Instead, we aim to enable
each match-action unit to have its local table memory in
non-array scenarios, while also interconnecting the local
memories to be configured to handle parallel lookups in
array-matching scenarios. This might involve incorporating
a programmable interconnect across the table memories that
could switch between local and array access patterns.
Up until now, we have focused our discussion on func-

tionality improvements, but this array-matching capability
can have tremendous benefits for performance, goodput, and
space efficiency inside the ADCP device. For applications,
the performance of a switch is connected to the rate of keys
rather than the packets it can process. RMT Switches with
12.8 Tbps can handle between 5 to 6 Bpps because of the

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Alberto Lerner, Davide Zoni, Paolo Costa, and Gianni Antichi

packet carrying
an array intra-stage

shared table

Match
Action
Unit

table/arr
memory

P
H
V Se

le
ct

or P
H
VSe

le
ct

or

Stage

Figure 6: Support for array operations via intra-stage
shared memory

compromises made in the name of pipeline clock frequency
(cf. Table 2), and RMT switches force a 1:1 relationship be-
tween keys and packets. Therefore, any application logic
we perform on that switch will be capped at 6 Bops/s. By
supporting 8- or 16-wide array processing, the ADCP archi-
tecture can push that limit by one order of magnitude simply
by allowing the application to pack 8 or 16 keys per packet.

3.3 Faster Ports Support
In the previous sub-sections, we discussed architectural fea-
tures motivated by coflow support. These changes, however,
do not address the scalability issue we previously raised (cf.
Table 2). We need to equip the ADCP platform with the
capability to evolve along with port speeds.
The strategy used by ADCP to address scalability is de-

ceptively simple. Unlike RMT switches, ADCP divides each
port into𝑚 pipelines instead of the other way around. This
means that the traffic in these pipelines runs at 1/𝑚th of the
port speed, allowing them to operate at a significantly lower
frequency. At the end of the egress pipeline, the pipelines
are multiplexed back into high-speed flows. Table 3 shows
the benefits of demultiplexing 800 Gbps and 1.6 Tbps ports
by 1:2.

port speed
(Gbps)

ports per
pipeline

minimum
packet (B)

pipeline
freq. (GHz)

800 8 495 1.62
800 0.5 84 0.60
1600 4 495 1.62
1600 0.5 84 1.19

Table 3: Port demultiplexing examples

Ultimately, the port demultiplexing approach had the po-
tential to future prove this architecture by solving issue 3○.
For instance, consider the upcoming 1.6 Tbps bandwidth

ports. Each of these ports can deliver around 2.38 Bpps using
the smallest Ethernet packet. If we want to retire one packet
per cycle at line speed, we require each pipeline to work at
2.38 GHz. Alternatively, a design may assume that packets
are much larger, as the table shows. This allows having more
ports per pipeline (e.g., 8), but these gains do not hold at
higher speeds when lower multiplexing factors have to be
used (e.g., 4) to keep clock rates at a reasonable level. By
demultiplexing a port at a 1:2 ratio, we can reduce the clock
speed by half, which can mean the difference between an
unfeasible and a practical chip design (§ 4).

Note that port demultiplexing is not without implications.
For instance, parsing still needs to be done at port speed,
but parsing efficiency is linked to the complexity of struc-
ture within packets rather than port speed [11]. Second, as
part of parsing, an application must define how to separate
the packet contents into𝑚 pipelines. For another instance,
demultiplexing ports puts pressure on the traffic manager
to handle a much larger number of pipelines. We anticipate
that this number will increase to 64 in 51.2 Tbps switches
and double for 102.4 Tbps, but this will keep clock rates in
the same range as today’s.

4 FEASIBILITY DISCUSSION
Supporting the features described in the previous section
require packing additional logic in the switch chip. While we
have not completed a full chip design yet, in this section, we
outline some important aspects of such design that will work
in our favor and those that will make it more challenging.
The good news is that a significant portion of the ADCP

architectural elements can run on a clock frequency that is
a fraction of what RMT chips use today. This is important
because most line rate architectures tie the base clock fre-
quency to the maximum packet rate supported (cf. Table 2).
As we discussed in that table, this trend is not sustainable
anymore. In the ADCP, the areas that can benefit from a
lower clock include at least the ingress, central, and egress
pipelines, thanks to the demultiplexing. Once again, trans-
lating the lower frequency into specific benefits requires a
more thorough design, but speculatively, it can lower the
power requirements of the resulting chip. Lower frequency
can also translate into using potentially smaller gates and,
therefore, improving the area requirements. Thus, from a
frequency standpoint, we do not consider this a challenge to
current design practices and fabrication processes.
The first challenge that we instead expect in our design

is that we are connecting many more elements and using a
wider interconnect. The bigger example is the connection
between the traffic managers and the adjacent pipelines. Our
main concern here is routing congestion. In modern digital
integrated circuits, the routing congestion problem occurs

Rethinking the Switch Architecture for Stateful In-network Computing HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

when a large number of wires are routed in a narrow physical
space and its resolution can significantly delay the sign-off of
the circuit. In general, the routing congestion problemmainly
affects the signal wires because they are routed after the
power delivery and the clock tree networks, and therefore,
they are subject to additional routing constraints.

To ease the routing, modern electronic design automation
(EDA) tools organize the floorplan in a grid of so-called g-cells
and iteratively solve the routing problem using congestion-
driven heuristics where the routing congestion is measured
as the area of each g-cell divided by the area required to
route all the signal wires willing to traverse the cell. Notably,
the routing congestion problem is most likely to occur in the
proximity of heavily shared intellectual property (IP) blocks,
e.g., shared memories, due to the high number of wires that
are expected to be routed to the input-output interface of
the specific IP.
Back to the ADCP design, the traffic managers represent

a possible source of routing congestion. They offer a shared
memory area between the central and the ingress/egress
pipelines. To minimize the congestion, it is important to
avoid monolithic and area-efficient designs for that compo-
nent. Instead, their floorplan should be spread across the lay-
out and interleaved with other logic elements, e.g., pipelines.

Another expected source of design challenges involves the
array processing capabilities as we need to support several
match-action tables (MAT) within a stage to perform parallel
lookups against a unified MAT memory (§ 3.2). We have
several design options in this case. For instance, we can
leverage the lower clock frequency of the pipelines and clock
the MAT table memory at a much higher frequency. If we
wish to support an array width of 𝑛, that memory could
be clocked 𝑛 times faster than the pipeline. The lookups in
this solution would be done one at a time, but thanks to the
clocking difference, we could retire 𝑛 lookups at once from
the point of view of the pipeline.
Naturally, this multi-clock design increases the complex-

ity of the architecture. Furthermore, this design links the
memory frequency with the array width we aim to support,
which could potentially restrict scalability in future versions
of the architecture. Before reaching a decision, we are assess-
ing different area-performance implementations based on
various representative application scenarios.

5 A CALL TO ARMS
The research on programmable switches is at an interest-
ing inflection point. A few years ago, the RMT model went
commercial and gained such attention that a major chip man-
ufacturer acquired the startup behind that effort. Since then,
despite the intrinsic challenges and limitations to support a

broad class of in-network compute applications [10], the re-
search community has been tacitly resistant to investigating
other design alternatives under the assumption that a valid
option was off-the-shelf and new options were unlikely to
be manufactured. However, in an interesting turn of events,
the commercial RMT switches were recently “retired and
discontinued” [15]. The field for replacement technologies
is open, and in the past months, we have already seen a
few proposals from the industry [29, 32] and the research
community [8, 30].

However, all these solutions are still fundamentally offer-
ing the same packet-based abstraction provided by RMT and
networking devices in general. In contrast, we argue that
the recent sequence of events presents a unique opportunity
to go back to the drawing board and re-think the switch ar-
chitecture from the grounds up, explicitly targeting stateful
in-network computation [13, 18, 19, 24, 25, 31] as a first-class
citizen (along with traditional networking operations). In
particular, we should expand the switching capabilities from
simple packet processors to coflow processors that understand
application processing patterns and can bridge the semantic
gap between the applications and the networking world.
We hope the design options explored here resonate with

other colleagues and will spur fertile discussions and inno-
vations across the research community and industry. There
is much to be discussed about the architectural features we
presented and beyond. For instance, we believe intriguing
opportunities can be unleashed when making the scheduler
programmable [27], especially in an architecture like the
one proposed here that heavily relies on multiple shared
memory schedulers. Further, supporting array processing
would require appropriate extensions to the programming
model: understanding how such a new hardware primitive
would impact programmability is an open question we wish
to discuss with the broader community.

ACKNOWLEDGEMENTS
This work has received funding from the Swiss State Secre-
tariat for Education (SERI) in the context of the SmartEdge
EU project (grant agreement No. 101092908). This work was
also partially supported by the European Union - Next Gener-
ation EU under the Italian National Recovery and Resilience
Plan (NRRP), Mission 4, Component 2, Investment 1.3, CUP
D43C22003080001, partnership on “Telecommunications of
the Future” (PE00000001 - program “RESTART”).

REFERENCES
[1] Mutlu Arpaci and John A. Copeland. 2000. Buffer management for

shared-memory ATM switches. IEEE Communications Surveys & Tuto-
rials 3, 1 (2000), 2–10. https://doi.org/10.1109/COMST.2000.5340716

https://doi.org/10.1109/COMST.2000.5340716

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Alberto Lerner, Davide Zoni, Paolo Costa, and Gianni Antichi

[2] Roberto Bifulco and Gábor Rétvári. 2018. A Survey on the Pro-
grammable Data Plane: Abstractions, Architectures, and Open Prob-
lems. In 2018 IEEE 19th International Conference on High Performance
Switching and Routing (HPSR). https://doi.org/10.1109/HPSR.2018.
8850761

[3] bmv2 [n. d.]. P4 Behavioral Model (BMv2). https://github.com/p4lang/
behavioral-model.

[4] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding metamorphosis: fast programmable match-action processing
in hardware for SDN. SIGCOMM Comput. Commun. Rev. 43, 4 (2013),
99–110. https://doi.org/10.1145/2534169.2486011

[5] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Var-
gaftik, Alon Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse
Chuang, Isaac Keslassy, Ariel Orda, and Tom Edsall. 2017. dRMT: Dis-
aggregated Programmable Switching. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). https://doi.org/10.1145/3098822.3098823

[6] Mosharaf Chowdhury and Ion Stoica. 2012. Coflow: a networking
abstraction for cluster applications. In Proceedings of the 11th ACM
Workshop on Hot Topics in Networks (HotNets-XI). https://doi.org/10.
1145/2390231.2390237

[7] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone,
and Robert Soulé. 2015. NetPaxos: consensus at network speed. In Pro-
ceedings of the 1st ACM SIGCOMM Symposium on Software Defined Net-
working Research (SOSR ’15). https://doi.org/10.1145/2774993.2774999

[8] Yong Feng, Zhikang Chen, Haoyu Song, Wenquan Xu, Jiahao Li, Zi-
jian Zhang, Tong Yun, Ying Wan, and Bin Liu. 2022. Enabling In-situ
Programmability in Network Data Plane: From Architecture to Lan-
guage. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). USENIX Association, Renton, WA, 635–649.
https://www.usenix.org/conference/nsdi22/presentation/feng

[9] Nadeen Gebara, Paolo Costa, and Manya Ghobadi. 2021. PANAMA:
In-network Aggregation for Shared Machine Learning Clusters. In Pro-
ceedings of the Conference on Machine Learning and Systems (MLSys).

[10] Nadeen Gebara, Alberto Lerner, Mingran Yang, Minlan Yu, Paolo Costa,
and Manya Ghobadi. 2020. Challenging the Stateless Quo of Pro-
grammable Switches. In Proceedings of the 19th ACM Workshop on
Hot Topics in Networks (HotNets ’20). https://doi.org/10.1145/3422604.
3425928

[11] Glen Gibb, George Varghese, Mark Horowitz, and NickMcKeown. 2013.
Design principles for packet parsers. In Architectures for Networking
and Communications Systems. https://doi.org/10.1109/ANCS.2013.
6665172

[12] Frederik Hauser, Marco Häberle, Daniel Merling, Steffen Lindner,
Vladimir Gurevich, Florian Zeiger, Reinhard Frank, andMichael Menth.
2023. A survey on data plane programming with P4: Fundamentals,
advances, and applied research. Journal of Network and Computer
Applications 212 (2023). https://doi.org/10.1016/j.jnca.2022.103561

[13] Jingqi Huang, Jiayi Meng, Iftekharul Alam, Christian Maciocco,
Y. Charlie Hu, and Muhammad Shahbaz. 2022. Accelerat-
ing 5G (Mobile Core) Control Plane using P4. P4 Work-
shop – https://opennetworking.org/wp-content/uploads/2022/05/
Jingqi-Huang-and-Jiayi-Meng-Final-Slide-Deck.pdf.

[14] Rana Hussein, Alberto Lerner, Andre Ryser, Lucas David Bürgi, Albert
Blarer, and Philippe Cudre-Mauroux. 2023. GraphINC: Graph Pattern
Mining at Network Speed. Proc. ACM Manag. Data 1, 2 (2023). https:
//doi.org/10.1145/3589329

[15] Intel. [n. d.]. Discontinuation Notice of Tofino 2 chips. https:
//www.intel.com/content/www/us/en/products/sku/218648/intel-
tofino-2-12-8-tbps-20-stage-4-pipelines/ordering.html.

[16] Matthias Jasny, Lasse Thostrup, Sajjad Tamimi, Andreas Koch, Zsolt
István, and Carsten Binnig. 2024. Zero-sided RDMA: Network-driven
Data Shuffling for Disaggregated Heterogeneous Cloud DBMSs. Proc.
ACM Manag. Data 2, 1 (2024). https://doi.org/10.1145/3639291

[17] Matthias Jasny, Lasse Thostrup, Tobias Ziegler, and Carsten Binnig.
2022. P4DB - The Case for In-Network OLTP. In Proceedings of the
2022 International Conference on Management of Data (SIGMOD ’22).
https://doi.org/10.1145/3514221.3517825

[18] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free
Sub-RTT Coordination. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). https://www.usenix.
org/conference/nsdi18/presentation/jin

[19] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP ’17). https:
//doi.org/10.1145/3132747.3132764

[20] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. 2016. HULA: Scalable Load Balancing Using Pro-
grammable Data Planes. In Proceedings of the Symposium on SDN
Research (SOSR ’16). https://doi.org/10.1145/2890955.2890968

[21] Somayeh Kianpisheh and Tarik Taleb. 2023. A Survey on In-Network
Computing: Programmable Data Plane and Technology Specific Appli-
cations. IEEE Communications Surveys & Tutorials 25, 1 (2023), 701–761.
https://doi.org/10.1109/COMST.2022.3213237

[22] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. 2019. R2P2: Making RPCs first-class datacenter citizens. In
2019 USENIX Annual Technical Conference ((USENIX ATC 19)). https:
//www.usenix.org/conference/atc19/presentation/kogias-r2p2

[23] Alberto Lerner, Rana Hussein, Philippe Cudre-Mauroux, and U eXas-
cale Infolab. 2019. The Case for Network Accelerated Query Process-
ing. In CIDR 2019, 9th Biennial Conference on Innovative Data Systems
Research (CIDR’19). https://www.cidrdb.org/cidr2019/papers/p142-
lerner-cidr19.pdf

[24] Heng Pan, Penglai Cui, Ru Jia, Penghao Zhang, Leilei Zhang, Ye Yang,
Jiahao Wu, Jianbo Dong, Zheng Cao, Qiang Li, et al. 2022. Libra: In-
network Gradient Aggregation for Speeding up Distributed Sparse
Deep Training. arXiv e-prints (2022), arXiv–2205. https://arxiv.org/
pdf/2205.05243

[25] Dan R. K. Ports and Jacob Nelson. 2019. When Should The Network
Be The Computer?. In Proceedings of the Workshop on Hot Topics in Op-
erating Systems (HotOS ’19). https://doi.org/10.1145/3317550.3321439

[26] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports,
and Peter Richtarik. 2021. Scaling Distributed Machine Learning with
In-Network Aggregation. In 18th USENIX Symposium on Networked
Systems Design and Implementation ((NSDI’21)). https://www.usenix.
org/conference/nsdi21/presentation/sapio

[27] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh,
Sharad Chole, Shang-Tse Chuang, Anurag Agrawal, Hari Balakr-
ishnan, Tom Edsall, Sachin Katti, and Nick McKeown. 2016. Pro-
grammable Packet Scheduling at Line Rate (SIGCOMM ’16). Associ-
ation for Computing Machinery, New York, NY, USA, 44–57. https:
//doi.org/10.1145/2934872.2934899

[28] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu. 2020.
Cheetah: Accelerating Database Queries with Switch Pruning. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD ’20). https://doi.org/10.1145/3318464.3389698

[29] Trident4 [n. d.]. Broadcom Trident4 Chipset. https://www.broadcom.
com/products/ethernet-connectivity/switching/strataxgs/bcm56880-
series.

https://doi.org/10.1109/HPSR.2018.8850761
https://doi.org/10.1109/HPSR.2018.8850761
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://doi.org/10.1145/2534169.2486011
https://doi.org/10.1145/3098822.3098823
https://doi.org/10.1145/2390231.2390237
https://doi.org/10.1145/2390231.2390237
https://doi.org/10.1145/2774993.2774999
https://www.usenix.org/conference/nsdi22/presentation/feng
https://doi.org/10.1145/3422604.3425928
https://doi.org/10.1145/3422604.3425928
https://doi.org/10.1109/ANCS.2013.6665172
https://doi.org/10.1109/ANCS.2013.6665172
https://doi.org/10.1016/j.jnca.2022.103561
https://opennetworking.org/wp-content/uploads/2022/05/Jingqi-Huang-and-Jiayi-Meng-Final-Slide-Deck.pdf
https://opennetworking.org/wp-content/uploads/2022/05/Jingqi-Huang-and-Jiayi-Meng-Final-Slide-Deck.pdf
https://doi.org/10.1145/3589329
https://doi.org/10.1145/3589329
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/ordering.html
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/ordering.html
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/ordering.html
https://doi.org/10.1145/3639291
https://doi.org/10.1145/3514221.3517825
https://www.usenix.org/conference/nsdi18/presentation/jin
https://www.usenix.org/conference/nsdi18/presentation/jin
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/2890955.2890968
https://doi.org/10.1109/COMST.2022.3213237
https://www.usenix.org/conference/atc19/presentation/kogias-r2p2
https://www.usenix.org/conference/atc19/presentation/kogias-r2p2
https://www.cidrdb.org/cidr2019/papers/p142-lerner-cidr19.pdf
https://www.cidrdb.org/cidr2019/papers/p142-lerner-cidr19.pdf
https://arxiv.org/pdf/2205.05243
https://arxiv.org/pdf/2205.05243
https://doi.org/10.1145/3317550.3321439
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://doi.org/10.1145/2934872.2934899
https://doi.org/10.1145/2934872.2934899
https://doi.org/10.1145/3318464.3389698
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series

Rethinking the Switch Architecture for Stateful In-network Computing HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

[30] Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo, Yonatan Pi-
asetzky, Arvind Krishnamurthy, and Ang Chen. 2022. Runtime
Programmable Switches. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). USENIX Association,
Renton, WA, 651–665. https://www.usenix.org/conference/nsdi22/
presentation/xing

[31] Zhaoqi Xiong and Noa Zilberman. 2019. Do Switches Dream of Ma-
chine Learning? Toward In-Network Classification. In Proceedings
of the 18th ACM Workshop on Hot Topics in Networks (HotNets ’19).
https://doi.org/10.1145/3365609.3365864

[32] Mingran Yang, Alex Baban, Valery Kugel, Jeff Libby, Scott Mackie,
Swamy Sadashivaiah Renu Kananda, Chang-Hong Wu, and Manya
Ghobadi. 2022. Using trio: juniper networks’ programmable chipset
- for emerging in-network applications. In Proceedings of the ACM
SIGCOMM 2022 Conference (SIGCOMM ’22). https://doi.org/10.1145/
3544216.3544262

[33] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowd-
hury, and Xin Jin. 2020. NetLock: Fast, Centralized Lock Manage-
ment Using Programmable Switches. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communi-
cation on the Applications, Technologies, Architectures, and Protocols
for Computer Communication (Virtual Event, USA) (SIGCOMM ’20).
https://doi.org/10.1145/3387514.3405857

[34] Changgang Zheng, Mingyuan Zang, Xinpeng Hong, Liam Perreault,
Riyad Bensoussane, Shay Vargaftik, Yaniv Ben-Itzhak, and Noa Zil-
berman. 2024. Planter: Rapid Prototyping of In-Network Machine
Learning Inference. SIGCOMM Comput. Commun. Rev. 54, 1 (2024),
2–21. https://doi.org/10.1145/3687230.3687232

[35] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Sto-
ica, and Xin Jin. 2019. Harmonia: near-linear scalability for replicated
storage with in-network conflict detection. Proc. VLDB Endow. 13, 3
(2019). https://doi.org/10.14778/3368289.3368301

https://www.usenix.org/conference/nsdi22/presentation/xing
https://www.usenix.org/conference/nsdi22/presentation/xing
https://doi.org/10.1145/3365609.3365864
https://doi.org/10.1145/3544216.3544262
https://doi.org/10.1145/3544216.3544262
https://doi.org/10.1145/3387514.3405857
https://doi.org/10.1145/3687230.3687232
https://doi.org/10.14778/3368289.3368301

	Abstract
	1 Motivation
	2 Background and RMT Limitations
	3 ADCP Hardware Architecture
	3.1 Global Partitioned State Support
	3.2 Array Support
	3.3 Faster Ports Support

	4 Feasibility Discussion
	5 A Call to Arms
	References

