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Abstract—NAND Flash Storage Controllers are a crucial com-
ponent of Solid State Drives (SSDs). They provide an abstraction
of Flash packages to the SSD firmware by translating high-level
operations, such as a Page Program or a Block Erase, into low-
level signals. In theory, the Open NAND Flash Interface (ONFI)
specification standardizes this interface. In practice, however,
every package supports optimized versions of the standard oper-
ations as well as non-standard operations. Writing a controller
that exploits these optimizations is the only way to obtain
competitive performance, but it makes for a highly intricate,
error-prone, and non-portable controller development process.
Compounding the issue is the fact that new generations of Flash
packages are produced yearly, and non-standard optimization
techniques are often presented in the literature. Modifying rigid
hardware controllers to support these advancements is extremely
challenging, making it difficult to rapidly prototype new SSDs
and exploit the full potential of Flash memory.

To address this, we propose BABOL, a software-defined Flash
controller architecture that provides generic hardware building
blocks that can be flexibly combined via software to express
complex, package-optimized Flash operations. We implemented
two flavors of BABOL in an FPGA setting and experimented
with several commercial off-the-shelf Flash packages. Our results
show that the flexibility that BABOL brings far outweighs the
marginal amounts of performance and area it requires. We open
source our controller, including its unique software programming
environment, which we believe can make SSD controller devel-
opment more productive for seasoned SSD Architects and make
prototyping accessible for newcomers who want to join the field.

Index Terms—Storage, SSD, Flash Controller.

I. INTRODUCTION

NAND Flash is the de facto storage medium for data-
intensive applications [3], [6], [19], [28], [53], [58] and fast
storage [16], [26], [30], [36]. This is due in no small part to
the high number of variations into which Flash memory can
be packaged. For instance, the Flash Arrays, which are the
fundamental building blocks of Flash storage, can be made of
cells that hold one, two, three, or even four bits of information.
These arrays can be built into planar or 3D structures providing
a variety of address space sizes, and several of those arrays
can be present in what is called a multi-plane package. These
geometry details, which are nicely explained elsewhere [2],
[40], [41], unlock many possibilities on how an SSD can
optimize the performance, longevity, and energy consumption
of its underlying Flash storage [13], [15], [38], [49].

Ideally, the norms laid out by the ONFI standard [45] make
Flash packages interchangeable regardless of their implemen-
tation details. The standard specifies the number and voltage
of pins a compliant Flash package must have and outlines
how different data transfer speeds and modes (synchronous
and asynchronous) can be achieved via these pins. From
an electrical interoperability perspective, the standard can be
considered successful.

Unfortunately, ONFI is less effective when it comes to
operations. The issue is not a lack of standard operations;
there exists a standard READ, PROGRAM, and ERASE. They
each entail using the standard pins to produce a unique
waveform, and an SSD architect could develop a controller that
issues these waveforms against various packages. However, the
standard waveforms lack important optimizations since they
abstract away relevant internal Flash Array details.

Take a READ operation for instance. The standard indeed
supports some variations of this operation, such as a PAGE
READ, a READ CACHE (to interleave reads), and a CHANGE
READ COLUMN (for partial reads). However, there exist many
variations offered by manufacturers on a per-package basis
such as PSEUDO SLC READs (to increase the longevity of
the device) [14]. Other variations are offered by the academic
literature, such as PARTIAL READ [20], [33], READs with
bounded latency [32], and READ RETRY [34], [48]. Similarly,
optimizations also exist for a PROGRAM [10], [52] as well as
an ERASE operation [23], [54], to cite a few. The variations
are often faster or provide additional interesting functionality
(e.g., possibility to suspend long operations).

With such a wide range of alternative optimizations, an SSD
Architect often foregoes portability in the name of perfor-
mance. They develop specialized hardware controllers in what
is an extraordinarily laborious and error-prone process, and all
the work goes into what is essentially a one-off controller. The
controller logic may need to be revisited if any changes occur,
such as those a new package may bring.

Interestingly, other SSD components, such as the Host-
Interface Controller (HIC), the Flash Translation Layer (FTL),
and Error Correction Coding (ECC), shown in Figure 1(Left),
all have flexible development tools. The HIC can be imple-
mented using available NVMe frameworks [18], [51]; there
are numerous options for FTLs [8], [39]; and hardware imple-
mentations of ECC are also accessible [7], [12].
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Fig. 1. (Left) A traditional SSD architecture where the HIC interacts with the host, the FTL controls page mapping and management tasks, and the
Storage Controller contains Flash packages. (Center) The Storage Controller organizes Flash LUNs into channels. (Right) The waveform summary used in
the communication between a channel controller and a package. We show a fragment of a waveform in more detail in Figure 2.

We argue that the only component missing a flexible ar-
chitecture is the Storage Controller. In this paper, we seize
this opportunity and propose a new approach to develop Flash
controllers that embrace the variety of Flash packages. We call
the resulting controller BABOL.

BABOL’s most notable insight is to leverage the significant
delays of NAND Flash memory. Compared to DRAM, in
which the packages can respond to an operation request
in tens of nanoseconds, NAND Flash may require tens of
microseconds to perform an operation. While a given operation
is being executed in a portion of the Storage Controller,
another area may be preparing to issue the next operation.
Thanks to the delays, the latter controller portion may be
software-supported. To the best of our knowledge, BABOL is
the first controller to perform this decoupling while preventing
any significant performance degradation.

We describe BABOL’s architecture and report on a reference
implementation. We discuss how to develop operations in this
environment and show that BABOL does not require signifi-
cantly more area than a traditional controller. We believe that
BABOL can become the go-to framework for SSD Architects
to build Storage Controllers for existing and potentially future
Flash packages. The controller is fully open-sourced.

The structure of the paper follows its contributions:
• We characterize the difficulty of architecting a hardware-

based storage controller and explain the need for a software-
based one in Section II.

• In Section III, we present BABOL’s architecture and high-
light its differences compared to classic controllers.

• In Section IV, we present details of BABOL’s hardware
programmability support.

• In Section V, we discuss how the software portion of
BABOL controls and commands the programmable hardware
described in the previous section.

• We experiment with BABOL using different actual Flash
packages and discuss the results in Section VI.

• We contrast the techniques we introduced in BABOL with
other controllers and other software-hardware co-designed
systems that have a similar structure in Section VII.

Lastly, we present our conclusions in Section VIII.

II. BACKGROUND AND MOTIVATION

SSD Architecture. As briefly mentioned above, a traditional
SSD architecture is usually comprised of the four components
shown in Figure 1(Left). The Host Interface Controller is
responsible for all communications with the host. In modern
SSDs, this controller implements the NVMe protocol [44]

and uses a DRAM data buffer to stage the data coming in
and out of the device. The HIC requests services from the
Flash Translation Layer, a catch-all component responsible
for, among other things, locating and allocating the physical
addresses of pages and requesting page- or block-level oper-
ations that, in turn, are implemented by a Storage Controller
component. Another important component is the one dedicated
to Error Correction Coding. It addresses the fact that Flash
packages are a faulty media [5]. ECC techniques are necessary
to identify and fix some of the errors [42].

A conventional Storage Controller, as depicted in Fig-
ure 1(Center), exports a continuous Flash memory address
range to the FTL. Internally, however, it bundles relatively
small and slow Flash packages into a structure called channel.
The goal is to present a faster interface than each individual
package can achieve independently by resorting to paral-
lelism [9]. A typical Flash package carries one or more Logical
Units (LUNs), each of which is capable of performing an
operation independently. A channel gathers a small number of
LUNs together, typically 2 to 16, via a common bus. Because
it is shared, the Storage Controller must schedule the bus usage
whenever it wishes to communicate with one of its attached
LUNs. In other words, while one LUN is busy with, for
instance, fetching a page’s data as part of a READ operation,
the Storage Controller can ask another LUN in the same
channel to start preparing for, say, a READ operation against
a different address that the latter holds. This interleaving of
operations being sent to LUNs through the shared channel is
quite common. We will discuss this interleaving in more detail
shortly. For now, let us concentrate on one operation at a time.

ONFI Operations. The ONFI standard dictates how to interact
with a LUN to request each particular operation. Curiously,
this communication involves several steps. Figure 1(Right)
depicts a sequence of such steps, each of which is represented
by an elongated hexagon. An operation’s first step is to tell the
LUN the desired operation ID.1 This step is called a command
latch. A latch is the term used to refer to the action of asking
the LUN—more precisely, its Flash Array controller—to retain
a piece of information for further use. The next step is usually
to establish the operation’s target address. This step is called
an address latch. Figure 2 depicts the waveform fragment
involved in such latching. Note that several wait times are

1The standard refers to operations as commands, but in this paper, we
try to distinguish between NVMe commands and ONFI operations whenever
possible. We still use terms such as command latches that refer to an ONFI
operation step, but when we do, we hope that it is clear from the context that
we are discussing ONFI aspects rather than NVMe.



involved in constructing the waveform correctly. These are
called timing parameters and are also specified by ONFI.

In addition to command and address latches, the ONFI
standard defines two other types of steps: data in and data out.
As the names imply, they each define the waveform fragment
that requests a LUN to write or read the data in its Page
Register, respectively. ONFI calls each of these operation steps
Basic Timing Cycles (BTCs). BTCs can be considered a form
of vocabulary from which sophisticated sentences (operations)
could be built. We will show throughout this paper that the
BTC idea is interesting but the vocabulary is incomplete. SSDs
often resort to nonstandard operations (e.g., see Algorithm 3
below) for performance reasons that are difficult to express
with only standard BTCs. Let us resume our discussion about
interleaving steps.

Operation Interleaving and Transaction Scheduling. The
multi-step approach to performing an operation is necessary
because ONFI uses a limited number of pins for cost and area
savings reasons. In other words, there are not enough pins
to communicate, for instance, an operation ID and a target
address simultaneously. Moreover, the multi-step approach is
necessary because there are also wait times across some steps.
With rare exceptions, a LUN requires pauses in the interaction
with the Storage Controller while it performs actual work. For
instance, in a READ operation, the LUN needs time to fetch
the desired page from the Array and put it in the Page Register,
whence it can be transmitted.

Interestingly, while one operation in a given LUN is
experiencing a timed wait, thus, relinquishing the channel,
another operation targeted at a different LUN can proceed. The
Channel Controller is responsible for arbitrating the channel
use when several operations are concurrently active. Figure 3
shows how the steps of two READ operations can be inter-
leaved. As the figure shows, a scheduler inside the controller
groups related steps into atomic units called transactions. For
instance, a command and address latch form a transaction. A
transaction is called this way because it is never descheduled
before it completes.

Naturally, deciding on which ongoing operation should issue
its next transaction and use the channel is delegated to a
scheduler. There are many plausible objectives for such a
scheduler. An example could be to maximize the channel
throughput [43]. Another one could be to minimize the latency
of ongoing NVMe commands [24]. Designing a competitive
scheduler is one of the main tasks of the SSD Architect.

Synchronous Channel Controllers. A typical channel con-
troller is depicted in Figure 4 [50]. This type of hardware-
based controller is fast because it has dedicated area that
implements the ONFI operations. In the figure, they are called
Operation_i and can issue all the different waveforms
necessary to drive a LUN. Each operation is usually imple-
mented as an individual Finite-State Machine (FSM) in the
operation module, as the figure also shows. Selecting how to
implement each of these FSMs is also the responsibility of the
SSD Architect.
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Fig. 2. An address latch step consists of a waveform fragment that the
Channel Controller uses to request an operation from a LUN. The waveform
uses the pins defined by ONFI, shown here close to the LUN. This fragment
is the same for a READ or a PROGRAM operation.
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Fig. 4. A typical hardware-based Channel Controller. Because the operations
waveforms contain both data and instructions, the control and data paths of
the SSD merge at the Channel Controller.

There are as many operation modules as LUNs in the
channel. This way, the controller can manage all the LUNs
in the channel concurrently. Once the controller receives an
operation request against a LUN, the corresponding operation
module is configured to execute that operation. Note, however,
that the operation modules do not proceed if they do not have
access to the channel. This is the reason such a controller
design is deemed synchronous.

A Scheduler module manages access to the channel, i.e., it
acts as an Arbiter. Whenever the channel is free, the Scheduler
grants the latter’s use to one of the operation modules. The
winning operation module then produces however many trans-
actions it can, which may involve DMA-ing data from DRAM
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Fig. 5. (Left) The BABOL controller comprises three components: stream processors, operation scheduling, and operation execution. Execution has strict time
constraints and is implemented in hardware. The implementation, however, does not use hard-coded waveforms. It allows programmatically building them
through µFSMs, which are software-configurable waveform segments emitters. Operations such as READ, PROGRAM, and ERASE are written in software and,
with the help of the schedulers, drive the µFSM. (Right) Examples of steps an operation goes through as it is implemented in BABOL.

and generating parity information. When the operation releases
the channel, for instance during a mandatory wait time, the
Scheduler takes over, and the cycle repeats.

Discussion. This type of scheduler may sound intuitive, but a
naive implementation creates several drawbacks. Consider how
the Scheduler in Figure 4 selects the next operation/transaction
to be executed and dispatches it to the LUN. Because a channel
may be fast, this scheduler needs to be built in hardware
and should react to the channel vacancies promptly. Devel-
oping this arbiter in hardware is less than flexible because
it forces the SSD Architect to stipulate optimization criteria
that will stay with the SSD until it is decommissioned. As we
mentioned above, different workloads may require different
criteria [24], [43].

Another drawback is that any active operation can be sched-
uled next at any time. Once again, a naive implementation
must, therefore, generate the next transaction—its waveform
segment—-promptly when selected, which indicates a some-
what time-constrained hardware implementation. Developing
and debugging an artifact to issue such a precise waveform
is laborious. One may argue that this difficulty is immaterial,
given that once a READ FSM exists, it can be used by any
Flash package that adheres to ONFI. The sad fact about ONFI,
as mentioned above, is that manufacturers invariably provide
proprietary advanced commands.

III. BABOL ARCHITECTURE

We propose a new architecture that can be as responsive as
the synchronous one described above but that has none of its
disadvantages. The architecture, shown in Figure 5, is based
on two new principles.

Separation of Scheduling and Executing of a Waveform.
Unlike the architecture depicted in Figure 4, BABOL does not
decide on which waveform or transaction thereof to issue next
as a response to the channel becoming available.2 Instead,
a description of the desired segment is produced prior to
the opportunity to execute it. This separation is reflected by
the existence of two distinct modules, as shown in Figure 5.
The module that describes a segment to be executed in the

2For simplicity, we refer to both a waveform and a transaction as a segment.

future is called Operation Scheduling. The module
that produces that segment once the execution is possible is
called Operation Execution. We call this architecture
asynchronous because it separates the description of what a
next segment to issue should be from its actual execution.

To make the communication between these modules possi-
ble, BABOL creates an abstraction to encapsulates a segment’s
description. The abstraction is akin to a sort of waveform
instruction set. Its instructions are amenable to queuing.

There are two flavors of instructions, as Figure 5 implies.
One describes the source or the destination of data being
moved into and out of the Flash packages, and the other one
describes the segment itself. BABOL implements one hardware
unit for each kind of instruction: the µFSM unit handles control
and the Packetizer unit handles data. We discuss these in
more detail in Section IV.

Software-based Programming Model. The second aspect
that our new architecture challenges is implementing the
entire controller in hardware. BABOL implements operation
scheduling entirely in software. This is possible because of a
combination of factors. As mentioned above, LUNs are often
busy performing internal data movements (to/from the Array
and Page Register) that can take tens of microseconds. While a
single LUN is busy in a given operation, there is enough time
to schedule the following operation in software. Moreover,
several LUNs share a channel, which is unavailable during data
transfers between the controller and LUN. Similarly, while a
data transfer is ongoing, there is enough time to decide in
software on the next task to give a particular LUN.

Thanks to these two new principles, BABOL allows an
SSD Architect to encode standard and nonstandard operations
easily. It also allows them to define and implement different
scheduling strategies. The challenge in designing BABOL was
determining which abstractions to expose or hide from the
SSD Architect. We discuss these abstractions in more detail
in Section V.

IV. PROGRAMMABLE HARDWARE

The hardware components responsible for communicating
with Flash packages, the µFSMs, sit at the bottom of the
BABOL architecture. We have shown in Section II that the
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Fig. 6. BABOL’s µFSMs and their parameterization. (Top) The leftmost three µFSMs come from the ONFI standard and produce waveform segments useful
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Control), but the expressiveness they bring is crucial for programmability. (Bottom) Examples of waveforms that each µFSM can emit.

basic dialog unit between a controller and the Flash packages
is what the ONFI standard calls a Basic Timing Cycle (BTC)
(cf. Figure 2). Simply put, a BTC is a waveform fragment that
establishes one piece of information (e.g., what command to
execute, or what address to target, etc.) between a controller
and a package. Expressing a full command requires a concate-
nation of BTCs in a pre-established order that may be unique
to each Flash package.

BABOL expands the notion of the BTC by replacing them
with µFSMs, a more powerful way to generate waveform
segments. Every µFSM is parameterized and can issue many
variations of the waveform segment. Some µFSMs are a
combination of more than one ONFI BTC, while others find
no similar BTC in the standard. The idea of parameterizing a
µFSM may sound simple, but ultimately, describing segments
as patterns rather than constant waveforms is what gives our
scheme the expressive power to encode basic and advanced
operations we found in the literature. Putting it differently,
BABOL’s µFSMs are an instruction set to generate ONFI-like
waveforms.

We describe the µFSMs next and will comment on how to
program them, including showing examples, when we discuss
BABOL’s software environment.

A. An Expressive Set of µFSMs

The list of µFSMs is depicted in Figure 6. We discuss each
of them in turn, emphasizing how they can be parameterized
to generate a wide variation of waveform segments.

Command/Address Writer. This µFSM produces the wave-
form segment containing a command and possibly an address
that the command would target. The C/A Writer, for short,
can be parameterized via three operands: the number of latches
(length) one wishes to issue, a vector with length elements
with the type of each latch (e.g., command or address latch),
and a vector of length latch values. Figure 6(a) shows an
example of a command with an address width that requires
only two latches.

Data Writer. This µFSM emits a waveform segment and its
effect is to transfer data into the LUN’s Page Register. To
obtain the data, the Data Writer works closely with the
Packetizer (see Figure 5), a specialized DMA unit that
can read data from the DRAM area of the SSD and deliver

it in packets of the same width as a package’s DQ bus, the
ONFI pins dedicated to data transfer. The Data Writer is
programmed in tandem with the Packetizer: The former
takes the number of bytes it needs to request, and the latter
takes the address from which these bytes would be read.

Once again, as simple as it may sound, the Data Writer
frees the SSD Architect from all the details of the data transfer,
such as driving a strobe pulse (DQS in some ONFI Data
Interface modes) at a required period to correctly time the
data transfer. It also shields the SSD Architect from changes,
such as bus width, when they want to use swap packages
on an existing controller. Figure 6(b) shows an example of
a waveform segment generated by the Data Writer.

Data Reader. The Data Reader is functionally the in-
verse of the Data Writer. It interacts similarly with the
Packetizer to deliver data read from the Page Register
into DRAM. It is also responsible for driving DQS at the
desired period to synchronize the transfer. Figure 6(c) shows
an example of a waveform segment generated by this µFSM.

Chip Control. This µFSM changes how other µFSM emit
theirs. The Chip Control directs a waveform segment to
a set of designated “chips” (LUN). This µFSM takes as an
argument a bitmap with one bit per package in the channel.
Figure 6(d) shows the result of modifying an arbitrary µFSM
(‘X’) via a Chip Control.

In practice, the Chip Control can be used to gang
schedule a particular operation or a part thereof. For instance,
in RAIL, the authors suggest that data can be replicated inside
an SSD so that, whenever read, latency variance could be di-
minished by trying reads from several different positions [32].
If these positions are within the same channel, these reads and
writes could be gang-scheduled using the Chip Enable pin.

Timer. This µFSM produces a pause of at least a given amount
of time, according to the duration parameter. Figure 6(e)
shows the result of introducing a Timer into an operation.
The Timer µFSM is helpful in situations where the SSD
Architect needs to give the Flash Array controller a chance to
work on the requests that an operation has done. For example,
ONFI supports an operation called SET FEATURE that can
modify several behaviors inside the Flash Array, such as the
voltage at which the Flash Array reads Flash cells. This change
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is fundamental in READs with retries. The waveform that
initiates a SET FEATURE operation has to pause for tADL

nanoseconds before the waveform can express the new feature
value. The tADL delay is called by ONFI the Address Cycle
to Data Loading time. The Timer µFSM can introduce such
a time delay in the waveform. As we will see next, however,
BABOL tries to spare the SSD Architect from certain timing
aspects in the waveforms.

B. Inter- and Intra-Segment Timing Handling

Timing management in BABOL is a responsibility divided
between the framework and the SSD Architect. To make the re-
sponsibilities clear, BABOL separates the delays specified in a
waveform into three categories. The first category corresponds
to timed waits within a µFSM. For example, we have shown
how an address latch drives the ONFI pins in Figure 2. There
are several specific time delays involved in producing that
portion of the waveform, such as tCS , tCH , tCALS , tCALH ,
and others. Controlling these timed waits is the responsibility
of the µFSM’s implementation. This way, BABOL allows the
SSD Architect to reason at a much higher abstraction level
than at the ONFI pins level.

The second time delay category involves mandatory wait
times right before or right after a µFSM. One example of
such a delay is depicted in Figure 7. After a READ operation’s
command and address are latched, the standard mandates that
a tWB wait be observed. This wait is still a part of the C/A
Writer’s responsibility. Note that the latter µFSM implemen-
tation has several subterfuges to implement this type of wait,
since they are usually very short. For instance, the µFSM may
leverage the knowledge of BABOL’s implementation and infer
that there is no way a next waveform segment can be chained
very soon after a READ-related command/address latch. There-
fore, a C/A Writer implementation may internally simply
ignore tWB . However, latching commands other than a READ
may require waits longer than tWB . In those cases, BABOL’s
C/A Writer explicitly implements the delays. Either way,
as we said, this delay time is the responsibility of the µFSMs.

The third and last type of time delay category involves
waits between consecutive µFSMs. This type of delay is
the responsibility of the SSD Architect who develops the

operations’ logic. Figure 7 shows the example of tR, which
corresponds to the time needed for the package to move data
from the Flash Array into the page buffer, a staging area that
holds data before it can be shipped out of the package. The
operation logic must explicitly issue this wait through the
Timer µFSM or some other indirect mechanism (we will
show one in the Section V.)

C. Working with a New Package

Nowadays, most every Flash package is ONFI compatible,
which means that the electrical and command interfaces are
standardized. BABOL takes advantage of this fact to allow
its µFSMs to generate waveforms that are compatible with
these packages. However, each package has unique booting,
calibration, and initialization steps that are not covered by
ONFI. For example, some packages boot in SDR data mode
and can only be reconfigured to faster data modes through
that interface. For another example, the traces connecting
the controller and Flash packages can be different even in
different instances of the same device. The controller may need
to individually adjust the waveform phase for each package.
For yet another example, the SSD Architect may change the
default parameters of packages through the SET FEATURES
operation. To make matters worse, depending on the package,
some or all of these adjustments need to be done at every
single boot.

BABOL also provides tools to help the SSD Architect incor-
porate new packages. There is a calibration tool to detect phase
differences and suggest adjustments, and BABOL software-
based approach to operation logic is also useful to express
the booting and initialization logic of individual packages.
We omit the specific description of these tools due to space
restrictions but explain how BABOL uses software to define
new operations next.

V. SOFTWARE ENVIRONMENT

The µFSMs introduced in the previous section can each
emit a waveform segment, a portion of an operation. Several
segments need to be concatenated to form a full operation.
Simply put, the software environment in BABOL supports
describing and concatenating segments.

Single-Transaction Operations. We show how BABOL allows
an SSD Architect to perform compositions of µFSMs through
some examples, shown in Figure 8. The figure depicts three
variations of the READ operation.

The READ STATUS operation, shown in Algorithm 1 as
a mix of C++ and pseudo-code, checks whether a LUN has
finished performing a previously requested task, as its name
implies. It entails issuing a specific command ID and reading
back the status (i.e., a composition of the execution of a C/A
Writer and a Data Reader.)

The composition of µFSMs appears in lines 2..6. This
sequence activates the desired LUN (chip) in line 2, issues
the command 0x70 (READ STATUS) in line 3, reads data
(setting up a DMA destination address first) in lines 4–5, and
deactivates the LUN in line 6. The composition of µFSMs



Algorithm 1: READ STATUS

Input: chip, buf
Output: return code

1 λ← {
2 µfsm.chip control(1 << chip);
3 µfsm.write ca({0x70, CMD});
4 pkt.set dma address(&buf);
5 µfsm.data read(4);
6 µfsm.chip control(0);
7 }
8 co await add transaction(λ);
9 co await mem change(buf);

10 co return buf;

Algorithm 2: READ with Change Column
Input: chip, buf
Output: return code

1 λ← {
2 µfsm.chip control(1 << chip);
3 µfsm.write ca({0, CMD}, ..., {0x30, CMD});
4 µfsm.chip control(0);
5 }
6 co await add transaction(λ);
7 repeat
8 status← read status();
9 until (status == 0x40);

10 λ← {
11 µfsm.chip control(1 << chip);
12 µfsm.write ca({0x05, CMD}, ..., {0xE0, CMD});
13 pkt.set dma address(&buf);
14 µfsm.data read(buf.size());
15 µfsm.chip control(0);
16 }
17 co await add transaction(λ);
18 co return 0;

Algorithm 3: pseudo-SLC READ

Input: chip, buf
Output: return code

1 λ← {
2 µfsm.chip control(1 << chip);
3 µfsm.write ca({0, CMD}, ..., {PSLC,CMD});
4 µfsm.write ca({0, CMD}, ..., {0x30, CMD});
5 µfsm.chip control(0);
6 }
7 co await add transaction(λ);
8 repeat
9 status← read status();

10 until (status == 0x40);
11 λ← {
12 µfsm.chip control(1 << chip);
13 µfsm.write ca({0x00, CMD};
14 pkt.set dma address(&buf);
15 µfsm.data read(buf.size());
16 µfsm.chip control(0);
17 }
18 co await add transaction(λ);
19 co return 0;

Fig. 8. Operation composition and variations using BABOL and C++ coroutines: Algorithm 1 shows how to encode a READ STATUS operation to determine
whether a LUN completed its previously assigned task. Algorithm 2 shows a READ with a column change (i.e., it reads a chunk of a page.) It invokes READ
STATUS to check when the data can be transferred. Algorithm 3 triggers a full page READ. We show it here in a variation called pseudo-SLC, which
sacrifices space for performance and longevity [14]. The latter two algorithms are variations of one another (differences in gray). Encoding each algorithm
would require a full hardware implementation, with all the additional validation efforts and area consumption that hardware development entails. With BABOL,
it is easy to reuse one operation’s logic into another or produce variations via software-based techniques.
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calls is what implements a transaction. The latter captures
the parameters necessary to generate a waveform segment and
is executed atomically. Moreover, a transaction monopolizes
the channel for as long as it takes to transmit the waveform
segment it encodes.

There are two salient aspects of how the transaction—and,
ultimately, the operation—is implemented. First, instead of
executing the transaction immediately, Algorithm 1 enqueues
it for later execution in line 8. We use C++ lambdas to wrap
the transaction and the call add_transaction() to send
it to an execution queue. The second salient aspect is that we
use C++ coroutines to force the operation to relinquish control
through the co_await, also in line 8.

We chose lambdas and coroutines here because they are par-
ticularly suited to our goals. Lambdas can create anonymous
functions that can be passed as parameters for later execution.
Coroutines are a lightweight context-switching mechanism

that is very programmer-friendly. Note that BABOL does not
mandate that the software environment be implemented with
these mechanisms. Ultimately, other programming language
constructs support the same (e.g., function pointers and multi-
threading) and can be used to implement BABOL’s software
environment just as effectively. In fact, we will soon experi-
ment with other constructs to implement the same abstractions.

Our READ STATUS operation loops until the status
changes, in line 9. The operation can be descheduled at this
point, thanks to another co_await. Once the status is known,
it is sent as a return code to the operation in line 10. This will
be useful because, as we discuss next, an operation can be
nested into another.

Multi-Transaction Operations. More sophisticated opera-
tions have longer waveforms that are divided into several
transactions. This is the case, for instance, of a READ with a
Column Address Change, shown in Algorithm 2. This READ
variation can transfer bytes starting at any offset into the page;
it is helpful when large-page devices (e.g., 16 KB) subdivide
a page into 4 KB ones.

The operation’s first transaction entails latching the com-
mand ID and address, in lines 2..4. Once the LUN receives
this initial transaction, it must fetch the page from the Array
and put its contents into a Page Register. ONFI mandates a
wait time here, called tR. Due to the nature of Flash memory,
this time is highly variable. Therefore, SSD Architects use the
READ STATUS operation to poll for the end of a read, instead
of using a timed wait, in lines 7..9. The polling loop only
breaks when READ STATUS returns a “done” code (0x40),
at which point the page contents can be transferred from the
LUN into the controller.

The last transaction appears in lines 11..15. It triggers the
data transfer (command IDs delimiters 0x05 and 0xE0) and



the desired start offset (omitted, shown in an ellipsis). If we
change the column to the beginning of the page, a READ with
Column Address Change degenerates into a full-page READ.
For that reason, many SSD Architects only implement the
former operation in actual devices. The waveform for that
operation appears in Figure 9.

Lastly, we show a pseudo-SLC variation of a READ oper-
ation in Algorithm 3. This is a nonstandard operation that
some packages support. It allows using TLC, MLC, and
QLC cells as SLC ones for performance and longevity bene-
fits [14]. Note that, thanks to BABOL’s software environment,
conceiving such an operation—converting Algorithm 2 into
Algorithm 3—is trivial.

Operations Interleaving. BABOL’s software environment is
composed of two additional entities besides the operations
defined by the SSD Architect like the ones we described above:
a task scheduler and a transaction scheduler (cf. Figure 5’s
Operation Scheduling module).

The Task Scheduler determines when a new operation
request from the FTL can be admitted and which previously
admitted operation should take control next, given that all
operations are implemented as coroutines. A simple version
of the Task Scheduler can admit an operation when a given
package is available and implement fair scheduling among
the running operations. A more complex task scheduler could
differentiate task priorities. For example, it could prioritize
latency-sensitive workloads such as database logging by mak-
ing these tasks receive more attention from the scheduler.
The Transaction Scheduler decides the order in which the
transactions sitting on the individual operation use the channel.
A simple version of this scheduler can implement a round-
robin approach. A more advanced transaction scheduler could
prioritize commands for different LUNs.

BABOL does not mandate or enforce any objective for these
schedulers. It is not BABOL’s goal to decide which approach
is the best; there is no single winning approach. It is the job of
an SSD Architect to make decisions about scheduling strategy
and to implement their chosen set of compromises. BABOL’s
role here is to make implementing and executing Task and
Transaction Schedulers easy.

Discussion. The expressive power of BABOL lies in its reper-
toire of µFSMs and the composition possibilities it supports
(e.g., concatenation, nesting, and use of control logic). The
choice of C++’s lambdas and coroutines is far from the
only option to implement these concepts. To show this, we
developed a second software environment that implemented
transaction queuing and context switching using the Real-Time
OS FreeRTOS [11]. FreeRTOS is an open-source, publicly
available software stack commonly utilized for applications
with tight scheduling deadlines. However, the effort involved
in writing operations with RTOS is markedly different than
with C++. C++ is easier to program but requires a processor
with enough speed to sustain its heavy runtime. In turn, FreeR-
TOS is designed to require a much lighter weight processor
to run, but it demands more expertise from the programmer.

Ultimately, the critical factor about the software environ-
ment is that it needs to schedule future transactions while the
LUNs or the channel are busy. To achieve this, one needs
to pair the chosen runtime to a properly sized processor. This
pairing should consider that the operations are not too demand-
ing; they simply form new transactions and enqueue them.
What takes precious computing cycles is context-switching
among tasks and reordering transactions. Figuring out the
processing power necessary to achieve this balance is one of
the topics of the next section.

VI. EXPERIMENTS

In this section, we validate our technical contributions based
on a series of experiments. The experiments are designed to
answer the following specific questions:
• Are BABOL-based controllers viable when compared to their

hardware-based counterparts (Section VI-A)?
• Why is there a performance difference between BABOL’s

software alternatives (Section VI-B)?
• How does BABOL perform in an actual device (Sec-

tion VI-C)?
• How is the relative effort of encoding operations in BABOL

versus traditional controllers (Section VI-D)?
• What is the relative resource consumption of a BABOL-

based controller (Section VI-E)?

Experimental Setup. We implemented BABOL using the
same hardware as the Cosmos+ OpenSSD prototyping plat-
form [25]. The Cosmos+ is a PCIe device based on a Xilinx
Zynq 7000 FPGA/SoC containing two ARM Cortex-A9 cores.
We generate all the bitstreams and binaries using Vivado/Vitis
2022.1. The µFSMs are written in Verilog, and the operations,
task schedulers, and transaction schedulers we use in the
experiments, along with the BABOL’s modules that support
them, are written in C++20.

Flash Packages. The Cosmos+ supports interchangeable
Flash packages mounted on a SO-DIMM form factor. The
three package types we used in our experiments are described
in Table I. They all comply with ONFI’s NV-DDR2 Data
Interface (max. 200 megatransfers/second) but the Hynix and
Toshiba SO-DIMMs are wired for eight LUNs per channel,
and the Micron is wired for only two.

TABLE I
FLASH MEMORY PARAMETERS

Parameters Value
Page read time (Hynix) 100 µs
Page read time (Toshiba) 78 µs
Page read time (Micron) 53 µs
Page read size 16384 B
Page transfer time (100 MT/s) 185 µs
Page transfer time (200 MT/s) 100 µs

Workloads. For our microbenchmarks, we use a workload
generator that injects requests directly into the storage con-
trollers as if they were coming from the FTL. This injection



is done as if the controllers were attached to the rest of an
SSD machinery, i.e., data is DMA-ed in and out of DRAM,
and commands come from the FTL control path (cf. Fig. 5).
We use only READ operations on our workload because tR,
the wait between requesting a page to an Array and the Array’s
signaling that it is OK to fetch it is very small relative to the
equivalent PROGRAM and ERASE times. A small wait time
means the controller needs to react faster, and it is this reaction
time that we wish to evaluate.

BABOL Alternative Implementations. We evaluate two dif-
ferent versions of BABOL. One version is based on the
standard C++ coroutines, with operations coded as shown
in Section V. The other version is based on an RTOS run-
time, where operations use more efficient context-switching
mechanisms at the cost of higher code complexity. In our
experiments, we quantify how much performance we give up
to achieve ease of coding.

We evaluate BABOL on two types of processors: low-
frequency Xilinx Microblaze soft-cores and faster ARM cores
in the Zynq 7000. The rationale here it to determine what is a
minimum processor speed that each controller version requires
for it to perform well.

A. Effects of the Software Overhead

In this experiment, we evaluate how different variations of
BABOL-based controllers perform. We compare controllers on
two axes: varying the processor frequency on which we run
the controller from 150 MHz soft-cores to 1 GHz using Zynq’s
ARM core and varying the channel frequency using 100 MT/s
and 200 MT/s. Slow processors will take extra time to schedule
operations, and fast channels may become idle if operations are
not given quickly enough. The goal is to establish under which
conditions the FreeRTOS and the coroutine-based controllers
deliver comparable performance to the baseline controller.

The baseline controller is a hand-built, hardware-based
controller that implements scheduling logic equivalent to the
software ones but in Verilog. We submit a sequence of read
operations through each channel controller while varying the
number of LUNs targeted from 2 to 8. Recall that Micron
packages are physically arranged with only 2 LUNs per
channel. Figure 10 shows the results of this experiment.

We observe two main trends. First, as the number of
packages in a channel increases, its performance tends to
improve. This behavior is expected because no single LUN
can use all the available channel bandwidth, but the channel
capacity is reached with enough LUNs. The second trend is
that, as the processor gets faster, the software-based controllers
(RTOS and Coroutine) speed up as well. This behavior is also
expected, but it exposes some differences between the RTOS-
based and coroutine-based controllers.

The RTOS-based controller performs very similarly to the
baseline hardware in most 200 MT/s cases if enough pro-
cessing capacity is available. It only underperforms on a 150
MHz softcore, the maximum frequency at which we could
run our softcore. However, more modern FPGA fabrics can
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Fig. 10. Performance of the different Flash packages using 100 or 200 MT/s
channels and running BABOL-based controllers on CPUs ranging from 150
MHz and up to 1 GHz. The case marked with an ’*’ is implemented via a soft-
core. The other cases are implemented by manipulating the clock frequency
of an ARM core. For each frequency, we tested a Coroutine- and an RTOS-
based software controller (‘RTOS’ and ‘Coro’) and used a hardware-based
controller (‘HW’) as the baseline.

run softcore faster, and at 200 MHz, at least on an ARM core,
the RTOS controller is viable.

The coroutine controller is the fastest on 100 MT/s channels
with 8 LUNs on a 1 GHz ARM core. The reason for this
is that slow channels are busier, giving that controller ample
time to schedule commands in advance. With more operations
available, the transaction scheduler can perform better. We will
explore this case further in the next sections.

Lastly, this experiment shows that SSD Architects can
choose BABOL-based controllers in most scenarios. If they
prefer an easier-to-program controller, they should limit the
channel frequency and provide a fast processor. If they prefer
lower-end processors, they can use RTOS-based controllers,
but need more programming expertise.

B. Coroutine Controller Overhead Breakdown

In this experiment, we look for the reasons behind the corou-
tine controller’s occasionally slower performance. We issue the



same workload as in the previous experiment, which consists
of a sequence of READ operations described in Figure 8 as
Algorithm 2. We run the RTOS and Coroutine controllers
using a 1 GHz ARM processor from the Zynq 7000 platform.
We use only one LUN in this experiment because we want to
establish a baseline performance without any interference.

In order to accurately capture the timing, we connected our
Flash Packages to a Logical Analyzer (Keysight 16862A). This
equipment can measure the times of ONFI events precisely
via hardware probes, which allows us to forego any software
timestamping probes that could inject some variance in the
process. Figure 11 shows a screenshot of the Analyzer for the
RTOS case and one for the Coroutine case.

Fig. 11. The ONFI Logical Analyzer screenshots show a READ operation’s
intermediate steps in the RTOS (Top) and Coroutine (Bottom) cases.

What we see in the timing diagram is the following: The
READ described in Figure 8 as Algorithm 2 starts by issuing
a READ command and page address latch (lines 1..5). The
operation then issues a READ STATUS repeatedly (lines 7..9)
as a way to poll for the possibility that the package finished
reading before tR expired. Once the READ STATUS returns a
“done” code, the operation triggers a data transfer by issuing
a CHANGE READ COLUMN (lines 10..16).

As Figure 11 shows, the polling frequency that RTOS can
achieve is higher than the polling frequency that the Coroutine
variation can achieve. As a result, the RTOS controller can
detect the conclusion of the READ step quicker. In contrast,
the Coroutine controller takes in the order of 30µs at each
polling cycle, resulting in a commensurate delay in detecting
the end of the READ. Note that this is a worst case scenario.
In practice, it can happen that the a polling cycle starts
right after the READ completed, resulting in much less delay.
The time differences we see in the previous experiment are
due to the accumulation of delay that the RTOS controller
experiences. We note that, when many LUNs are used, the
channel gets busy enough that polling frequency becomes
less relevant to performance. This phenomenon makes the
Coroutine controller viable in these cases, as we will see on
the next experiment.

C. Evaluating End-to-End Performance
In this experiment, we evaluated how a BABOL controller

behaves inside an actual SSD device. To investigate this, we
modified the Cosmos+ OpenSSD [25], replacing its origi-
nal storage controller with BABOL. We ran both the RTOS

and Coroutine versions of BABOL on a 1 GHz ARM core
available on the OpenSSD’s Zynq 7000 platform. We used
only one channel of the OpenSSD and populate it with Hynix
Flash packages, varying the number of LUNs attached to the
channel (“ways”) from 1 to 8. We initialized the baseline
and the modified OpenSSDs with data and issued two READ
workloads against them using the fio tool: one sequential and
one random. Figure 12 shows the results of this experiment.
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Fig. 12. Performance results from executing READ operations against the
standard and a modified version of the Cosmos+ OpenSSD that uses a
BABOL storage controller: (left) a sequential workload and (right) a random
workload. In each workload, we varied the number of “ways” (LUNs) attached
to the channel from 1 to 8 ways.

We can observe that when the channel is fully populated
with 8 LUNs, the difference in bandwidth between the base-
line Cosmos+ OpenSSD and the BABOL modified ones is
less than 2% and 8% for the RTOS and Coroutine cases,
respectively, in the sequential workload, and 3% and 9%,
in the random workload. The reason is that, as the channel
becomes naturally busy, the polling delay we reported in the
previous experiment is less important. With a busy channel, the
operations have far fewer polling resubmissions than with an
idle channel because other operations compete for the channel.
Despite the performance difference, we think that the RTOS
and Coroutine stacks have their roles. We speculate that the
RTOS stack may reach the same performance as the baseline
if we used more powerful processors available in platforms
newer than Zynq 7000. The Coroutine stack makes it very
easy to quickly try operation variations, and this flexibility
comes handy during the development of a new SSD.

D. Ease of Programmability

In this experiment, we try to contrast the effort involved
in the development of ONFI operations using hardware and
our software-defined methods. We compare BABOL’s pro-
grammable software environment with two baselines: a syn-
chronous hardware controller from Qiu et al. [50] and an asyn-
chronous but non-programmable hardware controller found on
the Cosmos+ SSD prototyping platform [25]. For each of these
implementations, we count the number of lines in basic READ,
PROGRAM, and ERASE operations. Table II shows the results
of this evaluation.



TABLE II
NUMBER OF LINES OF CODE INVOLVED IN DIFFERENT OPERATIONS.

Synchronous Asynchronous
HW-based [50] HW-based [25] BABOL

READ 420 454 58
PROGRAM 420 260 44
ERASE 327 203 27

Admittedly, the process of comparing the effort of develop-
ing C++ software and Verilog hardware by lines of code is far
from accurate. However, we anecdotally noticed that the effort
to encode operations significantly decreases as one transitions
from conceiving hardware circuits to writing software with
BABOL’s aid. This is thanks to (a) the fact that redundant
logic related to BTCs that each operation had to encode was
eliminated by the µFSM abstraction and (b) the fact that
working with enqueuing operations asynchronously and in
software liberates the programmer from timing closure issues
and other hardware issues.

E. Evaluating the Necessary Area

In this experiment, we measure the controllers sizes in terms
of their FPGA resource usage independent of the operations.
We use the same controller variations as in the previous
experiment. Table III shows the results of this evaluation.

TABLE III
FPGA RESOURCES USED FOR EACH TYPE OF CONTROLLER.

Synchronous Asynchronous
HW-based [50] HW-based [25] BABOL

LUT 9343 3909 3539
FF 13021 3745 3635

BRAM 11.5 8 6

We observe that BABOL utilizes fewer hardware resources
than the other controller variations. This is attributed to the
complex logic being transferred to software, leaving only the
essential modules in the hardware. We did not account for
the area needed for a processor to run the BABOL’s software
environment because, in SoCs, this area does not come from
the FPGA resources.

VII. RELATED WORK

There is a rich body of literature about NAND Flash
controllers. As we hinted previously, the two closest works to
ours are the OCOWFC controller [50] and the asynchronous
one on the Cosmos+ OpenSSD project [25]. Other similar
controllers exist, such as in BluDBM [35] [17], Dysource [55],
SoftSSD [56], BlueSSD [29], FSSD [57], and SSDe [37] that
were introduced in the context of more flexible SSD platforms
for rapid prototyping. Some of these Flash controllers also
resort to software to some extent but, to the best of our knowl-
edge, BABOL is the first work that fully describes a systematic
approach to conceive and implement Flash manipulation op-
erators and to interleave them, all via a unified framework

composed of software and µFSMs hardware. BABOL’s code
base is flexible and its footprint is small, making it possible
to embed it in differnt of the SSD prototyping platforms.

The literature is also abundant in works that propose differ-
ent ways to expose or structure Flash Controllers. Regarding
exposing a controller, SDF [46] and OCOWFC [50] allow
applications to directly access the Flash Channels, an ap-
proach known as Open Channel [4]. Regarding innovations
on controller internals, Flash-Cosmos [47] introduced new
flash command sets that can perform bit-wise computations
over the pages they retrieve. The Decoupled SSD [21] and
Networked SSD [22] controllers propose design alternatives to
improve performance or reliability by exploring more complex
interconnection structures for Flash memories. While we have
not integrated these architectures into BABOL at this juncture,
we think that the same principles that allow it to use software
for operations over traditional architectures can also apply.

A consequence of allowing very flexible SSD configurations
is the difficulty in finding the right parameters for a given
scenario. Autoblox [31] is a framework that automates such
choice of parameters. We see this type of work as comple-
mentary to BABOL.

Lastly, some ideas used in BABOL were tried in different
contexts. For example, the software/hardware codesign in
software-defined radios resembles the contract that BABOL
adopts [1]. The idea of using elementary instructions to build
larger operations was also used in building DRAM controllers,
although the instructions there are issued by hardware [27].

VIII. CONCLUSION

In this paper, we introduced BABOL, a framework to de-
velop NAND Flash channel controllers. BABOL exposes an
asynchronous programming model in which Flash operations
that are written in software enqueue instructions that are later
executed by programmable hardware. We showed how this
flexibility allows SSD Architects to develop advanced, opti-
mized operations more easily than in traditional synchronous,
hardware-only controllers.

We proposed two alternative software environments for
BABOL. The first one provides an easier programming en-
vironment that we believe can suit even regular software
C++ application programmers with little firmware experience.
The second software environment is stricter, requiring more
experience from the programmer in real-time applications.
Because more responsibility is shifted to the programmer, it
can be supported by less powerful processors.
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