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Abstract—Despite recent advances in distributed RDF data management, processing large-amounts of RDF data in the cloud is still
very challenging. In spite of its seemingly simple data model, RDF actually encodes rich and complex graphs mixing both instance and
schema-level data. Sharding such data using classical techniques or partitioning the graph using traditional min-cut algorithms leads to
very inefficient distributed operations and to a high number of joins. In this paper, we describe DiploCloud, an efficient and scalable
distributed RDF data management system for the cloud. Contrary to previous approaches, DiploCloud runs a physiological analysis of
both instance and schema information prior to partitioning the data. In this paper, we describe the architecture of DiploCloud, its main
data structures, as well as the new algorithms we use to partition and distribute data. We also present an extensive evaluation of
DiploCloud showing that our system is often two orders of magnitude faster than state-of-the-art systems on standard workloads.
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1 INTRODUCTION

The advent of cloud computing enables to easily and cheaply
provision computing resources, for example to test a new ap-
plication or to scale a current software installation elastically.
The complexity of scaling out an application in the cloud (i.e.,
adding new computing nodes to accommodate the growth of some
process) very much depends on the process to be scaled. Often,
the task at hand can be easily split into a large series of subtasks
to be run independently and concurrently. Such operations are
commonly called embarrassingly parallel. Embarrassingly paral-
lel problems can be relatively easily scaled out in the cloud by
launching new processes on new commodity machines. There
are however many processes that are much more difficult to
parallelize, typically because they consist of sequential processes
(e.g., processes based on numerical methods such as Newton’s
method). Such processes are called inherently sequential as their
running time cannot be sped up significantly regardless of the
number of processors or machines used. Some problems, finally,
are not inherently sequential per se but are difficult to parallelize
in practice because of the profusion of inter-process traffic they
generate.

Scaling out structured data processing often falls in the third
category. Traditionally, relational data processing is scaled out by
partitioning the relations and rewriting the query plans to reorder
operations and use distributed versions of the operators enabling
intra-operator parallelism. While some operations are easy to
parallelize (e.g., large-scale, distributed counts), many operations,
such as distributed joins, are more complex to parallelize because
of the resulting traffic they potentially generate.

While much more recent than relational data management,
RDF data management has borrowed many relational techniques;
Many RDF systems rely on hash-partitioning (on triple or property
tables, see below Section 2) and on distributed selections, projec-
tions, and joins. Our own GridVine system [1], [2] was one of
the first systems to do so in the context of large-scale decentral-
ized RDF management. Hash partitioning has many advantages,
including simplicity and effective load-balancing. However, it also
generates much inter-process traffic, given that related triples (e.g.,

that must be selected and then joined) end up being scattered on
all machines.

In this article, we propose DiploCloud, an efficient, distributed
and scalable RDF data processing system for distributed and cloud
environments. Contrary to many distributed systems, DiploCloud
uses a resolutely non-relational storage format, where semantically
related data patterns are mined both from the instance-level and
the schema-level data and get co-located to minimize inter-node
operations. The main contributions of this article are:

• a new hybrid storage model that efficiently and effectively
partitions an RDF graph and physically co-locates related
instance data (Section 3);

• a new system architecture for handling fine-grained RDF
partitions in large-scale (Section 4);

• novel data placement techniques to co-locate semantically
related pieces of data (Section 5);

• new data loading and query execution strategies taking ad-
vantage of our system’s data partitions and indices (Section
6);

• an extensive experimental evaluation showing that our system
is often two orders of magnitude faster than state-of-the-art
systems on standard workloads (Section 7).

DiploCloud builds on our previous approach dipLODocus[RDF]

[3], an efficient single node triplestore. The system was also
extended in TripleProv [4], [5] to support storing, tracking, and
querying provenance in RDF query processing.

2 RELATED WORK

Many approaches have been proposed to optimize RDF storage
and SPARQL query processing; we list below a few of the most
popular approaches and systems. We refer the reader to recent
surveys of the field (such as [6], [7], [8], [9] or, more recently, [10])
for a more comprehensive coverage. Approaches for storing RDF
data can be broadly categorized in three subcategories: triple-
table approaches, property-table approaches, and graph-based ap-
proaches. Since RDF data can be seen as sets of subject-predicate-
object triples, many early approaches used a giant triple table to



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2015 2

store all data. Hexastore [11] suggests to index RDF data using six
possible indices, one for each permutation of the set of columns
in the triple table. RDF-3X [12] and YARS [13] follow a similar
approach. BitMat [14] maintains a 3-dimensional bit-cube where
each cell represents a unique triple and the cell value denotes pres-
ence or absence of the triple. Various techniques propose to speed-
up RDF query processing by considering structures clustering
RDF data based on their properties. Wilkinson et al. [15] propose
the use of two types of property tables: one containing clusters
of values for properties that are often co-accessed together, and
one exploiting the type property of subjects to cluster similar sets
of subjects together in the same table. Owens et al. [16] propose
to store data in three B+-tree indexes. They use SPO, POS, and
OSP permutations, where each index contains all elements of all
triples. They divide a query to basic graph patterns [17] which
are then matched to the stored RDF data. A number of further
approaches propose to store RDF data by taking advantage of its
graph structure. Yan et al. [18] suggest to divide the RDF graph
into subgraphs and to build secondary indices (e.g., Bloom filters)
to quickly detect whether some information can be found inside
an RDF subgraph or not. Ding et al. [19] suggest to split RDF data
into subgraphs (molecules) to more easily track provenance data
by inspecting blank nodes and taking advantage of a background
ontology and functional properties. Das et al. in their system called
gStore [20] organize data in adjacency list tables. Each vertex is
represented as an entry in the table with a list of its outgoing
edges and neighbours. To index vertices, they build an S-tree in
their adjacency list table to reduce the search space. Brocheler et
al. [21] propose a balanced binary tree where each node containing
a subgraph is located on one disk page.

Distributed RDF query processing is an active field of research.
Beyond SPARQL federations approaches (which are outside of the
scope of this paper), we cite a few popular approaches below.

Like an increasing number of recent systems, The Hadoop
Distributed RDF Store (HDRS)1 uses MapReduce to process
distributed RDF data. RAPID+ [22] extends Apache Pig and
enables more efficient SPARQL query processing on MapReduce
using an alternative query algebra. Their storage model is a nested
hash-map. Data is grouped around a subject which is a first level
key in the map i.e. the data is co-located for a shared subject which
is a hash value in the map. The nested element is a hash map with
predicate as a key and object as a value. Sempala [23] builds on
top of Impala [24] stores data in a wide unified property tables
keeping one star-like shape per row. The authors split SPARQL
queries to simple Basic Graph Patterns and rewrite them to SQL,
following they compute a natural join if needed. Jena HBase2 uses
the HBase popular wide-table system to implement both triple-
table and property-table distributed storage. Its data model is a
column oriented, sparse, multi-dimensional sorted map. Columns
are grouped into column families and timestamps add an additional
dimension to each cell. Cumulus RDF3 uses Cassandra and hash-
partitioning to distribute the RDF tiples. It stores data as four
indices [13] (SPO, PSO, OSP, CSPO) to support a complete index
on triples and lookups on named graphs (contexts). We recently
worked on an empirical evaluation to determine the extent to
which such noSQL systems can be used to manage RDF data
in the cloud4 [25].

Our previous GridVine [1], [2] system uses a triple-table
storage approach and hash-partitioning to distribute RDF data over

1. https://code.google.com/p/hdrs/
2. http://www.utdallas.edu/∼vvk072000/Research/Jena-HBase-Ext/

jena-hbase-ext.html
3. https://code.google.com/p/cumulusrdf/
4. http://ribs.csres.utexas.edu/nosqlrdf/

decentralized P2P networks. YARS25, Virtuoso6 [26], 4store [27],
and SHARD [28] hash partition triples across multiple machines
and parallelize the query processing. Virtuoso [26] by Erlin et al.
stores data as RDF quads consisting of the following elements:
graph, subject, predicate, and object. All the quads are persisted in
one table and the data is partitioned based on the subject. Virtuoso
implements two indexes. The default index (set as a primary key)
is GSPO (Graph, Subject, Predicate, Object) and an auxiliary
bitmap index (OPGS). A similar approach is proposed by Harris
et al. [27], where they apply a simple storage model storing quads
of (model, subject, predicate, object). Data is partitioned as non-
overlapping sets of records among segments of equal subjects;
segments are then distributed among nodes with a round-robin
algorithm. They maintain a hash table of graphs where each entry
points to a list of triples in the graph. Additionally, for each
predicate, two radix tries are used where the key is either subject
or object, and respectively object or subject and graph are stored
as entries (they hence can be seen as traditional P:OS and P:SO
indices). Literals are indexed in a separate hash table and they
are represented as (S,P, O/Literal). SHARD keeps data on HDFS
as star-like shape centering around a subject and all edges from
this node. It introduces a clause iteration algorithm [28] the main
idea of which is to iterate over all clauses and incrementally bind
variables and satisfy constrains.

Huang et al. [29] deploy a single-node RDF systems (RDF-
3X) on multiple machines, partition the RDF graph using standard
graph partitioning algorithms (METIS7), and use the Hadoop
framework to synchronize query execution. Their approach collo-
cates triples forming a subgraph (a star-like structure) on particular
nodes. They aim to reduce the number of inter-node joins, and
thus, the amount of data that is transferred over the network for
intermediate results. Warp [30] is a recent approach extending [29]
and using workload-aware partial replication of triples across par-
titions. Queries are decomposed into chunks executed in parallel
and then reconstructed with MapReduce. The authors push of most
of query processing to the triplestore while only the simplest part
of query execution is processed through Hadoop.

Similar combination of Hadoop and RDF-3X was used by
Lee and Liu in [31]. The authors of this paper build on a simple
hash partitioning and hop-based triple replication. In addition, they
filter-out certain edges which tend to appear rarely in a workload
from hop-based partitioning and make use of the URI hierarchy
to further increase data locality. Lee and Liu extend simple hash
partitioning trough direction-based triple groups and replication in
order to further limit inter-machine communication cost. Queries
that cannot be executed without inter-nodes communication are
decomposed into sub-queries. The intermediate results of all sub-
queries are then stored on HDFS, and joined using Hadoop
MapReduce.

Zeng et al. [32] build on top of Trinity (a key-value store)
and implement an in-memory RDF engine storing data in a graph
form. The data is stored as adjacency lists for a subject, though
the authors also maintain lists for in- and out-going edges of a
subgraph, thus taking the form of a bidirectional subgraph. The
subgraphs are then partitioned. This approach avoids joins by
applying graph exploration techniques.

Gurajada et al. propose a distributed shared-nothing RDF en-
gine named TriAd [33]. The system combines join-ahead pruning
via RDF graph summarization with a locality-based, horizontal
partitioning of the triples into a grid-like, distributed index struc-
ture. TriAd uses traditional graph-based partitioning techniques

5. http://ostatic.com/yars-2
6. http://virtuoso.openlinksw.com/
7. http://glaros.dtc.umn.edu/gkhome/views/metis
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(METIS) and stores distributed triples across the nodes. The multi-
threaded and distributed execution of joins in TriAD is facilitated
by an asynchronous Message Passing protocol which allows to run
multiple join operators along a query plan in a fully parallel and
asynchronous fashion.

3 STORAGE MODEL
Our storage system in DiploCloud can be seen as a hybrid structure
extending several of the ideas from above. Our system is built
on three main structures: RDF molecule clusters (which can be
seen as hybrid structures borrowing both from property tables
and RDF subgraphs), template lists (storing literals in compact
lists as in a column-oriented database system) and an efficient
key index indexing URIs and literals based on the clusters they
belong to. Contrary to the property-table and column-oriented
approaches, our system based on templates and molecules is
more elastic, in the sense that each template can be modified
dynamically, for example following the insertion of new data or a
shift in the workload, without requiring to alter the other templates
or molecules. In addition, we introduce a unique combination
of physical structures to handle RDF data both horizontally (to
flexibly co-locate entities or values related to a given instance) as
well as vertically (to co-locate series of entities or values attached
to similar instances).

Figure 1 gives a simple example of a few molecule clusters—
storing information about students—and of a template list—
compactly storing lists of student IDs. Molecules can be seen as
horizontal structures storing information about a given instance in
the database (like rows in relational systems). Template lists, on
the other hand, store vertical lists of values corresponding to one
attribute (like columns in a relational system). Hence, we say that
DiploCloud is a hybrid system, following the terminology used
for approaches such as Fractured Mirrors [34] or our own recent
Hyrise system [35].
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Figure 1: The two main data structures in DiploCloud: molecule
clusters, storing in this case RDF subgraphs about students, and
a template list, storing a list of literal values corresponding to
student IDs.

Molecule clusters are used in two ways in our system: to
logically group sets of related URIs and literals in the hash-
table (thus, pre-computing joins), and to physically co-locate
information relating to a given object on disk and in main-memory
to reduce disk and CPU cache latencies. Template lists are mainly
used for analytics and aggregate queries, as they allow to process
long lists of literals efficiently.

3.1 Key Index
The Key Index is the central index in DiploCloud; it uses a
lexicographical tree to parse each incoming URI or literal and

assign it a unique numeric key value. It then stores, for every
key and every template ID, an ordered list of all the clusters IDs
containing the key (e.g., “key 10011, corresponding to a Course
object [template ID 17], appears in clusters 1011, 1100 and 1101”;
see also Figure 2 for another example). This may sound like a
pretty peculiar way of indexing values, but we show below that this
actually allows us to execute many queries very efficiently simply
by reading or intersecting such lists in the hash-table directly.

The key index is responsible for encoding all URIs and literals
appearing in the triples into a unique system id (key), and back.
We use a tailored lexicographic tree to parse URIs and literals and
assign them a unique numeric ID. The lexicographic tree we use
is basically a prefix tree splitting the URIs or literals based on
their common prefixes (since many URIs share the same prefixes)
such that each substring prefix is stored once and only once in the
tree. A key ID is stored at every leaf, which is composed of a type
prefix (encoding the type of the element, e.g., Student or xsd :
date) and of an auto-incremented instance identifier. This prefix
trees allow us to completely avoid potential collisions (caused for
instance when applying hash functions on very large datasets),
and also let us compactly co-locate both type and instance ids into
one compact key. A second structure translates the keys back into
their original form. It is composed of a set of inverted indices (one
per type), each relating an instance ID to its corresponding URI
/ literal in the lexicographic tree in order to enable efficient key
look-ups.

3.2 Templates
One of the key innovations of DiploCloud revolves around the
use of declarative storage patterns [36] to efficiently co-locate
large collections of related values on disk and in main-memory.
When setting-up a new database, the database administrator may
give DiploCloud a few hints as to how to store the data on disk:
the administrator can give a list of triple patterns to specify the
root nodes, both for the template lists and the molecule clusters
(see for instance Figure 1, where “Student” is the root node of
the molecule, and “StudentID” is the root node for the template
list). Cluster roots are used to determine which clusters to create:
a new cluster is created for each instance of a root node in the
database. The clusters contain all triples departing from the root
node when traversing the graph, until another instance of a root
node is crossed (thus, one can join clusters based on their root
nodes). Template roots are used to determine which literals to
store in template lists.

Based on the storage patterns, the system handles two main op-
erations in our system: i) it maintains a schema of triple templates
in main-memory and ii) it manages template lists. Whenever a new
triples enters the system, it associates template IDs corresponding
to the triple by considering the type of the subject, the predicate,
and the type of the object. Each distinct list of “(subject-type,
predicate, object-type)” defines a new triple template. The triple
templates play the role of an instance-based RDF schema in our
system. We don’t rely on the explicit RDF schema to define the
templates, since a large proportions of constraints (e.g., domains,
ranges) are often omitted in the schema (as it is for example the
case for the data we consider in our experiments, see Section 7).
In case a new template is detected (e.g., a new predicate is
used), then the template manager updates its in-memory triple
template schema and inserts new template IDs to reflect the new
pattern it discovered. Figure 2 gives an example of a template.
In case of very inhomogeneous data sets containing millions of
different triple templates, wildcards can be used to regroup similar
templates (e.g., “Student - likes - *”). Note that this is very rare in
practice, since all the datasets we encountered so far (even those in
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Figure 2: An insert using templates: an incoming triple (left) is
matched to the current RDF template of the database (right), and
inserted into the hash-table, a cluster, and a template list.

the LOD cloud) typically consider a few thousands triple templates
at most.

Afterwards, the system inserts the triple in one or several
molecules. If the triple’s object corresponds to a root template list,
the object is also inserted into the template list corresponding to
its template ID. Templates lists store literal values along with the
key of their corresponding cluster root. They are stored compactly
and segmented in sublists, both on disk and in main-memory.
Template lists are typically sorted by considering a lexical order
on their literal values—though other orders can be specified by
the database administrator when he declares the template roots. In
that sense, template lists are reminiscent of segments in a column-
oriented database system.

3.3 Molecules
DiploCloud uses physiological RDF partitioning and molecule
patterns to efficiently co-locate RDF data in distributed settings.
Figure 3 (ii) gives an example of molecule. Molecules have three
key advantages in our context:

• Molecules represent the ideal tradeoff between co-location
and degree of parallelism when partitioning RDF data. Par-
titioning RDF data at the triple-level is suboptimal because
of the many joins it generates; Large graph partitions (such
as those defined in [29]) are suboptimal as well, since in that
case too many related triples are co-located, thus inhibiting
parallel processing (see Section 7).

• All molecules are template-based, and hence store data ex-
tremely compactly;

• Finally, the molecules are defined in order to material-
ize frequent joins, for example between an entity and its
corresponding values (e.g., between a student and his/her
firstname), or between two semantically related entities (e.g.,
between a student and his/her advisor) that are frequently
co-accessed.

When receiving a new triple the system inserts it in the
corresponding molecule(s). In case the corresponding molecule
does not exist yet, the system creates a new molecule cluster,
inserts the triple in the molecule, and inserts the cluster in the list
of clusters it maintains. Figures 3 gives a template example that
co-locates information relating to Student instances along with an
instance of a molecule for Student123.

Similarly to the template lists, the molecule clusters are
serialized in a very compact form, both on disk and in main-
memory. Each cluster is composed of two parts: a list of offsets,
containing for each template ID in the molecule the offset at
which the keys corresponding for the template ID are stored,
and the list of keys themselves. Thus, the size of a molecule,
both on-disk and in main-memory, is #TEMPLATES +
(KEY SIZE ∗ #TRIPLES), where KEY SIZE is the
size of a key (in bytes), #TEMPLATES is the number of
templates IDs in the molecule, and #TRIPLES is the number
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Figure 3: A molecule template (i) along with one of its RDF
molecules (ii)

of triples in the molecule (we note that this storage structure is
much more compact than a standard list of triples). To retrieve
a given information in a molecule, the system first determines
the position of the template ID corresponding to the information
sought in the molecule (e.g., “FirstName” is the sixth template
ID for the “Student” molecule above in Figure 2). It then jumps
to the offset corresponding to that position (e.g., 5th offset in our
example), reads that offset and the offset of the following template
ID, and finally retrieves all the keys/values between those two
offsets to get all the values corresponding to that template ID in
the molecule. The molecule depicted in Figures 3 (ii), for instance,
contains 15 triples (including type information), and would hence
require 45 URIs/literals to be encoded using a standard triple-
based serialization. Our molecule, on the other hand, only requires
to store 10 keys to be correctly defined, yielding a compression
ratio of 1 : 4.5.

3.4 Auxiliary Indexes
While creating molecule templates and molecules identifiers, our
system also take cares of two additional data gathering and
analysis tasks. First, it inspects both the schema and instance
data to determine all subsumption (subclass) relations between
the classes, and maintains this information in a compact type
hierarchy. We assign to every key the most specific type possible
in order to avoid having to materialize the type hierarchy for every
instance, and handle type inference at query time by looking-
up types in the type hierarchy. In case two unrelated types are
assigned to a given instance, the partition manager creates a
new virtual type composed of the two types and assigns it to
the instance. Finally, we maintain statistics on each templates,
counting the number of instances for each vertex (instance / literal)
and edge (property) in the templates.

For each type, DiploCloud also maintains a list of the keys
belonging to that type (type index). In addition, it maintains a
molecule index storing for each key the list of molecules storing
that key (e.g., “key 15123 [Course12] is stored in molecule 23521
[root:Student543]”). This index is particularly useful to answer
triple-pattern queries as we explain below in Section 6.

4 SYSTEM OVERVIEW
Figure 4 gives a simplified architecture of DiploCloud. Diplo-
Cloud is a native, RDF database system. It was designed to run on
clusters of commodity machines in order to scale out gracefully
when handling bigger RDF datasets.

Our system design follows the architecture of many modern
cloud-based distributed systems (e.g., Google’s BigTable [37]),
where one (Master) node is responsible for interacting with the
clients and orchestrating the operations performed by the other
(Worker) nodes.
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Figure 4: The architecture of DiploCloud.

4.1 Master Node
The Master node is composed of three main subcomponents: a key
index (c.f. Section 3.1), in charge of encoding URIs and literals
into compact system identifiers and of translating them back, a
partition manager (c.f. Section 5), responsible for partitioning
the RDF data into recurring subgraphs, and a distributed query
executor (c.f. Section 6.3), responsible for parsing the incoming
query, rewriting the query plans for the Workers, collecting and
finally returning the results to the client. Note that the Master node
can be replicated whenever necessary to insure proper query load-
balancing and fault-tolerance. The Master can also be duplicated to
scale out the key index for extremely large datasets, or to replicate
the dataset on the Workers using different partitioning schemes (in
that case, each new instance of the Master is responsible for one
partitioning scheme).

4.2 Worker Nodes
The Worker nodes hold the partitioned data and its corresponding
local indices, and are responsible for running subqueries and send-
ing results back to the Master node. Conceptually, the Workers are
much simpler than the Master node and are built on three main
data structures: i) a type index, clustering all keys based on their
types ii) a series of RDF molecules, storing RDF data as very
compact subgraphs, and iii) a molecule index, storing for each key
the list of molecules where the key can be found.

5 DATA PARTITIONING & ALLOCATION
As mentioned in Section 2, triple-table and property-table
hash-partitionings are currently the most common partitioning
schemes for distributed RDF systems. While simple, such hash-
partitionings almost systematically implies some distributed co-
ordination overhead (e.g., to execute joins / path traversals on
the RDF graph), thus making it inappropriate for most large-
scale clusters and cloud computing environments exhibiting high
network latencies. The other two standard relational partitioning
techniques, (tuple) round-robin and range partitioning, are simi-
larly flawed for the data and setting we consider, since they would
partition triples either at random or based on the subject URI /
type, hence seriously limiting the parallelism of most operators
(e.g., since many instances sharing the same type would end up
on the same node).

Partitioning RDF data based on standard graph partitioning
techniques (similarly to what [29] proposes) is also from our per-
spective inappropriate in a cloud context, for three main reasons:
Loss of semantics: standard graph partitioning tools (such as

METIS8, which was used in [29]) consider unlabeled graphs

8. http://glaros.dtc.umn.edu/gkhome/views/metis

mostly, and hence are totally agnostic to the richness of an
RDF graph including classes of nodes and edges.

Loss of parallelism: partitioning an RDF graph based, for in-
stance, on a min-cut algorithm will lead to very coarse
partitions where a high number of related instances (for
instance linked to the same type or sharing links to the
same objects) will be co-located, thus drastically limiting the
degree of parallelism of many operators (e.g., projections or
selections on certain types of instances).

Limited scalability: finally, attempting to partition very large
RDF graphs is unrealistic in cloud environments, given that
state-of-the-art graph partitioning techniques are inherently
centralized and data/CPU intensive (as an anecdotal evidence,
we had to borrow a powerful server and let it run for several
hours to partition the largest dataset we use in Section 7 using
METIS).

DiploCloud has been conceived from the ground up to support
distributed data partitioning and co-location schemes in an effi-
cient and flexible way. DiploCloud adopts an intermediate solution
between tuple-partitioning and graph-partitioning by opting for
a recurring, fine-grained graph-partitioning technique taking ad-
vantage of molecule templates. DiploCloud’s molecule templates
capture recurring patterns occurring in the RDF data naturally, by
inspecting both the instance-level (physical) and the schema-level
(logical) data, hence the expression physiological9 partitioning.

5.1 Physiological Data Partitioning

We now define the three main molecule-based data partitioning
techniques supported by our system:
Scope-k Molecules: the simplest method is to manually define
a number of template types (by default the system considers
all types) serving as root nodes for the molecules, and then to
co-locate all further nodes that are directly or indirectly con-
nected to the roots, up to given scope k. Scope-1 molecules,
for example, co-locate in the molecules all root nodes with
their direct neighbors (instances or literals) as defined by the
templates. Scope-2 or 3 molecules concatenate compatible tem-
plates from the root node (e.g., (student, takes, course) and
(course, hasid, xsd : integer)) recursively up to depth k to
materialize the joins around each root, at the expense of rapidly
increasing storage costs since much data is typically replicated in
that case (see Section 7). The scope of the molecules is defined
in this case manually and involves data duplication. All data
above Scope-1 is duplicated; this is the price to pay in order
to benefit from pre-computed joins inside the molecules, which
significantly increases query execution performance as we show
in the following.

Manual Partitioning: Root nodes and the way to concatenate the
various templates can also be specified by hand by the database
administrator, who just has to write a configuration file specifying
the roots and the way templates should be concatenated to define
the generic shape of each molecule type. Using this technique,
the administrator basically specifies, based on resource types,
the exact path following which molecules should be physically
extended. The system then automatically duplicates data following
the administrator’s specification and pre-computes all joins inside
the molecules. This is typically the best solution for relatively
stable datasets and workloads whose main features are well-
known.

9. physiological characterizes in our context a process that work both on
the physical and logical layers of the database, as the classical Aries recovery
algorithm
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Adaptive Partitioning: Finally, DiploCloud’s most flexible parti-
tioning algorithm starts by defining scope-1 molecules by default,
and then adapts the templates following the query workload. The
system maintains a sliding-window w tracking the recent history
of the workload, as well as related statistics about the number
of joins that had to be performed and the incriminating edges
(e.g., missing co-location between students and courses causing a
large number of joins). Then at each time epoch ε, the system: i)
expands one molecule template by selectively concatenating the
edges (rules) that are responsible for the most joins up to a given
threshold for their maximal depth and ii) decreases (up to scope-
1) all extended molecules whose extensions were not queried
during the last epoch. In that way, our system slowly adapts to
the workload and materializes frequent paths in the RDF graph
while keeping the overall size of the molecules small. Similarly
to the two previous techniques, when the scope of a molecule is
extended, the system duplicates the relevant pieces of data and
pre-computes the joins. The advantage of this method is that it
begins with relatively simple and compact data structures and then
automatically adapts to the dynamic workload by increasing and
decreasing the scope of specific molecules, i.e., by adding and
removing pre-computed paths based on template specifications. In
the case of a very dynamic workload, the system will not adapt
the structures in order to avoid frequent rewriting costs that would
not by easily amortized by the improvement in query processing.

5.2 Distributed Data Allocation
Once the physiological partitions are defined, DiploCloud still
faces the choice of how to distribute the concrete partitions (i.e, the
actual RDF molecules defined from the molecule templates) across
the physical nodes. Data allocation in distributed RDF systems
is delicate, since a given allocation scheme has to find a good
tradeoff between perfect load-balancing and data co-location. Our
template manager implements three main allocation techniques:
Round-Robin: The round-robin allocation simply takes each new
molecule it defines and assigns it to the next worker. This scheme
favors load-balancing mostly.
Coarse Allocation: Coarse allocation splits the incoming data in
W parts, whereW is the number of workers, and assigns each part
to a given worker. This allocation scheme favors data co-location
mostly.
Semantic Co-location: The third allocation tries to achieve a
tradeoff between load-balancing and co-location by grouping a
small number of molecule instances (typically 10) that are seman-
tically related through some connection (i.e., predicate), and then
by allocating such groups in a round-robing fashion.

6 COMMON OPERATIONS
We now turn to describing how our system handles typical
operations in distributed environments.

6.1 Bulk Load
Loading RDF data is generally speaking a rather expensive oper-
ation in DiploCloud but can be executed in a fairly efficient way
when considered in bulk. We basically trade relatively complex
instance data examination and complex local co-location for faster
query execution. We are willing to make this tradeoff in order to
speed-up complex queries using our various data partitioning and
allocation schemes, especially in a Semantic Web or LOD context
where isolated inserts or updates are from our experience rather
infrequent.

We assume that the data to be loaded is available in a shared
space on the cloud. Bulk loading is a hybrid process involving

both the Master—whose task is to encode all incoming data, to
identify potential molecule roots from the instances, and to assign
them to the Workers using some allocation scheme—and all the
Workers—which build, store and index their respective molecules
in parallel based on the molecule templates defined.

On the worker nodes, building the molecule is an n-pass
algorithm (where n is the deepest level of the molecule, see
Section 3) in DiploCloud, since we need to construct the RDF
molecules in the clusters (i.e., we need to materialize triple joins
to form the clusters). In a first pass, we identify all root nodes
and their corresponding template IDs, and create all clusters. The
subsequent passes are used to join triples to the root nodes (hence,
the student clusters depicted in Figure 1 are built in two phases,
one for the Student root node, and one for the triples directly
connected to the Student). During this operation, we also update
the template lists and the key index incrementally. Bulk inserts
have been highly optimized in DiploCloud, and use an efficient
page-manager to execute inserts for large datasets that cannot be
kept in main-memory.

This division of work and the fact that the expensive operation
(molecule construction) is performed in parallel enables Diplo-
Cloud to bulk load efficiently as we show in Section 7.

6.2 Updates
As for other hybrid or analytic systems, updates can be relatively
complex to handle in DiploCloud, since they might lead to a
partial rewrite of the key index and molecule indices, and to a
reorganization of the physical structures of several molecules. To
handle them efficiently, we adopt a lazy rewrite strategy, similarly
to many modern read-optimized system (e.g., CStore or BigTable).
All updates are performed on write-optimized log-structures in
main-memory. At query time, both the primary (read-optimized)
and log-structured (write-optimized) data stores are tapped in
order to return the correct results.

We distinguish between two kinds of updates: in-place and
complex updates. In-place updates are punctual updates on literal
values; they can be processed directly in our system by updat-
ing the key index, the corresponding cluster, and the template
lists if necessary. Complex updates are updates modifying object
properties in the molecules. They are more complex to handle
than in-place updates, since they might require a rewrite of a list
of clusters in the key index, and a rewrite of a list of keys in
the molecule clusters. To allow for efficient operations, complex
updates are treated like updates in a column-store (see [38]): the
corresponding structures are flagged in the key index, and new
structures are maintained in write-optimized structures in main-
memory. Periodically, the write-optimized structures are merged
with the main data structures in an offline fashion.

6.3 Query Processing
Query processing in DiploCloud is very different from previous
approaches to execute queries on RDF data, because of the three
peculiar data structures in our system: a key index associating
URIs and literals to template IDs and cluster lists, clusters storing
RDF molecules in a very compact fashion, and template lists
storing compact lists of literals. All queries composed of one Basic
Graph Pattern (star-like queries) are executed totally in parallel,
independently on all Workers without any central coordination
thanks to the molecules and their indices.

For queries that still require some degree of distributed
coordination—typically to handle distributed joins—we resort to
adaptive query execution strategies. We mainly have two ways of
executing distributed joins: whenever the intermediate result set is
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small (i.e., up to a few hundred tuples according to our Statistics
components), we ship all results to the Master, which finalizes the
join centrally. Otherwise, we fall back to a distributed hash-join by
distributing the smallest result set among the Workers. Distributed
joins can be avoided in many cases by resorting to the distributed
data partitioning and data co-location schemes described above.

Algorithm 1 gives a high-level description of our distributed
query execution process highlighting where particular operations
are performed in our system.

Algorithm 1 High Level Query Execution Algorithm
1: Master: divide query based on molecule scopes to obtain sub-

queries
2: Master: send sub-queries to workers
3: Workers: execute sub-queries in parallel
4: Master: collect intermediate results
5: Master: perform distributed join whenever necessary

We describe below how a few common queries are handled in
DiploCloud.

6.3.1 Basic Graph Patterns
Basic Graph Patterns represent queries retrieving triples sharing
the same subject; they are relatively simple in DiploCloud: they
are usually resolved by looking for a bound-variable (URI) in
the key index or molecules index, retrieving the correspond-
ing molecules numbers, and finally retrieving values from the
molecules when necessary. Conjunctions and disjunctions of
triples patterns can be resolved very efficiently in our system.
Since the RDF nodes are logically grouped by molecules in the
key index, it is typically sufficient to read the corresponding list
of molecules in the molecules index. No join operation is needed
since joins are implicitly materialized in molecules. The following
query (query # 1 in Section 7), for instance:

?X a : G r a d u a t e S t u d e n t .
?X : t a k e s C o u r s e <Gradua teCourse0> .

is first optimized by the Master based on the statistics it collected;
a query plan is then sent to all Workers asking them to first look-up
all molecules containing GraduateCourse0 (since it is the most
selective pattern in the query) using their local molecule index.
Each Worker can then contribute to the results independently and
in parallel, by retrieving the molecule ids, filtering them based on
the GraduateStudent type (by simply inspecting the ids) and
returning the resulting ids to the master node. If the template ID
ofGraduateCourse0 in the molecule is ambiguous (for example
when aGraduateStudent can both teach and take courses), then
an additional filtering step is carried out locally at the end of
the query plan by looking up molecules and filtering them based
on their predicate (e.g., predicate linking GraduateStudent to
GraduateCourse0).

6.3.2 Molecule Queries
Molecule queries or queries retrieving many values/instances
around a given instance (for example for visualization purposes)
are also extremely efficient in our system. Those queries start with
a shared subject and extend beyond scope-1. They represent an
extended star-like query involving subject-object joins. In most
cases, the key index is invoked to find the corresponding molecule
(if the scope of the query matches the scope of a molecule), which
contains then all the corresponding values. For bigger scopes (such
as the ones we consider in our experimental evaluation below), our
system can efficiently join clusters based on the various root nodes
they contain.

6.3.3 Aggregates and Analytics
Aggregate and analytic queries can also be efficiently resolved
by our system. Many analytic queries can be solved by first
intersecting lists of clusters in the molecule index, and then
looking up values in the remaining molecule clusters. Large
analytic or aggregate queries on literals (such as our third analytic
query below, returning the names of all graduate students) can
be extremely efficiently resolved by taking advantage of template
lists (containing compact and sorted lists of literal values for a
given template ID), or by filtering template lists based on lists
of molecule IDs retrieved from the key index. Typically those
queries involves triple patterns consisting of type look-ups, or
aggregate operations such as average, mean, literals operations,
etc. operating on long series of similar instances.

6.3.4 Distributed Joins
That kind of queries regroups various flavors of joins (subject-
object, object-object, triangular joins, etc.). We execute them
by dividing them into molecule queries or basic graph patterns,
depending on the scopes of the molecules in the configuration;
following this, we execute each resulting subquery in parallel on
worker nodes and then execute distributed joins to combine the
results of the individual subqueries.

As a more complete example of query processing, we consider
the following LUBM [39] query:

?Z i s a : Depar tmen t .
?Y i s a : U n i v e r s i t y .
?X i s a : G r a d u a t e S t u d e n t .
?Z : s u b O r g a n i z a t i o n O f ?Y . <−− 1 s t
?X : u n d e r g r a d u a t e D e g r e e F r o m ?Y .<−− 2nd
?X : memberOf ?Z . <−− 3 rd

We briefly discuss three possible strategies for dealing with
this query below.

For the simplest and the most generic one (Algorithm 2),
we divide the query into 3 basic graph patterns and we prepare
intermediate results on each node; we then send them to the
Master node where we perform the final join. In that way we
retrieve elements meeting the 1st constraint (Department subOrga-
nizationOf University), then the 2nd constraint (GraduateStudent
undergraduateDegreeFrom University), and the 3rd constraint
(GraduateStudent memberOf Department). Finally, we perform
hash-joins for all those intermediate results on the Master node.

For the second method, we similarly divide the query into
3 basic graph patterns and we prepare, on each node, in-
termediate results for the 1st constraint, following we dis-
tribute them across the cluster, since in every molecule of type
GraduateStudent, we have all information about the object in-
stance (i.e. undergraduateDegreeFrom and memberOf ) for
each GraduateStudent; having distributed intermediate results
corresponding to the 1st constraint, we can perform the joint for
the 2nd and 3rd constraints completely in parallel.

The third and most efficient strategy would be to increase the
scope of the considered molecules, so that in every molecule,
besides all information about the root (GraduateStudent), we
would also store all information about Department related to
the root, and further University related to the Department. To
answer the query, we just need to retrieve data about the 2nd
and the 3rd constraints in this case, and perform a check on
the molecule to validate that a given University from the 2nd
constraint is the same as the one related to the Department from
the 3rd constraint, which indicates that the 1st constraint is met.
The query is them executed completely in parallel on the worker
nodes, without involving neither distributed nor centralized joins
on the Master.
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Algorithm 2 Query Execution Algorithm with Join on the Master
Node

1: procedure EXECUTEQUERY(a, b)
2: for all BGP in QUERY do . BGP - Basig Graph Pattern
3: if BGP.subject then
4: molecules← GetMolecule(subject)
5: else if BGP.object then
6: molecules← GetMolecules(object)
7: end if
8: for all molecules do
9: . check if the molecule matches the BGP

10: for all TP in BGP do . TP - Triple Pattern
11: if TP.subject != molecule.subject then
12: nextMolecule
13: end if
14: if TP.predicate != molecule.predicate then
15: nextMolecule
16: end if
17: if TP.object != molecule.object then
18: nextMolecule
19: end if
20: end for
21: . the molecule matches the BGP, so we can retrieve entities
22: resultBGP← GetEntities(molecule,BGP)
23: end for
24: results← resultBGP
25: end for
26: SendToMasterNode(results)
27: end procedure
28: . On the Master do Hash Join

7 PERFORMANCE EVALUATION

We have implemented a prototype of DiploCloud following the
architecture and techniques described above. We note that in
the current prototype we did not implement dynamic updates.
Point updates are expensive in our system where related pieces
of data are co-located. They could be implemented in a standard
way by considering a write-optimized store, which is a common
technique used for column-oriented database systems [38]. In our
prototype, we support efficient bulk inserts or updates through
batch operations. The following experiments were conducted for
two scenarios: centralized and distributed. For each of them, we
evaluated the performance of DiploCloud and we compared it with
the state-of-the-art systems and techniques.

7.1 Datasets and Workloads
To compare the various systems, we used three different bench-
marks.

• the Lehigh University Benchmark (LUBM) [39]
• the BowlognaBench Benchmark [40]
• the DBPedia dataset with five queries [41]
LUBM is one of the oldest and most popular benchmarks for

Semantic Web data. It provides an ontology describing universities
together with a data generator and fourteen queries. We generated
the following datasets:

• 10 universities: 1’272’814 triples [226 MB]
• 100 universities: 13’876’209 triples [2.4 GB]
• 400 universities: 55 035 263 triples [9.4 GB]
• 800 universities: 110 128 171 triples [19 GB]
• 1600 universities: 220 416 262 triples [38 GB]
We compared the runtime execution for LUBM queries and for

three analytic queries inspired by BowlognaBench [40]. LUBM
queries are criticized by some for their reasoning coverage; this

was not an issue in our case, since we focused on RDF DB query
processing rather than on reasoning capabilities. We keep an in-
memory representation of subsumption trees in DiploCloud and
rewrite queries automatically to support subclass inference for the
LUBM queries. We manually rewrote inference queries for the
systems that do not support such functionalities.

The three additional analytic/aggregate queries that we con-
sidered are as follows: 1) a query returning the professor who
supervises the most students 2) a query returning a big molecule
containing all triples within a scope of 2 of Student0 and 3) a
query returning all graduate students.

For BowlognaBench, we used two different datasets generated
with the BowlognaBench Instance Generator:

• 1 departments: 1.2 million triples [273MB]
• 10 departments: 12 millions triples [2.7GB]
For both datasets we set 4 fields per department and 15

semesters. We run the 13 queries of BowlognaBench to compare
the query execution time for RDF systems.

Additionally, we also used a dataset extracted from DBPedia
(which is interesting in our context as it is much more noisy than
the LUBM and BowlognaBench data) with five queries [41]. From
the original DBpedia 3.5.1, we extracted a subset of:

• 73 731 354 triples [9.3 GB]
All inference queries were implemented by rewriting the query
plans for DiploCloud and the systems that did not support such
queries.

7.2 Methodology
As for other benchmarks (e.g., tpc-x10 or our own OLTP-
Benchmark [42]) we include a warm-up phase before measuring
the execution time of the queries. We first run all the queries in
sequence once to warm-up the systems, and then repeat the process
ten times (i.e., we run in total 11 batches containing all the queries
in sequence for each system). We report the mean values for each
query and each system below. We assumed that the maximum time
for each query should not exceed 2 hours (we stopped the tests if
one query took more than two hours to be executed). We compared
the output of all queries running on all systems to ensure that all
results were correct.

We tried to do a reasonable optimization job for each system,
by following the recommendations given in the installation guides
for each system. We did not try to optimize the systems any
further, however. We performed no fine-tuning or optimization for
DiploCloud.

We avoided the artifact of connecting to the server, initializing
the DB from files and printing results for all systems; we measured
instead the query execution times only.

7.3 Systems
We chose those systems to have different comparison points, and
because they were either freely available on the Web, or possible
to implement with relatively little effort. We give a few details
about each system below.
AllegroGraph [43] We used AllegroGraph RDFStore 4.2.1 Al-

legroGraph unfortunately poses some limits on the number
of triples that can be stored for the free edition, such that
we couldn’t load the big data set. For AllegroGraph, we
prepared a SPARQL Python script using libraries provided
by the vendor.

BigOWLIM [44] We used BigOWLIM 3.5.3436. OWLIM pro-
vides us with a java application to run the LUBM benchmark,
so we used it directly for our tests.

10. http://www.tpc.org/
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DiploCloud AllegroGraph BigOwlim Virtuoso RDF-3X Jena

Load Time [s] 31 13 50 88 16 98
size [MB] 87 696 209 140 66 118

Table 1: Load times and size of the databases for the 10 universi-
ties LUBM data set.

DiploCloud BigOwlim Virtuoso RDF-3X Jena

Load Time [s] 427 748 914 214 1146
size [MB] 913 2012 772 694 1245

Table 2: Load times and size of the databases for the 100
universities LUBM data set.

Jena [16] We used Jena-2.6.4 and the TDB-0.8.10 storage
component. We created the database by using the “tdbloader”
provided by Jena. We created a Java application to run and
measure the execution time of each query.

Virtuoso [26] We used Virtuoso Open-Source Edition 6.1.3.
Virtuoso supports ODBC connections, and we prepared a
Python script using the PyODBC library for our queries.

RDF-3X [12] We used RDF-3X 0.3.5. We slightly modified the
system to measure the execution time of the queries only,
without taking into account the initialization of the database
and turning off the print-outs.

4store [27] is a well-known distributed, native RDF system
based on property tables and distributing triples (or quads,
actually) based on a hash-partitioning of their subject. We
used 4store revision v1.1.4., with eight segments per node,
and the provided tools to load and query.

SHARD [28] stores RDF triples directly in HDFS and takes
advantage of Hadoop for all distributed processes. We slightly
modified the system in order to measure the execution time of
the queries only, without taking into account the initialization
of the database and by turning off the print-outs.

RDF-3X GraphPartitioning : we re-implemented the base ap-
proach described in [29] by using RDF-3X and by partition-
ing the RDF data using METIS. Rather than using Hadoop for
the distributed coordination, we implemented all distributed
joins in Java, following the same design as for our own
prototype.

7.4 Centralized Environment
7.4.1 Hardware Platform
All experiments were run on a HP ProLiant DL360 G7 server with
two Quad-Core Intel Xeon Processor E5640, 6GB of DDR3 RAM
and running Linux Ubuntu 10.10 (Maverick Meerkat). All data
were stored on recent 1.4 TB Serial ATA disk.

7.4.2 Results
Relative execution times for all queries and all systems are given
below, in Figure 5 (log-scale) for 10 universities and in Figure 6
(log-scale) for 100 universities. The Tables 1 and 2 shows the
loading time in seconds and the storage consumption in MB for
respectively 10 and 100 universities of the LUBM benchmark.

We observe that DiploCloud is generally speaking very fast,
both for the bulk inserts, for the LUBM queries and especially
for the analytic queries. DiploCloud is not the fastest system for
inserts, and produces slightly larger databases on disk than some
other systems (like RDF-3X), but performs overall very-well for
all the queries. Our system is on average 30 times faster than the
fastest RDF data management system we have considered (i.e.,
RDF-3X) for the LUBM queries, and on average 350 times faster
than the fastest system (Virtuoso) on the analytic queries. Is is also
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Figure 7: Query execution time for the 1 department
BowlognaBench data set.

DiploCloud Virtuoso RDF-3X 4store

Load Time [s] 18.3503 31.71 11.94 6.25
size [MB] 92.0000 108.00 60.00 192.00

Table 3: Load times and size of the databases for the 1 department
BowlognaBench data set.

very scalable (both the bulk insert and the query processing scale
gracefully from 10 to 100 universities). We can see (Tables 3 and
4 ) that Virtuoso takes more time to load and index the dataset but
the size of the indices scales better than for the other systems. The
fastest system is 4Store which also has the biggest indices. Both
RDF-3X and Virtuoso achieve a good compression.

Figures 7 (log-scale) and 8 (log-scale) report the experimental
results for the BowlognaBench datasets consisting of 1 and 10
departments respectively. The values indicate query execution
times for each query of the BowlognaBench benchmark. We note
that query 4 could not be run on RDF-3X and DiploCloud as they
do not provide support for pattern matching. The Tables 3 and 4
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Figure 8: Query execution time for the 10 department
BowlognaBench data set.

DiploCloud Virtuoso RDF-3X 4store

Load Time [s] 526.652 363.24 139.55 69.65
size [MB] 920.000 616.00 618.00 1752.00

Table 4: Load times and size of the databases for the 10 department
BowlognaBench data set.
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Figure 6: Query execution time for the 100 universities LUBM data set

shows the loading time in seconds and the storage consumption in
MB for respectively 1 and 10 departments.

As we can observe, the query execution time for the
BowlognaBench analytic queries strongly vary for different sys-
tems. DiploCloud is slightly slower for the queries 1 and 7 than
RDF-3X, and it is outperformed by Virtuoso for the queries 2
and 10. We can observe the slower performance of 4Store for 10
out of 13 queries as compared with the other systems: for some
queries (e.g. 10) the execution times took more than 7 seconds.
Specifically, longest query executions can be observed for the
queries 6, 10, and 11. The slowest is the path query which involves
several joins. For all those queries DiploCloud performs very well.
We can see that the query 8 is not easy to be efficiently answered
for all the systems. The queries 3 and 11 are also challenging
because of the several joins involved, though DiploCloud handles
them without any problem (especially the query 3). Instead, the
count queries (i.e., 1 and 2) can be performed quite efficiently.
One difference that we can observe for the bigger dataset of
BowlognaBench as compared with the smaller dataset is the good
result of Virtuoso: it performed faster than RDF-3X on 10 out of
13 queries. We can also observe that DiploCloud scales very well,
whilst the competitors for some cases have issues handling the
big dataset (e.g. 4store query 8, RDF-3X query 6). In general, we
can again observe that DiploCloud outperforms the competitors
for most of the queries for the both datasets and that it scales
gracefully.

The impressive performance in centralized environments can
be explained by several salient features of our system, including:
its extremely compact structures based on molecule templates to
store related pieces of data, its physically redundant structures
to optimize different types of operations (e.g., aggregates), and
its way of pre-materializing joins in the data structures following

the administrator’s decisions or shifts in the query workload. This
high performance is counterbalanced by relatively complex and
expensive inserts, which can however be optimized if considered
in bulk.

7.5 Distributed Environment
In the previous section, we empirically evaluated and discussed
the advantages of our storage model in a single-node scenario. We
showed that the techniques we introduced represent an efficient
way for storing RDF in centralized environments, and how our
physical model and indices allow to execute queries efficiently.
Now, we turn to investigating the performance of our approach
in a distributed environment. In the following, we evaluate the
behavior of our system on live, distributed deployments on clusters
of commodity machines and in the cloud. We demonstrate how our
partitioning, co-location, and distributed query processing tech-
niques are leveraged in distributed settings, minimizing the data
transfers across the network while parallelizing query execution.

7.5.1 Hardware Platform
All experiments (except the EC2 experiments) were run in three
cloud configurations of 4, 8, and 16 nodes. Worker nodes were
commodity machines with Quad-Core Intel i7-2600 CPUs @
3.40GHz, 8GB of DDR3-1600 RAM, 500GB Serial ATA HDD,
running Ubuntu 12.04.2 LTS. The Master node was similar, but
with 16GB RAM.

7.5.2 Results
We start by comparing query execution times for DiploCloud
deployed in its simplest configuration i.e., partitioning with Scope-
1 molecules, and allocating molecules in a round-robin fashion.
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Figure 9: Query execution time for 4 nodes and 400 universities
LUBM data set
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Figure 10: Query execution time for 8 nodes and 800 universities
LUBM data set

Figures 9, 10, and 11 (log-scale) give the results for the LUBM
datasets for 400, 800, and 1600 universities executed respectively
on 4, 8, and 16 servers. Note that several queries timed-out for
GraphPartitioning (2, 7, 9, 15, 16, 17) (mostly due to the very
large number of generated intermediate results, and due to the sub-
sequent distributed joins). On the biggest deployment, DiploCloud
is on average 140 times faster than 4store, 244 times faster than
SHARD, and 485 times faster than the graph partitioning approach
using RDF-3X (including the time-out values for the timed-out
queries). Figures 12, 13, and 14 (log-scale) give the results for
the DPBedia dataset. DiploCloud achieves sub-second latencies
on most queries, and is particularly efficient when deployed on
larger clusters. We explain some of those results in more detail
below.
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Figure 12: Query execution
time for DBPedia running on
4 nodes
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Figure 13: Query execution
time for DBPedia running on
8 nodes

Data Partitioning & Allocation: We now turn to our adaptive
partitioning approach. We implemented our adaptive partitioning
approach, keeping all the queries in the history, considering a max-
depth of 2, and switching to a new time epoch after each query
batch. The results are available in Figures 15, 16, and 17 (log-
scale) for respectively 4, 8, and 16 nodes. Only the deepest (in
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Figure 14: Query execution time for DBPedia running on 16 nodes

terms of RDF paths) LUBM queries are shown on the graphs (the
other queries behave the same for both partitioning schemes). By
co-locating all frequently queried elements, query execution using
the adaptive partitioning is on average more than 3 times faster
than the simple partitioning for those queries. Note that scope-2
molecules would behave like the adaptive scheme in that case, but
take much more space (see Table 6).
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Figure 15: Scope-1 and adap-
tive partitioning on the most
complex LUBM queries for 4
nodes.
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Figure 16: Scope-1 and adap-
tive partitioning on the most
complex LUBM queries for 8
nodes.

Join Analysis: In order to better understand the above results, we
made a small query execution analysis (see Table 5) on the LUBM
workload, counting the number of joins for DiploCloud (counting
the number of joins between molecules for scope-1 / adaptive
molecules), 4store (by inspecting the query plans given by the sys-
tem), and RDF-3X GraphPartitioning (using EXPLAINs). For the
RDF-3X GraphPartitioning approach, we report both distributed
joins (first number) and local joins (second number). We observe
that DiploCloud avoids almost all joins even for complex queries.

Queries and Results Analysis: The queries in Table 5 can be
classified into three main categories:

• relatively simple queries with a small output, which do not
exhibit any significant difference when changing the kind
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Figure 17: Scope-1 and adaptive partitioning on the most complex
LUBM queries for 16 nodes.
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Figure 11: Query execution time for 16 nodes and 1600 universities LUBM data set

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
DiploCloud 0 1/0 0 0 0 0 1 1/0 1/0 0 1/0 1 0 0 0 1/0 0
4store 1 5 1 5 2 1 7 5 11 2 2 2 2 0 3 2 1
RDF3X Part. 0+1 2+5 0+1 0+5 0+2 0+1 2+5 1+5 2+9 0+2 1+2 1+3 0+2 0 - - -

Table 5: Joins analysis for several system on the LUBM workload (Distributed Environment). For DiploCloud scope-1/adaptive
molecules.

of partitioning (e.g., queries 1,3,10,13); for those kinds of
queries DiploCloud significantly outperforms other solutions
because of our template and indexing strategies. Those
queries are executed on Workers independently, fully in
parallel, and results are sent to the Master.

• queries generating a big result set, where the main factor
then revolves around transferring data to the master node
(e.g., queries 6,14,17); for those queries, DiploCloud is often
closer to the other systems and suffers from the (potentially)
high network latency associated with cloud environments.

• queries which typically require a distributed join, and for
which the partitioning plays a significant role; DiploCloud
performs very well on those queries (since most joins can
be pre-computed in our molecules), with the exception of
query 8, which is also characterized by a big output. For such
queries, we differentiate two kinds of joins as briefly evoked
above:
– distributed joins (where we distribute intermediate results

among the Workers and then process local joins in paral-
lel); for that kind of queries the influence of the partitioning
is not significant, though the collocation of molecules on
the same node speedups the exchange of intermediate
results, and hence the resulting query execution times

– centralized joins; when a distributed join is too costly, the
intermediate results are shipped to the master node where
the final join is performed. We note that for queries 11
and 12, which are based on molecules indirectly related
through one particular object, all work is performed on
one node, where the particular object is located; that is
the reason why this partitioning performs slower for those
queries.

As presented above, DiploCloud often outperforms the other
solutions in terms of query execution time, mainly thanks to
the fact that related pieces of data are already collocated in the
molecules. For example for query 2, DiploCloud has to perform
only one join (or zero if we adapt the molecules) since all
data related to the elements queried (e.g. GraduateStudent or

4 workers 8 workers 16 workers

DiploCloud
master memory (GB) 3.2 3.2 3.2

loading time (sec) 1285 296 296

per worker memory (GB) 3.1 1.6 0.82
loading time (sec) 28 14 7

4store loading time (sec) 537 1284 1313

Table 7: Load times and size of the databases for the DBPedia
data set (Distributed Environment).

Department) are located on one Worker and are in addition directly
collocated in memory; The only thing DiploCloud has to do in this
case is to retrieve the list of elements on each Worker and to send it
back to the Master, where it either performs a distributed hash-join
(if we have molecules of scope-1), or directly takes the result as is
(if molecules are adapted). We have similar situations for queries
8, 9, 11, and 16. For query 7, we cannot take advantage of the pre-
computed joins since we store RDF data as a directed graph and
this particular query traverses the graph in the opposite direction
(this is typically one kind of query DiploCloud is not optimized
for at this stage). For the remaining queries, we do not require to
perform any join at all, and can process the queries completely
in parallel on the Workers and send back results to the Master,
while the other systems have to take into account the intermediate
joins (either locally or in a distributed fashion). Another group
of queries for which DiploCloud should be further optimized are
queries with high numbers of returned records, like the queries 6
or 14. In some cases we still outperform other systems for those
queries, but the difference is not as significant.

Data Loading: Table 6 gives the loading times for 4store and
DiploCloud using the LUBM datasets and different partitioning
strategies. We observe that the size taken by the deeper molecules
(scope 2) rapidly grows, though the adaptive molecules strike
a good balance between depth and size (we loaded the data
according to the final version of the adaptive partitioning in that
case in order to have comparable results for all variants). Using
our parallel batch-loading strategies and adaptive partitioning,
DiploCloud is more than 10 times faster than 4store at loading
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4 workers 8 workers 16 workers
molecules configuration scope-1 scope-2 adaptive scope-1 scope-2 adaptive scope-1 scope-2 adaptive

DiploCloud
master memory (GB) 3.1 3.1 3.1 6.2 6.2 6.2 12.4 12.4 12.4

loading time (sec) 157 154.8 158 372 374 371.83 786 796 784

per worker memory (GB) 2.32 6.06 3.35 2.41 6.27 3.42 2.7 6.45 4
loading time (sec) 11.72 43 26.38 12 66 37.5 39 115 85

4store loading time (sec) 226 449 893

Table 6: Load times and size of the databases for the LUBM data set (Distributed Environment).

data for the biggest deployment. Table 7 reports the corresponding
numbers for the DBPedia dataset.

EC2 Deployment: Finally, to evaluate how DiploCloud performs
in bigger cloud environments, we deployed it on Amazon EC2
instances11. We picked an M3 Extra Large Instance for the Master,
and M1 Large Instances for the Workers, and loaded the LUBM
1600 dataset on 32 and 64 nodes. The results (see Figures 18) are
comparable to those obtained on our own cluster, though slower,
due to the larger network latency on EC2 (hence emphasizing once
more the importance of minimizing distributed operations in the
cloud, as DiploCloud does).

We also tested out adaptive partitioning approach on the EC2
infrastructure. The results are available in Figures 19 and 20 (log-
scale). Here again we show that by co-locating all frequently
queried elements we can significantly increase the performance.
Co-location is especially important in environments where the
network is not reliable so that we can minimize the amount of
transferred data. We performed a small analysis of the network
latency in that case. We measured the time spent by the Workers
and Master on query execution only and discovered that the
network overhead represents between 40% and 70% of the total
execution time.
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Figure 18: Query execution time on Amazon EC2 for 1600
Universities from LUBM dataset.

8 CONCLUSIONS

DiploCloud is an efficient and scalable system for managing RDF
data in the cloud. From our perspective, it strikes an optimal
balance between intra-operator parallelism and data co-location
by considering recurring, fine-grained physiological RDF parti-
tions and distributed data allocation schemes, leading however to
potentially bigger data (redundancy introduced by higher scopes
or adaptive molecules) and to more complex inserts and up-
dates. DiploCloud is particularly suited to clusters of commodity

11. http://aws.amazon.com/ec2/instance-types/
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Figure 19: Scope-1 and
adaptive partitioning on
Amazon EC2 (32 Nodes)
for 1600 Universities from
LUBM dataset.
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Figure 20: Scope-1 and
adaptive partitioning on
Amazon EC2 (64 Nodes)
for 1600 Universities from
LUBM dataset.

machines and cloud environments where network latencies can
be high, since it systematically tries to avoid all complex and
distributed operations for query execution. Our experimental eval-
uation showed that it very favorably compares to state-of-the-art
systems in such environments. We plan to continue developing
DiploCloud in several directions: First, we plan to include some
further compression mechanisms (e.g., HDT [45]). We plan to
work on an automatic templates discovery based on frequent pat-
terns and untyped elements. Also, we plan to work on integrating
an inference engine into DiploCloud to support a larger set of
semantic constraints and queries natively. Finally, we are currently
testing and extending our system with several partners in order
to manage extremely-large scale, distributed RDF datasets in the
context of bioinformatics applications.
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