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Dynamically detecting anomalies can be difficult in very large-scale 

infrastructure networks. The authors’ approach addresses spatiotemporal 

anomaly detection in a smarter city context with large numbers of sensors 

deployed. They propose a scalable, hybrid Internet infrastructure for 

dynamically detecting potential anomalies in real time using stream processing. 

The infrastructure enables analytically inspecting and comparing anomalies 

globally using large-scale array processing. Deployed on a real pipe network 

topology of 1,891 nodes, this approach can effectively detect and characterize 

anomalies while minimizing the amount of data shared across the network. 

Smarter cities are built on physi-
cal systems that provide the foun-
dational elements for life in urban 

areas. We can lump these physical ele-
ments together as critical civil infra-
structures – the roads, pipes, rail lines, 
conduits, treatment, distribution, stor-
age, and disposal systems that enable 
the movement of traffic, water, sewage, 
pedestrians, and energy throughout the 
city. As the world continues to urbanize, 
cities are trying to extract more value 
from their existing civil infrastructures 
by extending the lifespan of aging sys-
tems and making smarter decisions 
about infrastructure use, retrofitting, and 
replacement. Rapidly emerging sens-
ing technologies and sensor networks 
hold tremendous promise for enabling 
cities to better manage their civil infra-
structure systems. As real-time sensing 
becomes ubiquitous, new technologies 

are needed to absorb the large amounts 
of data generated and provide analytics 
that can extract useful information from 
these data streams.

Today, networked sensing and large-
scale data analytics could revolution-
ize how municipal infrastructures are 
monitored. Sensor miniaturization is 
offering new sensing modalities with 
lower power requirements, greater ease 
of installation, and improved network 
communications. The data streams from 
these sensors could let utilities oper-
ate infrastructures more efficiently in 
real time (particularly during extreme 
events) to identify maintenance issues 
early and make informed decisions as 
regards retrofitting or replacing certain 
civil infrastructure components.

Here, we propose a scalable, hybrid 
Internet infrastructure that would let 
monitoring systems dynamically detect 
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potential anomalies in real time using stream 
processing, and analyze and compare them 
globally via large-scale array processing. (See 
the “Related Work in Wireless Sensor Network 
Monitoring” sidebar for more on this topic.)

Water Distribution Networks
The civil infrastructure system we focus on is 
water distribution networks (WDNs). We can 
model a WDN as a directed graph, typically with 
some level of looping. The physical manifesta-
tions of the graph edges are pipes, whereas the 
graph nodes are pipe junctions and network end 
points where water is extracted for consumption. 
Unlike the electrical grid or communications net-
works, water networks contain storage both in 
the network itself and at nodes (that is, tanks or 
reservoirs). Additionally, transmission rates for 
water are on the order of centimeters per second 
(cm/s), rather than the speed of electrons.

Operational efficiency and regulatory direc-
tives require monitoring both hydraulic (pres-
sure and flow) and water quality (chlorine, pH, 
specific conductance, and so on) parameters 
in WDNs. The current state of the practice is 
to record hydraulic parameters continuously 
at only a fraction of the network elements — 
roughly 0.01 to 0.001. Most water quality moni-
toring is still performed with noncontinuous 
samples taken at discrete times and locations 
within the network. Continuous monitor-
ing of hydraulic and water quality parameters 
typically uses physically large sensors that 
require hard-linked power and communications 

connections to send raw data to a central-
ized supervisory control and data acquisition 
(SCADA) system.

Earlier technology dictated that external 
power, communications, and, in some cases, 
wastewater connections be available at any 
monitoring location. These requirements and the 
physical footprint of previous-generation sensors 
significantly constrained the locations within a 
network where cities could install sensors and 
added considerable costs to monitoring network 
installation.1 In many ways, water utilities had 
come to rely on citizens to overcome these limi-
tations by playing a large role in infrastructure 
monitoring — that is, reporting situations such as 
breaks in water mains or strange odors or tastes 
indicating degraded water quality.

We are only beginning to realize the full 
potential deploying new sensors could have 
within WDNs. Before this vision can become 
a reality, however, we must solve several key 
issues.

Ease of Sensor Deployment
Fine-grained WDN monitoring requires install-
ing sensors at every network node. However, 
installing flocks of smart sensors with wide-
area network (WAN) or on-board processing 
capabilities in underground water pipes repre-
sents a significant challenge in terms of both 
installation and operational management. 
Hence, the sensing infrastructure used in large-
scale WDN deployments should be as simple, 
robust, and energy efficient as possible.

Related Work in Wireless Sensor Network Monitoring

A sensor is a low-cost, standalone, micro-electronic com-
ponent with limited computational ability, built-in sensing 

components, and a radio transceiver. When a large number of 
sensors is deployed over a site for monitoring purposes, they 
form what is called a wireless sensor network (WSN). Ian 
Akyildiz and his colleagues have summarized the outlook for 
WSNs in several monitoring applications.1 The authors discuss 
numerous applications, including flood detection, biological and 
chemical detection, agricultural monitoring, and other areas 
within the environmental monitoring realm. Although WSNs’ 
initial promise in environmental applications hasn’t been fully 
realized,2 the technology is progressing, particularly in hydrau-
lic and water quality monitoring within water networks. One 
small prototype monitoring network has been deployed for 
sewers in Boston.3 More recently, WSNs were deployed to 
monitor pressure and acoustics within the Singapore drinking 

water distribution network.4 Within this network, 25 monitor-
ing stations in an urban area transmitted 4 to 8 Kbytes/s to a 
central processing server using a 3G wireless network with an 
average distance of 1 km between stations.
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Real-Time, Network-Scale Monitoring
Resource theft or leakage detection is highly 
time sensitive. Detecting potential anomalies 
in real time can be challenging for large-scale 
WDNs consisting of tens of thousands of nodes. 
Current sensor deployments for WDNs impose 
high delays with regard to data acquisition 
(up to several hours) that must be drastically 
reduced. In addition, the sensor data collected 
are often erroneous or noisy, and human opera-
tors must curate them manually before they 
are usable. Also, the main-memory batch-
processing software currently used to process 
data (such as Matlab), though highly efficient 
for small operations, can’t scale to larger net-
works, thus limiting current solutions’ practical 
applicability.

Big Data Analytics
Finally, analytics and demand forecasts require 
processing a significant amount of historical 
WDN data. No solution is readily available for 
durably storing and efficiently managing such 

data. Legacy relational databases are ill-suited to 
handle the enormous quantities of (nonrelational) 
time series that flocks of sensors produce over 
time. Processing platforms such as Matlab are 
even worse because they consider only simple, 
flat files. Hence an urgent need exists for new 
WDN storage and data- processing infrastructures 
that can analyze historical readings at scale.

Architecture Overview
Our hybrid stream/array-processing archi-
tecture meets these challenges in the context 
of WDN monitoring. Specifically, we use our 
architecture to compute the Local Indicators of 
Spatial Association (LISA) metric for anomaly 
detection.2 In addition, we extend the metric to 
consider temporal associations.

Figure 1 depicts a simplified view of our dis-
tributed Internet infrastructure for handling 
data from WDNs. We can split the overall archi-
tecture into three main components: the water 
sensors themselves, which monitor and locally 
broadcast flow, pressure, or water quality values 

Figure 1. Water distribution network data management architecture. The architecture has three main components: 
simple water sensors that periodically broadcast their measurements; self-organizing base stations that gather the 
sensor readings and clean them using a stream-processing flow (on the right) and share them through an overlay 
network; and an array data management back end that durably stores and analyzes all values.
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in the WDN; the stream-processing subsystem 
comprising sensors in the vicinity of base sta-
tions that gather, consolidate, and forward sen-
sor readings in real time; and the array database 
management system (ADBMS) back end, which 
globally analyzes and durably stores all data 
originating from the WDN.

Sensing Infrastructure
Producing fine-grained analyses of large WDNs 
requires deploying myriad sensors to cover all 
nodes (and potentially also edges) in the pipe 
network. To reach this goal, we deliberately 
limit sensor functionalities to reduce our sens-
ing infrastructure’s cost, energy consumption, 
and number of potential failures. We propose 
using easily installable, low-cost, durable sen-
sors whose only duty is to intermittently broad-
cast their measurements over local, low-powered 
digital radio channels.

Various technologies are available for such 
sensors, such as ISA100.11a (www.isa.org/
ISA100-11a), IEEE’s 802.15.4 media access con-
trol layer (www.ieee802.org/15/pub/TG4.html), 
or full-blown Zigbee (www.zigbee.org) modules. 
Depending on the exact technology used, the 
sensors might act as simple wireless transmit-
ters broadcasting to base stations only, or can 
self-organize into transceiver mesh networks 
communicating over longer distances (that is, 
passing data through intermediate devices to 
reach more distant ones). We can deploy several 
sensor types in the pipes in this way, monitoring 
flow, pressure, or water quality, for instance.

Stream-Processing Subsystem
Our stream-processing subsystem consists 
of a handful of more powerful base stations 
scattered across the WDN that collect all sen-
sor measurements. Regardless of whether they 
self-organize into a mesh network, the sensors 
always communicate to the base stations using 
redundant, point-to-multipoint (P2MP) broad-
cast communication to minimize data loss in 
the advent of sensor or base station failures.

The base stations’ first function is to gather 
live measurements originating from neighbor-
ing sensors. Each cell constitutes a substream-
processing system centralized at the base station. 
It applies stream operations on the measurements 
on-the-fly and intermittently transmits the 
locally aggregated information together with the 
raw data to the analytic back end.

The base station first tries to detect gaps in 
the data stream. It fires a data gap event (see 
the right side of Figure 1) whenever the fre-
quency of the messages it receives from a given 
sensor falls below a certain threshold. The base 
station then applies a simple smoothing func-
tion to the data by running a sliding window 
average on the values to level out potential 
noise in the measurements. It applies a local 
anomaly-detection algorithm (which we dis-
cuss in detail later) on the resulting values and 
fires an anomaly detection exception that it 
sends to the data management back end in case 
it detects any abnormal pattern. Finally, the 
base station applies delta compression to the 
current data and pushes the new value to the 
overlay network when it differs somewhat from 
the last transmitted value (that is, if |vcurrent 
– vlast_transmitted| ≥ e). If the system is running 
in steady state and doesn’t observe any fluc-
tuation, sensors shares less data, and the base 
station emits only an occasional alive mes-
sage. This lets us collect values frequently (for 
instance, several times a minute, thus reducing 
the time-to-anomaly-detection delay), while 
minimizing the traffic the base stations gener-
ate, because practically no data is shared in the 
overlay in steady-state mode.

In terms of networking and data-sharing 
capabilities, we require all base stations to have 
WAN modules (such as High-Speed Downlink 
Packet Access or Wi-Fi). They share data with 
each other and with the analytic back end by 
maintaining a dynamic peer-to-peer (P2P) 
overlay network.3 The base station registers 
the events and data it must share in the over-
lay network by applying consistent hashing4 
on the involved sensor’s identifier (for exam-
ple, publish(hash(sensor123), “sensor123 
pressure at 2013-11-05T08:15:30-05:00 
: 196000”)). All data are stored in the over-
lay using soft states and have an expiration 
date after which the system deletes them.

The overlay network hence serves two 
main purposes: First, it consolidates all val-
ues originating from a given sensor stream 
(remember that the sensors and the base sta-
tions are loosely coupled, and that several 
base stations could report values for the same 
sensor). Second, it serves as a scalable and 
robust information management system to 
expose data to our architecture’s third tier, 
discussed next.
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Array Database Management  
System Back End
Our architecture’s final component is a back 
end ADBMS. A new wave of such systems is 
under development, pushed by the rapid growth 
of large-scale array data emerging in eScience, 
Web analytics, and smart city contexts such 
as ours (see the “Array Data Management: The 
Renaissance” sidebar for more information).

The ADBMS back end has two main roles 
in our architecture: First, it durably stores all 
sensor values and anomalies that the base sta-
tions share (the values shared in the P2P over-
lay being ephemeral, as we described). Second, 
it provides global analytics capabilities, both to 
monitor in near-real time the WDN as a whole, 
and to analytically compare/forecast demand or 
anomaly patterns over time.

The streaming subsystem directly collects 
sensor values from the information overlay net-
work that the base stations create. Such overlays 
support efficient range queries — for example, 
to retrieve all recent measurements — as well as 
point queries (typically requiring log(O(N)) mes-
sages, where N is the number of nodes in the 
network) that enable, for instance, dynamically 
retrieving mini-LISA statistics or specific values 
when the system detects an anomaly. The data-
base back end, on the other hand, stores all data 
and anomaly statistics compactly in multidimen-
sional structures. It also stores additional infor-
mation such as each sensor’s type, location, and 
ID, and time stamps for most information.

Analysts can implement many useful ana-
lytic operations on top of the collected data. So 
far, we have implemented two operations that 

Array Data Management: The Renaissance

Array data management has long been a popular topic in 
computer science. It gained renewed interest recently, 

motivated by the rapid emergence of extremely large array 
data in eScience and Web analytics. In the past few years, sev-
eral new initiatives such as SciDB (www.scidb.org),1 SciLens 
(www.scilens.org), Rasdaman (www.rasdaman.com), SciHa-
doop,2 or KeplerDB3 were launched to provide new solutions 
to this problem.

Contrary to traditional database systems, this new wave 
of array database management systems (ADBMSs) supports 
only limited transactional functionalities and focuses instead 
on distributed array processing and analytics. These systems 
seek to combine several decades of efficient structured data 
processing from the relational world with the latest advances 
in distributed batch-processing à la MapReduce. ADBMSs typi-
cally support scalable linear algebra operators over massive 
shared arrays stored natively on large clusters of commod-
ity machines. They are hence much faster than relational data-
bases on array analytics and linear algebra workloads, and scale 
to much larger datasets than main memory matrix-oriented 
systems such as Matlab and R. Technically, we can summarize 
their benefits in three points.

Native Array Storage
ADBMSs store both dense (images or videos, for example) 
and sparse (adjacency matrices) multidimensional arrays 
natively, using compact structures to physically collocate 
adjacent cells on disk. These systems also seek to provide 
the advanced array management features that many sci-
entific applications request, such as data lineage or array 
versioning.4

Scalable Processing
Extremely large arrays are increasingly common in astronomy 
(www.lsst.org), bioinformatics, Web analytics, or smart city con-
texts such as the one we describe in the main text. Because 
such data typically can’t fit on one machine, ADBMSs sup-
port horizontal scaling to provide scalable array processing of 
extremely large arrays using clusters of commodity machines. 
In this case, the arrays are typically partitioned (or “chunked”) 
across several physical nodes, which then run parallel versions 
of array operators locally.

Declarative Interfaces
Like relational database systems, ADBMSs increasingly provide 
declarative interfaces to let data administrators process arrays eas-
ily using libraries of linear algebra and array operators that can be 
combined using languages similar to SQL — for instance, the SciQL 
(www.scilens.org/Resources/SciQL) or AQL (www.paradigm4.
com/technology/aql-afl-query-languages/) query languages.
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we think represent the two main classes of 
query in our context — namely, global monitor-
ing using LISA statistics and historical anomaly 
comparison using pattern matching over LISA 
statistics. We describe both in more detail in the 
remaining sections.

Local Indicators of Spatial 
Association
LISA statistics were originally developed to 
detect anomalies in geographic studies,2 where 
the observations are associated with physical 
coordinates and geographically weighted con-
nections to other observations. The Moran’s 
I test serves as an example LISA calculation 
value:
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Here, va is the observation at the current node 
a, with its K neighboring nodes (connected to a 
through the network topology) having observation 
values vk. Observations are standardized using the 
mean of all current nodes’ measurements, mean(v) 
= m, and the standard deviation stdev(v) = S.  
LISA value calculation measures local clusters of 
similar measurements. In practice, the LISA value’s 
sign indicates the presence of high- or low-value 
clusters when positive, or outliers when negative, 
while its magnitude indicates how much the local 
value differs from its neighbors.5 Here, we use 
multiple random permutations of the observations 
across all network nodes to calculate the LISA 
statistic values under the null hypothesis of com-
plete spatial randomness2,6 against the alternative 
spatial-clustering hypothesis.

LISA statistics have only recently been 
applied to network topologies, and to date these 
applications don’t include WDNs. In our context, 
we define LISA networks using the WDN topol-
ogy and identify anomalies within the sensor 
data. In addition, we propose two extensions.

LISA with Temporal Association
Most published work on LISA statistics has 
been for time-stationary problems in the geo-
graphic domain (for example, identifying 
hotspots of criminal activity or cancer mor-
tality). We extend the local neighborhood to 
contain both temporal and spatial neighbors. 
Thus, we enlarge the set of K measurements 
around a node a to include its own previous 

measurements in addition to both the current 
and past measurements from its neighbors.

Mini-LISA for Real-Time Anomaly Detection
From a performance perspective, computing LISA 
values and conducting statistical-significance 
tests implies a global knowledge of the network’s 
state, which can be time consuming in large 
deployments (owing to missing values, slow con-
nections, computational overhead, and so on). 
Our solution uses the stream subsystem at each 
base station, thus limiting the population used for 
the mean and sigma computations to only those 
nodes informing a single base station. Given the 
limited spatial information necessary to detect 
local anomalies, we compensate by using a larger 
temporal window on each node to identify anom-
alies based on previous values in the subnetwork.

The System in Action
We built a prototype of the architecture we 
present here using Twitter Storm (http://storm-
project.net) as a stream-processing engine and 
SciDB (www.scidb.org) as the ADBMS.

ADBMS Setup
First, a network of N nodes is represented by an 
adjacency matrix. Initially, our network only holds 
direct connections, where a cell Network[i, j] = 1 
represents an edge between nodes i and j. Addi-
tionally, and to save subsequent processing time, 
we store a limited transitive closure of up to three 
hops for each node — that is, Network[i, j] = k, ∀ij, 
where j is k hops away from node i. We achieve 
this using SciDB’s multiply() built-in operator. To 
support temporal locality, we reshape Network into 
a cube TimeNetwork, where the third dimension is 
time. That is, a cell TimeNetwork[i, j, t] = k, ∀ij, 
where j is k hops away in space, in time, or both 
from node i. The weights of the temporal links, or 
edges, are predefined in the following to 0.5, which 
implies that a node’s [current_time – 1] observa-
tion is preferred to its direct neighbor’s [current_
time] observation. As time goes by, a listener 
process receives incoming vectors of observations 
from the overlay network or the stream-processing 
subsystem directly. The observations are appended 
in an unbounded 2D array.

LISA Operator and Distributed  
Significance Test
Next, we developed a LISA operator that takes 
a parameter K indicating how many neighbors 
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to include, and a parameter T that specifies the 
maximum time backtracking. The operator con-
structs the LISA values and then proceeds to a 
significance test to determine anomalies that 
reject the null hypothesis where a significance 

level of α = 0.010 is used. This process is par-
ticularly computationally intensive: because we 
compute a 1,000-value statistic for each node in 
the network, it greatly benefits from a distributed 
computing system such as that SciDB offers.

Figure 2. Water distribution network simulation and results. (a) The hydraulic simulation shows pressure (meters) at the 
junctions and flow (liters per second) within the pipes. We can see (b) the actual observed values in the network, (c) 
the computed Local Indicators of Spatial Association (LISA) statistics considering eight neighbors with one backtracking 
time, and (d) the cluster map. Significant high-high and low-low clusters are highlighted, as are high-low and low-high 
outliers. The remaining points are considered statistically insignificant.
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LISA Analytics
In addition to being able to compute global LISA 
statistics, we have also implemented simple 
LISA analytics operations. We can thus, given 
a new anomaly, search for previous anomalies 
that might share some similarities with the new 
one, or cluster anomalies using pattern match-
ing on the historical LISA data stored in the 
ADBMS.

Performance Evaluation
To evaluate our approach’s results and per-
formance, we have used a real WDN topology 
constructed for a medium-sized city in the UK 
(http://emps.exeter.ac.uk/engineering/research/
cws). This network comprises 1,891 junctions and 
2,465 pipes, and is designed to supply water to 
a city with roughly 400,000 people. To meet our 
scalability promises, we also implemented a scal-
able network generator that generates topology 
with generally square connections, a coordina-
tion number of 4, and equal edge lengths. We 
consider the observations to be residuals between 
a predictive model providing the expected values 
of a property (such as pressure) across the net-
work and the actual observations. As such, we 
consider the observed residuals to be indepen-
dent and identically distributed with N(0, 1).

Effective Anomaly Detection
The system produces three visualization maps 
(see Figure 2). The cluster map lets users iden-
tify at a glance significant anomalies in the 
network, which we classify as

•	 clusters — HH (high-near-high measurements) 
and LL (low-near-low measurements); or

•	 outliers — LH (low measurement in a high 
neighborhood) and HL (high measurement in 
a low neighborhood).

The remaining points are nonsignificant 
measurements.

In our experiment, in addition to isolated 
anomalies that are present at random, we man-
ually introduced a cluster of five low-negative 
anomalies with different intensity levels to 
simulate this specific scenario. We can see that 
the anomaly cluster is correctly highlighted at 
the middle left of Figure 2c (in red). We also 
successfully tested our approach’s scalabil-
ity on large topologies of tens of thousands of 
nodes, and of our LISA analytics capabilities in 

subsequent tests (we don’t provide these addi-
tional experiments’ numeric results owing to 
space constraints).

N ew sensing infrastructures could revolu-
tionize how municipal infrastructures are 

monitored and handled. Analytics solutions 
applied to smart water data, for instance, could 
provide the basis for variable pricing, detection 
of resource theft or leakage, load or demand 
forecasts, and incentivizing consumers to con-
serve resources. Our architecture has several 
distinct advantages, including

•	 ease of deployment and management, 
because the data sensing, gathering, and 
analytics components are all loosely cou-
pled, self-organizing, and able to be installed 
independently;

•	 real-time monitoring, including local anom-
aly detection at the base stations directly 
using Mini-LISAs; and

•	 analytics and global processing capabili-
ties using a horizontally scalable array data 
management system.

We have shown using an early implementa-
tion of our architecture that our solution scales 
to real, large water topologies and can detect 
anomalies successfully. Our ultimate goal is the 
real-time understanding of water systems at 
scale based on (both spatial and temporal) fine-
grained WDN quality monitoring and on the 
architecture and methods we have described.�
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