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Abstract—Noisy labels represent one of the key issues in supervised machine learning. Existing work for label noise reduction mainly
takes a probabilistic approach that infers true labels from data distributions in low-level feature spaces. Such an approach is not only
limited by its capability to learn high-quality data representations, but also by the low predictive power of data distributions in inferring
true classes. To address those problems, we introduce Nessy, a neuro-symbolic system that integrates deep probabilistic modeling
and symbolic knowledge for label noise reduction. Our deep probabilistic model infers the true classes of data instances with noisy
labels by exploiting data distributions in an underlying latent feature representation space. For data instances where inference is not
reliable enough, Nessy extracts symbolic rules and ranks them according to several utility metrics. Top-ranking rules are injected into
the deep probabilistic model via expectation regularization, i.e., via a posterior regularization term constraining the class distribution in
the objective function. In a real deployment over multiple relation extraction tasks, we demonstrate that Nessy is able to significantly
improve the state of the art, by 7% accuracy and 10.7% AUC on average.

Index Terms—noise reduction, neuro-symbolic systems, deep probabilistic model, relation extraction, distant supervision

<+

INTRODUCTION

true distributions on the higher-level latent feature repre-

The success of deep learning models heavily relies on the
quality and quantity of labeled training data [1]. Obtaining
large amounts of high-quality training data, however, is a
long, laborious, and usually costly process. Addressing the
label quantity issue, several approaches have been proposed
to enable the fast creation of large training sets by exploiting
low-quality but easily accessible labeling sources. Typical
methods include distant supervision [2], [3], crowdsourc-
ing [4], and automatic data augmentation [5]. The effec-
tiveness of these approaches, in terms of scalability and
cost-effectiveness, has been evaluated on a variety of tasks,
ranging from information retrieval [4], [6] and extraction
[7], [8], [9] to image segmentation and recognition [10],
[11]. Those methods, efficient, result in noisy labels for the
training data.

In contrast to the growing body of work addressing
the label quantity issue, little attention has been devoted
to the labels quality. Due to the lack of transparency and
accountability of deep learning models [12], [13], incorrect
labels in the training set are generally difficult to identify;
consequently, label noise has become a main obstacle for
developing, deploying, and improving deep learning mod-
els.

Existing work mainly suggest probabilistic methods that
leverage data distributions for debugging noisy labels [14],
[15], [16]. The basic assumption is that data points dis-
tributed close to each other are more likely to have the same
label, hence it is possible to infer the true class of an instance
from its neighbors. Those methods, however, suffer from
two major limitations. First, they model data distributions in
low-level feature spaces with oversimplified structures (e.g.,
lexical features such as tokens or patterns). As for most
language and vision problems, the low-level distributions
learned by these methods are limited compared to the

sentation space that present complex dependencies among
features [17]. The second limitation, and probably the most
important one, is that all existing methods are data-driven
methods that learn statistical patterns from the data only. As
a result, the performance of such methods is further limited
by the intrinsic predictive power of data distributions for
the true classes, a limiting factor of any data-driven method
that relies on data distributions for debugging noisy labels.

Deep neural networks are able to learn data representa-
tions that encompass complex dependencies among features
and provide data distributions that are more effective for the
inference of true labels. Those methods, however, are never-
theless limited by the amount of relevant information in the
training data for the inference of true classes. The presence
of noisy labels makes it even harder for neural networks
to recognize such relevant information for truth inference.
Besides, deep learning methods—despite their flexibility—
are typically not robust to noise in the training data, espe-
cially when the size of the training data is not sufficiently
large. Compared to data-driven approaches, knowledge-
driven approaches are more robust due to their capability
in representing concepts and causal relations among them.
Those two types of approaches are complementary to each
other in the sense that knowledge can be acquired in parallel
to the data itself (e.g., from humans) and can be integrated
into data-driven methods to improve the effectiveness of
models. Recent discussions in the Al communities have
converged on the idea of integrating symbolic methods with
machine learning, i.e., neuro-symbolic methods, which ben-
efit from the robustness of symbolic methods, the flexibility
of machine learning, and their complementarity in utilizing
different information sources [18].

Inspired by those developments, we propose to integrate
deep learning with symbolic knowledge for label noise
reduction. In that way, deep learning methods are used to



infer the true classes from data distributions on the latent
feature representation space, and symbolic knowledge is
introduced to further improve the accuracy of the inferred
labels, in particular for instances for which the latent feature
representation learned by the deep neural model is domi-
nated by class-irrelevant information. However, developing
such an approach is challenging. The first challenge is to
develop a deep learning model that can learn high-quality
data representations to capture data distributions while
using them for true class inference. Second, it remains un-
clear what knowledge is the most beneficial for the model,
how to identify such knowledge, and how to integrate that
knowledge into the deep learning model for noise reduction.

In this paper, we present Nessy, a new neuro-symbolic
system that takes advantage of deep and probabilistic mod-
elling for inferring latent classes, and of symbolic knowledge
expressed as a set of logic rules for improving model in-
ference. Unlike previous probabilistic methods, our deep
probabilistic model adopts deep neural networks to param-
eterize data distributions, thus is able to model complex
feature relationships in the data and to learn high-quality
latent feature representations. Nessy then extracts logic rules
from the data following the recommendations of the domain
experts and injects them into the deep probabilistic model
to improve the accuracy of true class inference. To extract
the most beneficial rules, Nessy employs a data sampling
component that selects instances for which the probabilistic
inference is unreliable. Those rules are ranked by several
metrics that quantify the potential utility of the rules for la-
bel noise reduction, including support (how many instances
match the rule) and confidence (how useful the rule is in
discriminating one class from another). To inject rules into
the deep probabilistic model, Nessy leverages expectation
regularization [19] that takes rules as soft constraints. The
rules are added to the objective function of the deep proba-
bilistic model to regularize the inference results.

The proposed system is task-independent and can be
used for any classification problem. In this paper, we in-
vestigate the effectiveness of Nessy on the task of relation
extraction. Historically, distant supervision is widely used
to obtain training data for this task [3], [20]: some external
Knowledge Base is used to obtain the relations between
two entities; the relations are then used to automatically
label sentences that mention those entities. This approach
inevitably brings noise into the training data, i.e., some of
the labels are incorrect (see example on Figure 1). We use the
term distant supervision noise to denote this type of noise. In
our experimental evaluation, we demonstrate the effective-
ness of Nessy in reducing both the distant supervision noise
and random noise, across multiple relations and different
noise levels.

In summary, we make the following key contributions:

o We introduce the notion of debugging noisy training
data through a neuro-symbolic approach;

o We propose a deep probabilistic model that infers the
true classes of training instances with noisy labels by
learning their data distributions in the latent represen-
tation space;

o We present Nessy, a system architecture that orches-
trates the operations of the deep probabilistic model

Text data

US actor, activist and
producer Danny Glover will
receive a lifetime achievement
award [...]

Danny Pertitle

Glover producer

Knowledge Base

Dann no relation
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Fig. 1. In the manually labeled data, this instance is labeled with relation
per:title between the two following entities: producer and Danny
Glover. However, this information might be missing from the Knowledge
Base; consequently, this data instance is labeled as not having relation
per:title.

and of the symbolic methods through a set of compo-
nents for rule extraction, ranking, and integration.

o We demonstrate the effectiveness of our approach
through an extensive evaluation on several relation
extraction tasks and show that Nessy improves the state
of the art by 7% in accuracy and 10.7% in AUC.

To the best of our knowledge, we are the first to suggest
a neuro-symbolic approach for debugging noisy training
data. Compared to our previous work Scalpel-CD [21],
where we introduced deep probabilistic modeling coupled
with a human-in-the-loop approach for post-processing the
model’s inference, Nessy introduced in this paper is an
alternative approach that involves humans in a much lighter
way for improving model inference: humans only need
to examine the validity of the rules in Nessy, whereas in
Scalpel-CD they need to process data on a per-instance basis.
Results show that Nessy outperforms its predecessor on
challenging datasets with distant supervision noise by 4.3%
in accuracy while requiring much less human input.

2 RELATED WORK

Label Noise Reduction. Existing methods are mainly devel-
oped for crowdsourcing and distant supervision. In crowd-
sourcing, noise reduction has been a central problem as
worker annotations are often noisy. Typical methods assume
a redundancy of worker annotations, e.g., majority voting
and those based on Expectation Maximization (EM) [22].
EM methods simultaneously estimate the true labels and
parameters of the annotation process, e.g., worker reliability
by Dawid and Skene [23] and task difficulty by Whitehill
et al. [24]. Our work is different in that we consider the
broader scope of noisy data, where labels are not necessarily
redundant.

Distant supervision is a popular approach for creating
training data for relation extraction. Variety of methods
were proposed to tackle distant supervision noise. Those
methods mainly leverage data distributions in the low-level
feature space, e.g., the factor graph model by Riedel et
al. [14] and the generative model by Takamastu et al. [15].
Alfonseca et al. [16] introduce a hierarchical model to cap-
ture the data distribution in the topic space. In comparison,
our deep generative model is flexible to capture data distri-
butions with more complex data structures.



Most of the deep learning models designed for distantly
supervised relation extraction do not explicitly filter out
noisy instances. Instead, attention mechanism is used to
weigh the instances depending on their relevance to the
relation [25], [26].

Neural-Symbolic Learning. While being flexible to cap-
ture complex mapping between the features and label, ma-
chine learning approaches — deep learning in particular —
are generally data-hungry (sample inefficient) and not ro-
bust—they only learn (possibly spurious) statistical correla-
tions. Compared to data-driven, learning-based approaches,
knowledge-driven, reasoning-based approaches are more
sample-efficient and more robust due to their capability in
representing concepts and the causal relations among them.
Recent discussions in the Al communities have converged
on the idea of integrating symbolic methods with machine
learning. A visible trend is the growing body of work on
neural-symbolic methods [27]. For instance, Xu et al. [28]
introduce the semantic loss that augments the training
objective of neural networks with soft-constraints specified
with domain knowledge; Allamanis et al. [29] propose to
learn continuous representations of symbolic knowledge for
integration into neural networks. On the application side,
neural-symbolic methods have been applied to both vision
and language tasks including visual relation prediction [30],
visual question answering (VQA) [31], [32], and semantic
parsing [33]. In debugging noisy training data, deep learn-
ing approaches suffer more from the sample-efficiency and
robustness issues. To the best of our knowledge, we are the
first to investigate the integration of symbolic knowledge
into deep learning for debugging noisy training data.

We note though, that there are some work making use
of symbolic knowledge for distantly supervised relation
extraction: Koch et al. [34] filter out relation instances with
incompatible entity types; Ji et al. [26] add a constraint to the
objective function that is based on the entity descriptions
extracted from Wikipedia pages. Rocktdschel et al. [35]
explore logical dependencies between relations. However,
none of those work focuses on the noise reduction.

3 ARCHITECTURE

Figure 2 gives an overview of our system. Nessy takes
as input a noisy dataset, e.g., in the context of relation
extraction (the main application we are currently exploring
in the context of this work), the dataset is a corpus of
sentences, each associated with a noisy label that represents
a relation between two entities. The dataset is first passed to
a deep probabilistic model (C1 on Figure 2), which infers the
latent true class for each data instance along with a high-
level latent feature representation of it. The inferred class is
subsequently used as an input to a data sampler (C2), which
calculates the reliability of the model’s inference and selects
data instances that are fed to the knowledge extractor (C3).
The knowledge extractor extracts symbolic rules from the
sampled instances and ranks them according to rule utility
metrics that measure their potential benefit for improving
the deep probabilistic model. Then, the top-ranking rules
are injected to the model through a knowledge injector using
expectation regularization (C4). In this way, the model is
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integrated with additional knowledge for better predictions.
Next, we describe the components in more detail.

C1: Deep Probabilistic Model. The deep probabilistic
model receives a noisy dataset and simultaneously infers
two types of latent variables, i.e. the latent true class and
the latent feature representation. The latent feature repre-
sentations, represented as a set of low-dimensional vectors,
capture the underlying data structure for the inference of
the latent true classes. The inference process relies both on
existing noisy labels and latent feature representations. The
basic idea is that data instances distributed around the same
region of the latent feature representation space are likely
to belong to the same class. Consider for example a data
instance whose surrounding neighbors are all positively
labeled; it is then likely that the instance be positive also,
even if its existing noisy label is actually negative. In most
cases, the surrounding neighbors are partially labeled as
positive and partially as negative. The deep probabilistic
model is able to strike a balance between the latent features
and the noisy labels to obtain a reasonable estimate of the
latent class. This component is described in further detail in
Section 4.1 and 4.2.

C2: Data Sampler. The data sampler component is critical in
identifying the rules that the deep probabilistic model might
have missed during training. Its main purpose is selecting
data instances for which the deep probabilistic model’s
inference is not reliable enough. As in previous work [21],
the model reliability is approximated by the (inverse) un-
certainty of model inference. In addition, it further considers
random sampling as an alternative sampling method, which
is more suitable for data with structural noise. Additional
detail on our sampling algorithm is given in Section 4.3.

C3: Knowledge Extractor. From sampled data instances,
Nessy then extracts symbolic knowledge as a set of rules
for complementing the deep probabilistic model. In this
work, we consider textual features from the input sentences
to compose rules, e.g., part-of-speech tags and NER tags.
The extracted rules are ranked according to their potential
utility in improving the accuracy of label inference by the
deep probabilistic model. The utility is approximated by
two metrics: 1) support, denoting the number of instances
matching the rule, and 2) confidence, denoting the dis-
crminative power of the rule. We explain our extraction
algorithm in detail in Section 4.4.

C4: Knowledge Injector. Nessy injects the extracted rules
into the training process using expectation regularisa-
tion [19]. The underlying idea is that the instances matching
a certain rule should follow a different label distribution
than the whole data. This distribution might be estimated
using validation data with manual labels whenever avail-
able. Otherwise, heuristics might be used to estimate the
label distribution. Providing a deep probabilistic model with
such a set of rules together with their label distribution can
significantly improve both the accuracy of true label infer-
ence and model interpretability, as we explain in Section 4.5
and demonstrate in our empirical evaluation in Section 5.

4 NESSY COMPONENTS AND TRADE-OFFS

Nessy orchestrates human and machine intelligence via the
set of components described in the previous section. These
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Fig. 2. The architecture of Nessy: our system takes as input a noisy training dataset and infers the true classes of data instances with deep
probabilistic modeling; it identifies from the data instances for which inference is unreliable, and extracts and ranks symbolic rules by their potential
utility in improving the accuracy of label inference by the deep probabilistic model. Top-ranking rules are then injected into the deep probabilistic

model for model retraining and improvement.

components seek a trade-off between different key features
of our system that have impact on the resulting system
performance. The deep probabilistic model infers the latent
class of a data instances by striking a balance between
the trust in existing noisy labels and the data distribution.
Similarly, the data sampler component is concerned with
the trade-off between data representativeness and label re-
liability: it aims at selecting data instances that are most
representative to capture useful rules, and those whose
labels are most unreliable to effectively reduce noise in the
training set. The knowledge extractor seeks the rules that
are frequent in the data, but are not (yet) captured by the
deep probabilistic model. Finally, the knowledge injector
strikes a balance between the model’s predictions and the
knowledge-driven constraints.

In this section, we first briefly describe our deep prob-
abilistic model, and then characterize the trade-off space
for all four system components: deep probabilistic model,
data sampler, knowledge extractor, and knowledge injector.
For each of them, we propose an algorithmic solution that
simplifies the search of the optimal trade-off.

4.1 Deep Probabilistic Model

Overview. Our goal is to infer a true latent class label given
a data instance and its noisy label. To infer the latent class of
a data instance, the basic intuition of our deep probabilistic
model is that data instances similar to each other (i.e., close
in the latent feature space) are more likely to belong to
the same class. With this in mind, we utilize generative
modeling to model the relation between observed variables
(i.e., data instance and its noisy label) and latent variables
(i.e., latent features and latent true class). Parameters of
the generative model are learned simultaneously with the
inference of true labels given a dataset with noisy labels. In
the following, we first describe the generative model and
then the inference and learning processes.

Generative model. We consider a generative model to fully
capture the data distribution of a large training dataset.
Formally, the process is described as follows. Given a noisy
dataset D = {(x;,9;)},, where x; is a data instance and
9 is its corresponding noisy label (we omit the index ¢
whenever it is clear that we are referring to a single data
instance). For each data instance (x;, §;) € D:

o Draw a latent feature vector z; ~ P(z) where P(z) =
N(0,1) is a standard Gaussian distribution;

e Draw a latent class y; P(y) where P(y)
Cat(y|m) is a Multinoulli distribution, where @« =
{1/K,...,1/K}T (K is the number of classes). Multi-
noulli (or Categorical) distribution suits best for encod-
ing a discrete random variable;

 Draw a data instance x; ~ Py(x|z, y);

o Draw a noisy label § ~ P, (y|z,y).

Our generative model is depicted in Figure 3. The data
instances and the noisy labels are both dependent on the
latent feature vector z and on the latent class y, which
captures the class specification. z can include both class and
non-class related features. For example, for a sentence x,
the latent feature vector z can represent topics related to a
certain class, and additionally, it can capture the author’s
writing style that is not class-related. The non-class related
features, when mistaken as class-related, are likely to lead
to wrong labels during the labeling process. z and y are
conditionally dependent given the observed data instance x
and the noisy label g.

Formally, the deep probabilistic model is expressed by
the following factorization:

P(ngvzvywv’}/) = PG(X|Zay)P’Y(g‘Z7y)P(Z)P(y)7 (1)

The likelihood functions Py(x|z,y) and P, (§|z,y) are pa-
rameterized by deep neural networks to accurately capture
the distributions of the data and the noisy labels, and 6 and
v denote the set of parameters of the corresponding net-
works. Depending on the specific form of the data, different
likelihood functions can be used for Py(x|z,y): Gaussian
likelihood is suitable for image data, while Multinomial
likelihood is more suitable for textual data (see [36], [37]).
P, (y|z,y) is represented by a Multinoulli likelihood.

Inference and learning. The inference for the latent feature
vector z and the latent class y is closely related to the
learning of the deep probabilistic model parameters. The
parameters are learned by maximizing the log likelihood of
the observed data instances and the associated noisy labels:

log P(x, §|6,) = log / / P(x, 5,2, 10, 7)dzdy.

Due to the intractability of the integral, we approximate the
true posteriors of z and y with variational ones, denoted
by Q¢ (z|x,y) and Qy (y|x), respectively. We use a Gaussian

~
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Fig. 3. Graphical model of the generative model. The data instance x
and the noisy label § are both generated from distributions conditioned
on the latent feature vector z and the latent class y. # and ~ are the
parameters of the likelihood function for generating the data and noisy
labels, respectively (the priors of z and y are omitted). x and ¢ are
observed variables; all the rest is inferred or learned.

N

distribution for Q4 (z|x, y) and a Multinoulli distribution for
Q4 (y|x). Given the complex dependencies among the low-
level features of data instances and their relationships with
the latent variables, these distributions are again parame-
terized by deep neural networks. The parameters, including
those of the generation networks 6 and v and those of the
inference networks v and ¢, are then learned by maximizing
the evidence lower bound (ELBO) [38] of the objective as
follows:

L=Eq, ,(zyx [log Po~(x,72,y)]
—Drir[Qg,4(z,y1x)|P(z,9)],

where E(-) is an expectation and Dgy[-||-] is the KL-
divergence between two distributions. The first term in Eq. 3
corresponds to the generative model that aims to reconstruct
the data instances and their labels (reconstruction error). The
second term corresponds to the inference model and can be
seen as a regularization term to prevent overfitting.!

®)

4.2

From a neural network perspective, the first part of the
ELBO (Equation 3) can be interpreted as the sum of the
(negative) reconstruction errors of the observed feature x
and noisy label . Hence, we rely both on data distribution
and existing noisy labels when inferring latent classes.

The original ELBO weights both types of reconstruction
errors as equally important. While this can result in a power-
ful generative model for data and label generation, our goal
is different: we are interested in inferring latent classes, for
which data distribution and existing noisy labels might have
different importance. Furthermore, their relative importance
varies across different datasets: for datasets whose data
distributions are highly indicative of the true class and for
which the noise ratio of the existing labels is high, the
inference process should rely on the data distribution more
heavily. Otherwise, existing labels should be trusted more.

Therefore, it is natural to extend the original ELBO by
introducing a parameter 3 to weight the importance of the
two types of reconstruction errors:

Inferring the Latent Class

EQ¢,¢(Z,Q\X) [log P9,7(x7 g‘zv y)] =
Eq, ,(zyix [log Py (9|2, y)] + B - Eq, , (zy/x) [l0g Po(x|2, y)].
4)

1. We describe the detailed steps for deriving the ELBO in the
supplementary material.

Algorithm 1: Learning Deep Probabilistic Model

Input: the set of N i.i.d. data instances D = {x;, % } /1,
ELBO adapter f, and the maximum number of
iterations Iter

1 Initialize ¢, 1,8, ~;
2 fort = 1;t < Iter;t + + do
Sample a batch of data instances;
forall x; € the batch do
L Compute y; and z;;
Compute the noisy gradient Ay y,0,~L ;

(- T )

N

Average noisy gradients from batch;

8 Update ¢, v, 8, v with gradient descent;
9 if £ has converged then

10 L break;

In case f # 1, we are no longer optimizing the ELBO on
the log marginal likelihood (Equation 2). When 3 < 1, we
put more weight on existing labels rather than the data
distribution; consequently, the model will tend to refrain
from denoising labels by resorting to the data distribution.
Otherwise, when 5 > 1, we are weakening our trust on the
existing noisy labels while putting more weight on the data
distribution in determining label noise. While this allows
for more flexibility, it could also bring additional noise to
the labels due to the non-class related features in the data
distribution. Identifying a proper value of 3 is important to
achieve a good performance in label noise reduction.

The resulting optimization algorithm is given in Algo-
rithm 1. It iteratively goes over two steps, i.e., the forward
and the backward step. At each iteration, the forward
step (row 5) computes the latent variables given current
parameters; the backward step (row 6-8) then updates the
parameters by backpropagating the gradients of the errors.
In the calculation of the gradients (row 6), we use an
adapted version of the ELBO (Equation 4).

4.3 Data Sampling

New symbolic rules that can best improve the inference
accuracy of the deep probabilistic model are likely to rise
from instances where our deep probabilistic model’s in-
ference is most unreliable. We therefore extract rules from
such instances. The model reliability is approximated by the
inverse of the model’s uncertainty, measured by Shannon
entropy [39], [40]:

K
Hlylz] = = p(y = C|z)logp(y = Clz) ®)
C=1

where C is the class and K is the number of classes. We
hypothesize that uncertainty sampling is effective for noisy
datasets where labels might be disconnected from the data
(e.g., random noise, given that the noise ratio is lower than
1/K). In this case, for data instances far away from the
true decision boundary, the deep probabilistic model can
take advantage of the majority label of the data instances
and provide satisfactory results; however, for data instances
close to the decision boundary, the deep probabilistic model
will have a high uncertainty due to the mix of data instances
from different classes and might generate incorrect results.



Example of the rules extracted from one instance. Subject and object
entities are boldfaced (“Dillinger” and “director”, respectively).

TABLE 1

Sentence

| Extracted Rules

Folded into Dillinger ’s
office , the program is
headed by director Dun-
can McCormack , a 51-
year-old with a diverse
background that includes
mental health counseling

“SUBJ-PERSON s office ,
the program is headed by
OBJ-TITLE",
“SUBJ-PERSON POS NN
, DT NN VBZ VBN IN
OBJ-TITLE",
“SUBJ_LEFT_O”,

“OBJ_RIGHT_PERSON”

For datasets with structural noise (i.e., when labels are
generated from data as in [41]), there can exist substantial
regions of the data distribution where the majority of the
labels are incorrect. In that case, the inference of the deep
probabilistic model can be totally off while being highly
probable according to the model. Therefore, we also con-
sider random sampling, which is independent of the deep
probabilistic model. The effectiveness of the two sampling
methods can be evaluated using a set of validation instances
with ground truth labels; in this context, a good sampling
method is one from which the sampled data instances
cover more validation instances where the deep probabilis-
tic model’s inference is wrong.

4.4 Knowledge Extraction

Knowledge extraction focuses on extracting rules from sam-
pled data instances. We consider rules where the rule body
contains features and its head indicates the class of instances
matching the rule. Features composing the rules depend on
the domain knowledge of specific tasks. In the context of
relation extraction tasks, we consider the following features:

o The sequence of words between the two entities;

o The part-of-speech tags of these words;

o The NER tag of the word to the left of the left-most

entity;

o The NER tag of the word to the right of the right-most

entity.
We give an example of such rules in Table 1. This set of
rules is similar to the lexical features used by Mintz et al. [3],
which proved their efficiency on relation extraction from a
distantly supervised dataset.

After the rules are identified, we select the ones that
are potentially useful for label denoising. The quality of
the rules with respect to noise reduction depends on two
important factors: support and confidence. Rule support
is defined as the number of instances that match the rule
and corresponds to the rule’s coverage. Confidence of the
rule corresponds to the rule’s effectiveness in discriminating
one class from another; it is defined as the percentage of
instances supporting the rule that have the same label.
Intuitively, both rule support and confidence should be high
for the rule to be effective in improving label inference.

The noise ratio of the dataset also plays an important
role in identifying rules that might be useful for label noise
reduction. The noisy labels have an average accuracy 1-N R
where N R denotes noise ratio. Suppose that we are using
a rule alone to predict a label (i.e., we assign the most

Algorithm 2: Extracting the Rules

Input: Data instances represented by latent features
and inferred classes D = {z;, P(y:)}} 1,
validation instances with ground truth labels V,
sampling ratio p

Output: Set of rules R

R+ 0;

Decide the sampling strategy using V;

D «+ Pick p top-ranking data instances

foreach d; € D do

R; « rules extracted from d
L R+ RUR;

R < Pick the rules with the highest support
R <« Keep only the rules that satisfy Eq. 7

S Ul R W N =

®® 3

frequent label to all data instances supporting the rule). Let
S denote rule support, Conf denote rule confidence, and
N = S - Conf is the number of instances that support
the rule and have the same label. The number of correct
predictions is a sum of true positive and true negative
predictions. Therefore, accuracy of the rule is defined as
follows:

true positives true negatives

———

N -Conf+(S—N)-(1—-Conf)
S

Conf? + (1 —Conf)®> >1— NR,

= (6)

By solving this inequality, we obtain the following re-

striction:
1 1 NR
C’onf 2 5 + Z - T (7)

That is, rule confidence should be high enough. For exam-
ple, if rule support is 1000 and the noise ratio is 20% then
the number of instances of the same class conforming to that
rule should be at least 888 for a rule to be efficient (i.e., rule
confidence > 0.888).

The full algorithm for extracting rules is given in Algo-
rithm 2. The rules identified as potentially useful for label
denoising are then passed to the knowledge injector.

4.5 Knowledge Injection

The key idea behind Nessy is to strike a balance between
the labels given by a set of symbolic rules and predictions
inferred from the data. To inject the rules into the model, we
apply expectation regularization [19]. An additional term is
added to the loss function that promotes model predictions
on a subset of the data instances to match a rule-specific
expectation: the likelihood of an instance that matches the
rule belonging to a class. This expectation might either be
some human prior knowledge or it can be estimated using
the labeled data (e.g., development set). Formally speaking,
let py be the model predictions and p be the provided
expectation, then the expectation regularization term for the
objective function is
A(p, Do),

where A is a distance function, e.g., KL-divergence as we
use in this work.

Recall Equation 3: the loss function of our deep proba-
bilistic model has a regularization term expressed as the KL-
divergence between the posterior and prior distributions of



Algorithm 3: Injecting the Rules

Input: Raw data instances D, set of rules R, validation
instances with ground truth labels V
Output: Batch generator
1 foreach r; € R do
P; + Estimate label distribution using V
R; + Collect data instances from D that match r;

forall R; do
5 L shuffle R;

yield micro-batches from R, P

N

'

z and y. Therefore, the additional constraints on the distri-
bution of the latent variable y can be naturally expressed
using the existing regularization term. To do this, we first
factor the second term in Equation 3 into two parts:

Di1[Qs (2, y|x) || P(z,y)] =
D[Py (yx)||P(y)] + D[Py (z|x) [N (0,T)]

By default, P(y) is a Multinoulli distribution as explained
in Section 4.1. Our goal is to predict a true label y, there-
fore, we add knowledge-driven constraints into the corre-
sponding regularization term from Eq. 8. We encourage our
deep probabilistic model to match the posterior distribution
P(y|r;(x)) if data instance x matches rule r; (we denote it
as 7;(x)). In addition, we introduce a coefficient « for the
expectation regularization term. Similarly to 3, the parame-
ter a reflects the strength of our beliefs about the provided
label expectation.

®)

Drr[Qs,y (2, y[x)[|P(z,y)] =
a- Y Drr[Py(yx)||P(ylri(x))] + Dicr[Po(2lx) | (0, T)]

ri€ER
)

To train the model with a set of knowledge-driven con-
straints, we change the micro-batch generation in a way that
each batch contains only the instances that match the same
rule. We verify that each instance appears only once during
one training epoch. The algorithm for micro-batch genera-
tion is given in Algorithm 3. The generated batches are used
in the mini-batch optimization algorithm (Algorithm 1) to
retrain the parameters of the deep probabilistic model.

5 EXPERIMENTS AND RESULTS

In this section, we present experimental results for evaluat-
ing the performance of Nessy on several relation extraction
tasks with two types of noise: random noise and distant
supervision noise. We start by presenting an evaluation
of the key components of our system by answering the
following questions:
e Q1: How well does the deep probabilistic model per-
form when inferring the latent class from noisy data?
e Q2: How well do the uncertainty and random sampling
perform on datasets with different types of noise?
e Q3: How does the impact of the rules depend on their
utility properties?
o Q4: How effective is knowledge injection for improving
model performance in label inference?
For each of the above questions, we also analyze the
influence of the type of noise.

TABLE 2
Characteristics of the datasets with distant supervision noise.

Dataset # Train instances # Test instances Noise ratio
Title 4621 974 0.418
Employee 2821 604 0.382
Top Members 7071 1258 0.281

5.1 Experimental Setup

Datasets. We evaluate Nessy on the TAC Relation Extraction
Dataset constructed by Zhang et al. [42] from the TAC KBP
evaluations (2009-2015) and annotated by crowds. Since this
dataset includes the ground truth, it allows us to fairly
evaluate our proposed noise reduction methods?. Moreover,
when knowing gold labels we can model different types of
noise and analyze their properties. Given the original TA-
CRED, we sub-sample the datasets for binary classification
for three relation labels that have the maximum number
of instances. These relation labels are per:title (Title
dataset), org:top_members/employees (Top Members
dataset) and per:employee_of (Employee dataset). We
took all positive instances for each dataset, and for the
negative ones, we sub-sample the instances that contain
entities with types compatible with a given relation. Then,
we add noise into each dataset. We consider two types of
noise for each dataset: distant supervision (DS) noise and
random noise. To create DS noise, we apply the original
pipeline proposed by Mintz et al. in [3]. To that end, we per-
form entity linking to Wikipedia articles using the BLINK
software [43] for entities of type Person (in all three datasets,
either the subject or object entity is of type PERSON). To
obtain the labels, we perform an exact match of the second
entity with the corresponding Wikipedia abstract. The noise
ratio varies between the datasets (see Table 2).

For random noise, we fix the noise ratio similar to the
one for distant supervision noise by flipping the relation
label with a probability equal to that noise ratio.

Noise Type Analysis. Distant supervision noise is structural
(i.e. not completely random) and depends on the procedure
used to create the labels, while random noise is uniformly
distributed across the labels. TACRED is derived from
news wires and online text, therefore, the sentences might
mention entities that are not very popular, and thus, are
missing from the Knowledge Base (this problem is known
as Knowledge Base incompleteness). This situation is more
likely than the opposite, when there is a relation instance
in the Knowledge Base but the sentence does not express
a relation between the given entities. This causes some
label distribution shift, which we cannot avoid unless we
subsample the datasets. While in the Title dataset 52.9%
of instances are positive (according to the gold labels), the
noisy datasets contain 50.5% and 36.1% of positive instances
for random and distant supervision noise, respectively. A
similar observation holds for the other two datasets. For the
Top Members dataset, the percentage of positive instances
drops from 26.7% to 17.1% while for the Employee dataset

2. Note that in real-life scenario noise ratio might be unknown. Noise
ratio can be estimated using reasonable heuristics from domain experts
or by labeling a representative subsample of the data.



it drops from 54% to 25.6%, making the distant supervision
noise datasets more challenging than random noise ones.

Comparison Methods. We compare the following data-
driven noise reduction methods to our system. 1) Ratio
[44]: a ratio-based method that finds the most predictive
features and identifies data instances with the most uncer-
tain labels as those containing such features yet labeled
differently from the label indicated by the features. The
predictive power of a feature is calculated as the ratio
between the number of data instances of a certain class
containing such a feature and the overall number of data
instances. 2) Pattern [15]: a generative model designed to
capture the labeling process as a generative process from
the latent classes. The model facilitates the inference of the
posterior of the latent class given the observed features,
thus it can be used for noise reduction. However, unlike
our deep probabilistic model that infers the latent class by
exploiting the data distribution in the latent feature space,
Pattern is a probabilistic model that directly models the
generative process of low-level features. 3) HierTopic [16]:
a hierarchical topic model that assumes a latent topic-word
hierarchy for the data generation process. Unlike our prob-
abilistic model which learns complex hidden data struc-
tures, HierTopic is only capable of learning a hierarchical
structure. 4) Scalpel-CD [21], our previous approach that
involves human workers for debugging noisy labels. For
our proposed system, we compare an automated variant
and the full system incorporating symbolic knowledge: 5)
DPM, our proposed deep probabilistic model, which is
used in isolation to automatically correct wrong labels. 6)
Nessy, our proposed system which makes use of both deep
probabilistic modeling and symbolic knowledge.

Parameter Settings and Model Training. We empirically set
optimal parameters based on the development set. These
include hyperparameters for the deep probabilistic model
architecture, model configuration, i.e., values of o and /3 and
those for model training, e.g., batch size and learning rate.
As an input for the inference network of the deep probabilis-
tic model Q4 and @y we use the sentence representations
inferred by PA-LSTM model [42] that is trained on the
same noisy dataset with default hyperparameters. Doing
so allows us to have feature-rich sentence representations
while avoiding extensive model engineering that is usually
required for such complex tasks. It is worth noting that these
sentence representations also carry some label noise. Addi-
tional details of the hyperparameters for both the neural
architecture and training are included in the supplementary
material.

Evaluation Protocols. We separately evaluate the perfor-
mance of Nessy on noise reduction and its effect on relation
extraction using different protocols. For noise reduction, we
train the model on the noisy training dataset and compare
our predictions on the training set with the ground truth.
For relation extraction, noise reduction by our system is
performed on the training set. A PA-LSTM model [42] is
then trained on the denoised training set and evaluated on
the test set.

We measure the performance of our proposed system
in noise reduction using two metrics: accuracy and Area
Under the ROC Curve (AUC). Note that a higher ROC AUC
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noise. The upper figures represent (a) the accuracy and (b) AUC on the
validation set during the training process; the lower figures depict the
reconstruction loss (negative log-likelihood) of noisy labels (c) and data
instances (d).
indicates a greater distinction between True Positives and

True Negatives and hence better latent representations.

5.2

To understand the effectiveness of our deep probabilistic
model in inferring the latent class, we analyze the relation-
ship between capturing the data distribution and inferring
the latent class. We compare the performance of the deep
probabilistic model with different settings of 3, which con-
trols the relative importance of the reconstruction errors of
data instances and that of the noisy labels in the objective
function. We analyze the dynamics of our deep probabilistic
model on the validation set during the training process,
with 3 selected from {0.001,0.01,0.1,1,10}. Results on the
Title dataset with random noise and with a noise ratio
NR = 40% are shown in Figure 4.

From Figures 4a and 4b, we observe that with the in-
crease of f3, the performance of the deep probabilistic model
first increases but then decreases.  values in a range from
0.01 to 1 yield better results, with the best performance
achieved with 5 = 1. Such a result is aligned with our
previous work [21], confirming the need for striking a bal-
ance in minimizing the two different types of reconstruction
errors (data and noisy labels). This can be further verified
by Figure 4c and Figure 4d. We observe that the label recon-
struction error decreases fast for all values of 3, whereas
there is significant difference in the decreasing speed of
the data reconstruction error; the relative importance of
those two types of errors, therefore, plays an important role
in the inference of true classes. We note that the similar
decreasing speed of the label reconstruction error is due to
the pre-trained sentence representations already trained on
the noisy labels.

Impact of Datasets and Noise Ratios. We observe similar re-
sults for all other datasets. The optimal value of /3 is between
0.01 and 1 and performance on = 1 is slightly higher than
that on other values. Experiments with different noise ratios
for the Title dataset show that for N R = 30, 40% the model

Inferring the Latent Class (Q1)



achieves performance higher than 1 — N R. However, with
lower noise ratio (NR = 20%) the performance is slightly
worse yielding an accuracy 79.8%. Overall, we observe
that relative performance Acc. — (1 — N R) monotonically
increases with the increase of noise ratio. This means that us-
ing the deep probabilistic model is more efficient for larger
noise ratios while for lower noise ratios its effectiveness is
limited by the predictive power of sentence representation.

5.3 Uncertainty and Random Sampling (Q2)

The data sampling component of Nessy allows for two sam-
pling strategies, i.e., uncertainty sampling and random sam-
pling, which are model-dependent and model-independent,
respectively. We argue that uncertainty sampling is more
effective for identifying wrong predictions for both random
and distant supervision noise than random sampling’. To
verify this, we conduct a comparative analysis on each
dataset with both types of noise. The comparison is carried
out by 1) visually locating in the latent feature space the
selected data instances using the two sampling strategies
and the data instances where the inference of the latent
classes is wrong, and 2) statistically comparing the coverage
of the selected data instances on data instances where the
inference is wrong.

We start by investigating the effectiveness of uncertainty
sampling on the Title dataset with random noise (noise ratio
40%) and DS noise that has similar noise ratio. We apply t-
SNE [45] to embed the latent features of the data instances
into a two-dimensional space, and then visualize the noisy
label and the inferred latent class in Figures 5a, 5b and Fig-
ures 6a, 6b. Given our previous results (high performance
of our deep probabilistic model in latent class inference
in Figures 4a and 4b), we observe from Figures 5a, 5b
that the inferred latent features are highly indicative of the
latent class: data instances of different classes are located
separately in the latent feature space. Figure 5c then shows
the data instances for which the inference is correct and
incorrect using two colors. We observe that our model can
effectively recover the true classes of data instances located
far away from the model’s decision boundary. In contrast,
the majority of the data instances with wrong class inference
are located close to the decision boundary. This is due
to the fact that at the decision boundary, data instances
of different classes are mixed with each other, leading to
high model uncertainty. This is confirmed by Figure 5d,
which visualizes the top-20% data instances selected by
uncertainty sampling. Comparing Figures 5c and 5d, we ob-
serve that uncertainty sampling is a highly effective method
in selecting data instances when the model inference is
wrong. This result is further verified by Figure 7a, where we
observe that the instances selected by uncertainty sampling
show significantly higher coverage for instances where the
inference is wrong.

Impact of Noise Types. We observe similar results with
DS noise (see Figure 6). This confirms our intuition that
distant supervision noise is similar to random noise as
for both types of noise, the labels are disconnected from
textual data. However, comparing Figures 7a and 7b, we

3. We have demonstrated the effectiveness of random sampling for
structural noise in our prior work [21].
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observe that uncertainty sampling is slightly less effective in
case of DS noise than for random noise. For the Employee
dataset with DS noise, we also observe high coverage of
uncertainty sampling: 20% of the selected instances cover
50% of the wrong predictions. The Top Members dataset
is more challenging due to a higher class imbalance (only
26.7% of the original labels are positive) causing a fuzzy
decision boundary between the two classes; consequently,
uncertainty sampling performs equivalently well to ran-
dom. Overall, our evaluation shows that for both DS and
random noise, uncertainty sampling performs at least as
well as random sampling while achieving notably higher
performance most of the time.

5.4 Impact of Symbolic Rules (Q3)

For all datasets, we automatically extract rules according to
the instances sampled by uncertainty sampling with ratio
p = 0.2. For each of the extracted rules, we plot the support
value (i.e., the number of instances matching a certain rule)
against the number of sampled instances in Figure 8. This
gives us a better understanding of what rules could not be
captured by the model because of noisy labels. Specifically, a
decreasing curve means that the deep probabilistic model is
highly uncertain about the instances matching the rule and
vice versa. Therefore, rules corresponding to a decreasing
curves are considered as the most beneficial for noise reduc-
tion. For instance, from Figure 8a we observe that for the
Title dataset with random noise, the curves corresponding to
the rules “Obj-Title Subj-Person” and “Obj_Right_Person”
are slightly increasing, which means that the model cap-
tured them during initial training. However, for the Title
dataset with DS noise, the curve “Obj_Right_Person” is
slightly decreasing (see Figure 8b), therefore, the model is
likely to benefit from: it.

For the other two datasets, the picture is more precise:
there are certain rules that correspond to sharply decreasing
curves, such as the “Obj-Person , J] NN IN DT Subj-Org”
rule for Top Members. It improves the resulting accuracy
by 2.4% and 3.9% AUC while there are only 68 instances
in the dataset matching this rule. Similarly, for Employee
the rule “Subj-Person , NN IN DT Obj-Org” with 39 data
instances boosts the accuracy by 12.3% and 6.5% AUC.
While having the same confidence close to 1, the rule “Obj-
Org NN Subj-Person” (see Figure 8d) is less beneficial: it
improves accuracy by 6.7% and 4.1% AUC while its support
is much higher (128 data instances). Thus, we conclude that
uncertainty sampling helps identifying the most useful rules
for debugging noisy labels.

It is worth noting that using part-of-speech tags in ad-
dition to tokens (see Section 4.4) allows to better generalize
over the existing rules and extract rules with higher support.
Impact of Noise Types. Table 3 presents the performance
of these rules on debugging noisy labels for both types of
noise. We use the same value of 3 that yielded the top results
of the deep probabilistic model and we select the optimal
parameter o from {0.1,1, 10} for each of the rules using the
validation set: & = 10 for the two rules with the highest
coverage and o = 1 for the remaining rules. It is worth
noting that a rule with low confidence (e.g., “Obj-Title , Subj-
Person” with confidence 0.76) might hurt the performance
even though is satisfies Eq. (7).
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TABLE 3
Performance comparison of different rules on debugging noisy labels
on Title dataset for random and DS noise.

Patterns Random Noise DS noise
Acc. AUC |Acc. AUC
Original labels 0.602 0.602 0.582 0.59
No rules 0.713 0.778 0.685 0.743
Obj-Title Subj-Person 0.705 0.770 0.706 0.778
Obj_Right_Person 0.697 0.764 0.687 0.758
Subj-Person, Obj-Title 0.688 0.764 0.636 0.707
Subj-Person, DT Obj-Title 0.706 0.773 0.674 0.742
Obj-Title , Subj-Person 0.691 0.758 - -
Subj-Person, DT ]J Obj-Title | — - 0.685 0.763
All rules |0.707 0.775 | 0.719 0.793

For random noise, we observe that the deep probabilistic
model reconstructs the true labels effectively during the ini-
tial training. Using rules does not have significant impact on
the performance, which is consistent with our conclusions
from Figure 8a. DS noise is more challenging for the model.
Injecting the rules boosts model performance by 2.4% in
accuracy and 3.8% in AUC and allows the model to infer
true classes more effectively.
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5.5 Performance on Debugging Labels (Q4)

We now analyze the effect of injecting knowledge into the
deep probabilistic model and compare performance of our
proposed system with state-of-the-art noise reduction mod-
els on datasets with DS noise. Table 4 (“Noise Reduction”)
presents the experimental results of our deep probabilistic
model alone and Nessy as a whole system, along with
the baselines including our previous work Scalpel-CD*. For
Nessy we report the best results achieved with the combi-
nation of the rules obtained as described in Section 4.4.
Ratio works well on Title and Employee, however, it
fails for Top Members due to its class imbalance and the
larger number of features (i.e., patterns between the pairs
of entities). Pattern improves label quality for Title and Top
Members, however it performs marginally worse than Ratio
on Employee. Recall that both methods use low-level fea-
tures (i.e., patterns between the entities) for label inference.

4. We also include a case study in the supplementary material.



TABLE 4
Performance of the compared methods on two settings: debugging
noisy labels and relation extraction. The best performance for each
dataset in each setting is boldfaced.

Title Employee = Top Members

Methods Ace.  AUC | Ace.  AUC | Acc. AUC

&  Original labels | 0582 059 | 0.618 0639 | 0.719 0.584
T Ratiobased | 0.663 0666 [ 0627 0647 | 0714 0571
2 Pattern 0692 0.693 | 0.624 0.644 | 0.727 0.637
2 HierTopic 0706 0.678 | 0.801 0.849 | 0.751 0.714
£ DPM 0.685 0743 | 0.849 0931 | 0.738 0.706
Z  Scalpel-CD 0709 0713 | 0.882 0.885 | 0.747 0.635
Nessy 0719 0.793 | 0.973 0.997 | 0.776 0.788
¥ PA-LSTM 0578 0.626 | 0.740 0.830 | 0.736 0.737
E w/DPM 0.691 0747 | 0.919 0994 | 0.699 0.729
8 W/ Nessy 0736 0.806 | 0.998 0.999 | 0.765 0.817

Both Ratio and Pattern improve label quality, indicating that
even such features carry valuable information about the
true label and consequently are useful for debugging noisy
labels. On the other hand, HierTopic builds a hierarchical
structure from the data and does not improve over Pattern
on the Title dataset, but demonstrates its ability to effec-
tively recover true labels on Employee and Top Members.
Thus, we conclude that low-level features and modeling the
inherent structure of the data are complementary to each
other and applying them jointly lies at the core of a robust
method for label noise reduction.

Our proposed deep probabilistic model also performs
differently on the different datasets. Similar to HierTopic, it
is less accurate than Pattern on Title, highlighting the fact
that low-level features in this case are indicative enough to
achieve a notable improvement over the noisy labels. Our
model outperforms HierTopic on Employee and achieves
similar performance on Top Members, highlighting the im-
portance of learning data structures for those datasets where
low-level features are insufficient.

Nessy achieves the best performance on all studied
datasets. Nessy outperforms the deep probabilistic model
alone by 6.5% in accuracy and 6.6% in AUC on average. This
highlights the importance of integrating symbolic knowl-
edge with deep learning models. Compared to the state of
the art, Nessy improves accuracy by 7% and AUC by 10.7%
on average on the datasets with distant supervision noise.
Impact on Learning Task. We separately evaluate the im-
pact of using Nessy for denoising training data and for re-
lation extraction (see Table 4, “Learning”). The performance
of the state-of-the-art models improves significantly when
using our deep probabilistic model on all datasets except
Top Members. The model achieves further improvement on
each dataset when the whole system is applied. On average,
performance of PA-LSTM on relation extraction improves by
14.8% accuracy and 14.3% AUC using Nessy. These results
clearly highlight the benefits of debugging noisy labels and
the effectiveness of Nessy.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented Nessy, a neuro-symbolic system
that integrates deep probabilistic modeling with symbolic
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knowledge for debugging noisy labels. Nessy extracts sym-
bolic rules, ranks them according to their utility, and in-
jects them into a deep probabilistic model via expectation
regularization by adding a posterior regularization term
to the objective function for constraining model inference
on instances that match those rules. Our extensive evalu-
ation on several relation extraction tasks demonstrate that
the symbolic rules provide an efficient boost to the deep
probabilistic model in inferring the true classes. Integrated
with those rules, Nessy significantly improves both label
quality and the performance of the state-of-the-art rela-
tion extraction models. We make our code available at
https:/ / github.com/eXascaleInfolab/Nessy_RE. As future
work, we plan to explore possible relationships between the
rules and other features [46].
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