
Butyaev et al.

RESEARCH

3DGB: A Low-Latency, Big Database System and

Browser for Storage, Querying and Visualization

of 3D Genomic Data

Alexander Butyaev1†, Ruslan Mavlyutov2†, Mathieu Blanchette1, Philippe Cudré-Mauroux2 and Jérôme

Waldispühl1*

*

Correspondence:

jeromew@cs.mcgill.ca

1

School of Computer Science,

McGill University, 3480 University

Street, H3A 0E9 Montreal,

Canada

Full list of author information is

available at the end of the article

†
Equal contributor

Abstract

Recent releases of genome 3D structures have the potential to transform our
understanding of genomes. Nonetheless, the storage technology and visualization
tools need to evolve to enable users fast and easy access to these data. We
introduce simultaneously a database system to store and query 3D genomic data
(3DBG), and a genome browser to visualize and explore 3D genome structures
(3DGB). We benchmark 3DBG against state-of-the-art systems, and demonstrate
that it is faster than previous solutions, and importantly gracefully scales with the
size of data. The 3D genome browser is available at
http://3dgb.cs.mcgill.ca/.

Keywords: Genome Browser; 3D structure; Database

Rationale
Biological motivation

The release of the first draft of the human genome [1, 2] announced the beginning

of a data era in genomics. Gathering information does no longer appear as a major

bottleneck in molecular biology studies. However, by contrast, storing and mining

the massive amounts of data generated by genomics studies becomes increasingly

di�cult.

The development of e�cient computing infrastructures to store and retrieve ge-

nomic information is thus an essential part of the discovery pipeline in genomic

research. The UCSC genome browser [3, 4] and the Ensembl genome browser [5, 6]

were among the first systems specifically developed to address this issue and opened

the access of sequencing data to the whole scientific community.

Since then, the diversity and size of the genomic data continued to grow, but

the technology used to store the data did not drastically evolve. Recent endeavours

such as the 1000 Genomes Project [7] or the 10k Genomes Project [8] illustrate

the exponential growth of sequencing data generated by new genomic projects. Yet,

such projects continue to rely on the same types of storage paradigms developed

more than 15 years ago.

In addition to the sheer size of the datasets, the complexity and the nature of the

data themselves are also changing. In particular, the primary structure of genomes

does no longer appear to contain all the information required to decipher our ge-

netic code. Instead, recent studies suggest that the three-dimensional structure of

genomes is essential to understand some regulatory mechanisms [9].



Butyaev et al. Page 2 of 19

Three-dimensional structures and Hi-C data sets of Human [10, 11] or Yeast

genomes [12] are now available. Viewers have been developed to visualize complete

genome structures [13] and Hi-C data annotations have been integrated in classi-

cal genome browsers [14]. However, to date, there is no scalable solution to query

simultaneously primary and tertiary genome structures. Moreover, unlike classical

human genome browsers, these viewers are currently only available as OS-specific

standalone applications that are not embedded into Web browsers.

Database technology

There has been substantial related work on storing and querying three-dimensional

data. Existing approaches can be broadly categorized along three axes:

• Index-based vs. cluster-based. Most existing work builds a 3D index over the

raw data, but does not attempt to physically reorganize the raw data (index-

based) so that co-queried objects are stored near each other (cluster-based).

• Adaptive vs. non-adaptive. Adaptive systems adjust storage structures based

on the query size and / or the data. They generally require less tuning and

can typically handle a broader range of data sets than non-adaptive systems.

• On-line vs. o↵-line. On-line systems change their storage representation as

data arrives, whereas o↵-line systems assume that the indexed data does not

change frequently and must recompute their storage layout from scratch as

data arrives.

The “classic” database structure for indexing objects along multiple dimensions is

the R-Tree [15]. Unlike 3DBG, R-Trees do not per se cluster data and are optimized

for accessing arbitrary spatial objects, rather than large amounts of data organized

along 3D trajectories. Of course, it is possible to attempt to physically co-locate

(cluster) objects in the same R-Tree rectangle together on disk. Even so, as R-Trees

consider nested bounding rectangles to index the objects, it is very likely that if

there is much data within a small area, there will be large overlaps in these bounding

rectangles, resulting in many I/Os to answer any query.

There have been many optimizations to R-Trees for spatio-temporal data, includ-

ing TB-Trees [16] and SEB-Trees [17]. TB-Trees are optimized R-Tree indices with

special support for temporal predicates. They also do not deal well with very long

3D trajectories that tend to have very large bounding rectangles, and can include

a high number of I/Os per lookup. SEB-Trees segment space and time, but are not

specifically designed for indexing trajectories. Research on TB-trees and SEB-trees

does not explicitly discuss how to cluster data, and both are non-adaptive (i.e., they

do not reorganize previously added pages as new data arrives.)

To address the concern with very large 3D meshes or trajectories, several systems

have proposed segmenting the trajectories to reduce the sizes of bounding boxes and

group portions of trajectories that are near each other in space together on disk.

Rasetic et al. [18] propose splitting trajectories into a number of sub-trajectories,

and then indexing those segments in an R-Tree. They propose a formal model for

the number of I/Os needed to evaluate a query, and use a dynamic programming

algorithm to minimize the I/O for an average query size. 3DBG also includes an

algorithm for optimally splitting 3D genomic meshes and their associated metadata,

but in addition physically clusters those segments rather than just indexing them.



Butyaev et al. Page 3 of 19

SETI [19] also advocates a segmentation-based approach like 3DBG. It segments

incoming 3D meshes/trajectories into sub-trajectories, groups them into a collection

of “spatial partitions”, and then runs queries over just the spatial partitions that are

most relevant to a given query. The principal di↵erences between 3DBG and SETI

are that: 1) the SETI paper does not describe how the size or geometry of partitions

are selected, or whether it changes as inserts occur, which is a key contribution

of 3DBG, and 2) SETI does not discuss metadata storage and clustering, read-

optimized operations, or scalability features.

PIST [20] focuses on indexing individual points rather than 3D meshes. PIST is

similar in spirit to 3DBG in that it attempts to optimally partition a collection of

points into a variable-sized grid according to the density of the data and query size

using a quad-tree like data structure. Unlike 3DBG, PIST is o↵-line (i.e., it does

not adapt to new data being added dynamically).

A number of other systems, such as STRIPES [21], use a dual transformed space

to index meshes or trajectories. While such indices are very compelling when in-

dexing the future positions of moving objects, they are known to be suboptimal for

answering historical or ad-hoc queries [22].

Spatial clustering has been extensively studied [23, 24, 25]. These approaches

focus on generic methods to extract cluster information from large collections of ad

hoc data points. Our clustering problem is more specific, since we deal with series

of points ordered along 3D genes, and more importantly on the (potentially large)

metadata associated to the 3D models.

Contribution

In this paper, we introduce a complete e�cient and scalable database system to

query genomes in space. The system includes two components: (i) a database 3DBG

to store and query the 3D genomic data, and (ii) a web browser 3DGB to visualize

and navigate 3D genome structures. As far as we are aware, 3DBG is the first

database system that is online, adaptive, and cluster-based. We designed 3DBG to

optimize the speed of searching and accessing genomic annotations from their 3D

spatial coordinates in genome structures. We also develop a lightweight 3D genome

viewer 3DGB that is fully embedded in Web browsers and accessible to any web

user who wishes to browse and query 3D genome structures.

Our system aims to foster the discovery of spatial relationships between genomic

elements and accelerate the large-scale analysis of space-dependent regulatory mech-

anisms. Here, we map data from the 1000 genomes project [7] and experimental

Chip-Sequencing data [4] onto most recent 3D models of the Human genome [10, 11],

and use 3DBG to mine these data. We benchmark 3DBG against state-of-the-art sys-

tems, and demonstrate than our database system is faster than previous solutions,

and more importantly that it scales better with the size of data. We also illus-

trate the usefulness of our system and use our 3D genome Web browser to explore

the 3D neighbourhood of the retinoblastoma gene (RB1) and identify potentially

interesting genetic relationships between retinoblastoma and sleep disorders.

Our system is freely available at https://github.com/mavlyutovrus/3d_

genome_browser and a sample deployment of our 3D genome explorer is acces-

sible at http://3dgb.cs.mcgill.ca/.



Butyaev et al. Page 4 of 19

Description of the database
3D genome database

We have implemented a fully-functional database based on YARN [26], currently

one of the most promising Big Data processing framework available. 3DBG takes

advantage of the lower-level distributed filesystem of YARN (HDFS) to store the

data chunks over large clusters of commodity machines. Our system is based on

three main components:

• a 3D client, which is pre-loaded with low resolution 3D models of the genome

considered. The client allows the user to navigate through the 3D genomic

space. It dynamically retrieves hi-resolution 3D data and genomic metadata

from the rest of the system as the user moves through the 3D space and makes

queries about certain 3D regions.

• a sparse, adaptive 3D index, which dictates how genomic metadata asso-

ciated to contiguous regions in the 3D space are co-located in the distributed

filesystem. The 3D index translates the 3D query posed by the user into a se-

ries of data chunks that have to be retrieved from the distributed filesystem.

• immutable data chunks that compactly store genomic data and metadata

in the distributed filesystem.

Figure 1 gives an overview of our database. We implemented our own indices

and ancillary data structures to optimize all operations, and bypass the Hadoop

NameNode whenever possible to reduce the end-to-end latency of the queries. We do

not rely on higher-level Hadoop data structures such as those o↵ered by HBase [27]

or Impala [28], since these higher-level structures negatively impact the performance

of online queries. Along similar lines, we do not directly use large-scale batch-

processing features a la MapReduce, since they would introduce unreasonably high

latencies in our context, but could take advantage of such functionalities for o✏ine

operations such as batch-updates or complex analytics.

A detailed description of each component of our database, as well as an expla-

nation on our query insertion and query execution techniques, is available as sup-

plementary material. The full codebase of our current implementation is available

online https://github.com/mavlyutovrus/3d_genome_browser.

Data and Web-Services

We describe the data stored in our database and the syntax of web queries to access

them. Additional instructions for javascript users can be found at http://3dgb.

cs.mcgill.ca/scripting/general_functions_to_access_3DGB_data_JSON.js.

3D structures

Currently, three complete models of human 3D genome structures are stored in

our database. We retrieve these data from [13, 11] and describe them in Table 1.

It is worth noting that [11] provides individual structures for each chromosome,

but no global relative arrangement of all chromosomes. For this reason, we provide

independently each chromosome structure.

The structures are interpolated with a finite number of points. This number of

points depends of the resolution of the model and therefore varies from one model

to another.



Butyaev et al. Page 5 of 19

The volume encompassing the genome structure is segmented in 3D cubic cells.

Spatial queries use the coordinates of a cube (starting and ending positions on the

x, y, and z axis) as an input, and return the coordinates of the interpolation points

modelling the DNA chains contained within this cell. In particular, it allows us to

identify the ranges of DNA subsequences within this volume.

The syntax of a query is http://1kgenome.exascale.info/<mode>?xstart=

<x1>&xend=<x2>&ystart=<y1>&yend=<y2>&zstart=<z1>&zend=<z2>, where <mode>

should be replaced by js_test to query the model from [13], or 3d to query

the model from [11]. <x1> to <z2> indicate the spatial coordinate of the cell.

Queries to the structure issued from [11] should also include the chromosome

number and the type of the cell (normal or leukemia). In that case, an exam-

ple of a full query could be: http://1kgenome.exascale.info/3d?chr=19&m=

normal&xstart=1&xend=2&zstart=1&zend=2&ystart=1&yend=2. The output is

represented as an array of arrays, which represent contiguous chains within the

volume.

Nucleotide sequences

We use GRCh38 assembly of the human genome from the UCSC genome browser as

our reference human sequence [3, 4]. Nucleotide sequences can be accessed from their

chromosomic location. The syntax of a query is http://1kgenome.exascale.info/

range?start=<start>&end=<end>&chrid=<chr>, where <start> and <end> are

the first and last index of the subsequence of interest, and <chr> is the chromosome

number (N.B.: X and Y chromosomes are identified using letters X and Y instead

of numbers).

Single Nucleotide Polymorphism

We store the Single Nucleotide Polymorphism (SNP) data from the 1000 Genomes

Project [7]. Web users can retrieve SNPs data within a specific range of a chro-

mosome with the following query http://1kgenome.exascale.info/js_snp?chr=

<chr>&start=<start>&end=<end>, where <start> and <end> are the first and last

index of the subsequence of interest, and <chr> is the chromosome number.

A query returns an array of arrays showing information for each individual SNP

found within this interval. This information is represented as a 4-tuple including

the SNP position, the SNP ID and the two alleles.

Experimental ChIP-Sequencing data

We recorded experimental ChIP-Sequencing (Chip-Seq) data from the ENCODE

project [29] stored in the UCSC genome browser [3, 4]. These data help us to

identify transcription factors binding sites (TFBS).

ChIP-Seq data can be retrieved with a query to http://1kgenome.exascale.

info/chipseq?chr=<chr>&start=<start>&end=<end>&celline=<cellid>, where

<start> and <end> are the first and last index of the subsequence of interest, <chr>

is the chromosome number, and <cellid> is the cell line from which we obtained

the experimental data. It is worth noting that in practice, Chip-Seq data may not

always be available for all 3D structures models and cell types.



Butyaev et al. Page 6 of 19

The output of such query is an array of 7-tuples that contain basic information

on the Chip-Seq data. A 7-tuple stores the chromosome number, starting and end-

ing index of the Chip-Seq peak, the transcription factor name, a normalized value

(ranging from 1 to 1000) indicating the magnitude of the binding, the cell lines with

similar TFBS, and a list of SNPs occurring in this binding site.

Determining single nucleotide 3D coordinates

A key feature of a system for querying genomes in space is its capacity to directly

access the 3D coordinates of any nucleotide. However, 3D genome structures are

often modelled with (sparse) discrete sets of points corresponding to enzyme cut

sites. In that case, it is useful to directly access the closest cut site (in each strand

direction) of a model.

This information is accessible with a web query to http://1kgenome.exascale.

info/chr_pos?chrid=<chr>&bp=<index>&m=<mode>, where <chr> is the chromo-

some number, and <index> the sequence index of the nucleotide. The variable

<mode> should be set at “normal” to query the GM06990 cell data or “leukemia” to

query the leukemia cell data (N.B.: these key words are subject to change for more

precise acronyms with the addition of new cell types). This argument can be simply

ignored if the user wishes to query the K562 data. The query returns an array of

triplets indicating the 3D coordinate of the closest interpolation points.

Benchmark of the database system
Experimental Setting

To evaluate the performance of our system, we used sequence read alignments of

chromosome 11 available from the 1000 Genomes project [7]. This data consists of

short (around 100 bases) DNA sequence reads, mapped onto the Human reference

genome. We used approximatelly 1.5 billions of records, which constitute 250GB of

raw data.

All data have been stored in a cluster (Hadoop version 2.2.0) of 10 machines.

Worker nodes were commodity machines with Quad-Core Intel i7-2600 CPUs @

3.40GHz, 8GB of DDR3-1600 RAM, 500GB Serial ATA HDD, running Ubuntu

12.04.2 LTS. The index node was similar, but with 16GB RAM. The replication

factor was set to 3.

The main metric we take into account is response time (latency). As a matter

of fact, execution time depends on the amount of records to be returned. In our

context, we considered simple, uniform, and fixed-size cube queries returning from

100 to 1000 records.

Benchmarking against the PostGIS Database

The performance of storage systems can be characterized by their speed to access

the data (i.e., by the average time needed to execute a query) and the influence of

the size of the output on the time required for returning a response. In this section,

we evaluate the performance of 3DBG compared to the PostGIS database [30] to

store and query 3D neighborhoods of a genome.

We uploaded in the database a data set of approximately 1.5 GB (gigabytes)

that contains the 3D coordinates of reference points of a simulated model of the



Butyaev et al. Page 7 of 19

human genome [13]. All these positions were indexed in the database using the

spatial index (The description of PostGIS’s spatial index can be found at http:

//revenant.ca/www/postgis/workshop/indexing.html). Then, we measured the

speed of reaching the data through the Java application using the PostGIS JDBC

driver, and the influence of the size of the output (results of query) on the processing

time.

In our experiments, we queried for all di↵erent reference points available in the

model, and called the database to get all points that were stored in the cube centered

around the current reference point, with a constant edge size (100, 200, 300 and

400 points). Our results are shown in Figure 3 and Figure 4.

Figure 3 shows the speed of accessing the data. Here, PosGIS has on average a

query execution time well above 300 ms, and thus well above the time to gracefully

retrieve and visualize data dynamically for online 3D browsing. By contrast, when

we run the same experiment with 3DBG, the access time is clearly below this thresh-

old. This observation demonstrates that 3DBG performs satisfactorily to visualize

the 3D space at high resolution, while the latency of standard solutions such as

PosGIS is too high, even for relatively small datasets.

Next, for each edge size (size of the neighborhood delimited by the cube query),

we plot in Figure 4 the relation between the processing time and the size of the

neighborhood that we wish to explore. Here again, we observe that PostGIS yields

unsatisfactory latencies, which rapidly grow as we retrieve more data.

Benchmarking against the Hbase Database

To compare the performance of our back-end solution with Hbase [27], we installed

an Hbase cluster (version 0.96.1) on our experimental infrastructure. We also split

all data according to our index for HBase, but used a standard HBase database

rather than our own chunk storage. The caching for the Hbase cluster was switched

o↵ to ensure valid results. Figure 5 shows the results. As can be observed, the

execution times of our system is much lower than those of HBase. 3DBG is even

several times faster than HBase for relatively small queries (left of the graph),

thus ensuring a smooth navigation from the client side. Overall, both systems scale

gracefully, thanks to the indexing and clustering o↵ered by our adaptive 3D index.

Description of the 3D genome browser
3D genome Web visualization interface

Web users can access and visualize data stored in our servers via a GUI accessible

at http://3dgb.cs.mcgill.ca/. Our client, based on dynamic Javascript mostly

allows the user to navigate through the 3D structure in real-time, fetching genomic

data as well as high-resolution 3D meshes representing the DNA backbone from

the server. It runs on most common web browsers (Firefox and Chrome). This

contrasts with previous viewers that were implemented as standalone applications

for specific operating systems. The source code of our browser is freely available at

https://github.com/mavlyutovrus/3d_genome_browser.

Before starting to explore 3D genome structures, the users must select a model.

The front page of 3DGB allows users to select which model they wish to use. Cur-

rently, three complete 3D data sets have been implemented in the database. The



Butyaev et al. Page 8 of 19

first is a simulation of the complete diploid human genome by T. M. Asbury et al.

[13], while the second and third ones are recent reconstruction of individual chro-

mosomes by T. Trieu and J. Cheng [11] for normal B-cells (GM06990) and acute

lymphoblastic leukemia cells respectively. New models will be added to the database

as they appear in the literature.

Once a model is selected, users access a search engine that enables them to di-

rectly request specific genomic locations (i.e. chromosome number and position),

target genes, or arbitrary spatial coordinates. Queries re-direct the users to a 3D

structure viewer pointing at the desired location. From there, they can explore and

navigate the genome structure in real-time. The web client downloads all genomic

and structural data in the neighbourhood of the query location. More data are

dynamically loaded when the user travels in the 3D space. This allows a smooth

exploration of the 3D genome structure on any computing device. A screenshot of

the 3D genome browser is presented in Figure 2.

Web tools

The viewer implements multiple features allowing its users to access and visualize

Human genome data stored in the database. At the core of 3DGB resides our ability

to define and query a 3D neighbourhood, and thus to identify potential spatial

relationship between genomic elements. In our viewer, a cursor of points at the

centre of a box representing a neighbourhood to be explored. This neighbourhood

is represented by the red box in Figure 2. The size of the box is adjustable (by

scrolling up or down), allowing the users to tune the range of spatial relationships.

Once a volume has been selected (directly from a query or following an exploration

of the genome structure), the user can retrieve and download the list of all SNPs

located within that box, or use hyperlinks to directly access detailed information

stored on the NCBI databases [31] for each individual SNP. In addition, it is also

possible to access the list of all genes present in the query cell.

Alternatively, the users can switch to a linear mode. In that case, the neighbour-

hood of the query position is defined as a sequence interval. It is equivalent to the

viewing frame used in classical (i.e. one dimensional) genome browsers. This mode

also allows the users to retrieve all SNPs present in this 1D neighbourhood.

The third mode enables the users to highlight transcription factor binding sites

in the viewer. TFBSs are represented as coloured regions of the DNA chain. The

colour indicates the intensity of the Chip-Seq experiment (green for low to red for

high). The user can access detailed information about the Chip-Seq data by clicking

on the TFBS region, or access UCSC genome browser records through an hyperlink.

Finally, we implemented a distance calculation tool that enables the users to

automatically determine the physical distance between two points in space. We

intentionally did not used physical units, but instead rely on the model coordinates.

Indeed, the determination of physical distances require to interpret experimental

data and make approximations which are often subject of discussions. By contrast,

we believe that arbitrary units allows the users to estimate relative di↵erences and

leave them the freedom to interpret the experimental data used to obtain the 3D

model.



Butyaev et al. Page 9 of 19

Visualization of custom genotyping data

An important feature of our viewer is to enable users to map their private genotyping

data onto reference 3D architectures, and allow them to visualize the data within

our browser. This functionality is intended to provide users with tools to identify

geometrical dependencies in custom genotyping data sets. The query interface allows

users to upload a local file containing genotyping data. In order to prevent any

formatting issues, we implemented a program to validate and convert most standard

genotyping data file.

Once uploaded, the users can browse and query the 3D genome as described above.

In addition to the reference data stored in our database, the users can now access

simultaneously the reference SNPs collected from [32] together with those stored

in the local file. To prevent any privacy issues, user data are stored locally and

not transmitted to our server. A similar solution has been adopted by the UCSC

genome browser [33].

Exploring of the 3D neighbourhood of a gene
Methodology and experimental settings

We illustrate the usefulness of 3DGB with an exploration of the 3D neighbourhood

of the Retinoblastoma 1 gene (RB1) – a tumor suppressor gene that has been

associated with many types of cancer. This experiment does not necessarily intend

to provide new insights into RB1 regulatory mechanisms, but aims to demonstrate

what type of novel information can be obtained with the use of 3DGB.

We started our investigation by exploring a 3D neighbourhood centred on the

promoter of the RB1 gene in the 3D structure of chromosome 13 in normal B-cells

(GM06990) [11]. We retrieved the list of SNPs found in the promoter region of RB1,

and in other DNA strands that are not in the immediate sequence neighbourhood

of RB1 promoter.

Distribution of SNPs in the 3D neighbourhood of RB1

In addition to the promoter region, we found 3 other strands in the spatial vicinity

of RB1: S
1

(44762907, 45379923), S
2

(57184305, 57531250), and S
3

(58747059,

59087738). These strand are located in a radius R = 0.2 of RB1 transcription start

site, which corresponds approximately to 88 Å.

A total of 1199 SNPs were identified in this 3D neighbourhood, for which we

retrieve their associated phenotype from [31]. A complete list of these SNPs with

associated phenotypes is available in the supplementary data. As expected we iden-

tified many SNPs related to various types of cancer. However, another interesting

finding has been to detect the occurrence of one SNP (rs10492604) related to sleep

disorders in the strand S
3

. Importantly, we found only 2 SNPs related to sleep

disorders in the whole chromosome. Moreover, with a distance of 230 Å from the

beginning of RB1 gene (R = 0.53), this other SNP (rs10492507) is also in the

vicinity of RB1 gene.

Previous studies have identified that children with hereditary retinoblastoma

have also an increased risk of developing trilateral retinoblastoma [34]. Trilat-

eral retinoblastoma is the combination of retinoblastoma (usually bilateral) and

pineoblastoma (a tumour in the brain’s pineal gland). The pineal gland secretes



Butyaev et al. Page 10 of 19

multiple hormones (including melatonin) that are implicated in the regulation of

sleep patterns in seasonal and circadian rhythms [35].

Although our finding does not implies any causation, it suggests possible interest-

ing genetic relationships between retinoblastoma and sleep disorders. The scripts

used in this experiment are available at http://3dgb.cs.mcgill.ca/scripting.

html.

Conclusions
We presented 3DBG, a novel storage paradigm and database system to store and

query genomic data in a 3D space, and developed a lightweight 3D genome browser

to visualize and navigate these data from any internet browser.

We compared 3DBG to existing systems, and demonstrated that our technology

enables us to significantly lower the latency of spatial queries. Importantly, we also

showed that our system scales gracefully when handling more data. This technology

aims to develop the infrastructure needed to mine big data sets generated by new

large-scale genomic studies, and to prepare the next-generation of genome browsers.

Although this paper focuses on the technical description of the database system

and the evaluation of its performances, we designed 3DBG to permit complex queries

in the 3D space. In particular, we also aim to use our system to extract spatial-

relationship between genomic elements in genome-scale studies, for example using

e�cient batch-oriented operations a la MapReduce on top of our data chunks (im-

plementing such features is easy, as our whole system is based on the lower-levels of

the Hadoop/Yarn stack). An example of such queries could be to retrieve all pairs

of enhancers/promoters that are co-localized in the the 3D genome structure.

Finally, even though we did not specifically tailored 3DBG to optimize the storage

space, 3DBG is already at least as e�cient as existing systems. Further versions of

the database will integrate compression techniques in order to reduce the space

requirements and further reduce query latencies.

Acknowledgments
This work was supported in part by a Genome Canada and Genome Québec grant

(Bioinformatics and Computational Biology competition) and a Canadian Institutes

of Health Research grant CIHR BOP-130836 to JW and MB, and by a Natural

Sciences and Engineering Research Council of Canada Discovery grant NSERC

RGPIN 386596-10 to JW.

Competing interests

The author(s) declare that they have no competing interests.

Contributions

AB and RM implemented the 3D genome browser and the database system. All authors participated to the design

of the system and the writing of the manuscript.

Author details
1

School of Computer Science, McGill University, 3480 University Street, H3A 0E9 Montreal, Canada.

2

eXascale

InfoLab, University of Fribourg, Bd de Pérolles 90, 1700 Fribourg, Switzerland.



Butyaev et al. Page 11 of 19

References
1. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle,

M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine,

R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J.P., Miranda, C., Morris, W., Naylor, J., Raymond, C.,

Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-Thomann, N., Stojanovic, N., Subramanian, A.,

Wyman, D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N.,

Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D.,

Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer,

S., Milne, S., Mullikin, J.C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims, S., Waterston, R.H.,

Wilson, R.K., Hillier, L.W., McPherson, J.D., Marra, M.A., Mardis, E.R., Fulton, L.A., Chinwalla, A.T., Pepin,

K.H., Gish, W.R., Chissoe, S.L., Wendl, M.C., Delehaunty, K.D., Miner, T.L., Delehaunty, A., Kramer, J.B.,

Cook, L.L., Fulton, R.S., Johnson, D.L., Minx, P.J., Clifton, S.W., Hawkins, T., Branscomb, E., Predki, P.,

Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng, J.F., Olsen, A., Lucas, S., Elkin, C., Uberbacher,

E., Frazier, M., Gibbs, R.A., Muzny, D.M., Scherer, S.E., Bouck, J.B., Sodergren, E.J., Worley, K.C., Rives,

C.M., Gorrell, J.H., Metzker, M.L., Naylor, S.L., Kucherlapati, R.S., Nelson, D.L., Weinstock, G.M., Sakaki, Y.,

Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T.,

Weissenbach, J., Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C.,

Wincker, P., Smith, D.R., Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H.M., Dubois, J.,

Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G., Gu,

J., Hood, L., Rowen, L., Madan, A., Qin, S., Davis, R.W., Federspiel, N.A., Abola, A.P., Proctor, M.J., Myers,

R.M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D.R., Olson, M.V., Kaul, R., Raymond, C., Shimizu, N.,

Kawasaki, K., Minoshima, S., Evans, G.A., Athanasiou, M., Schultz, R., Roe, B.A., Chen, F., Pan, H., Ramser,

J., Lehrach, H., Reinhardt, R., McCombie, W.R., de la Bastide, M., Dedhia, N., Blöcker, H., Hornischer, K.,

Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J.A., Bateman, A., Batzoglou, S., Birney, E., Bork, P., Brown,

D.G., Burge, C.B., Cerutti, L., Chen, H.C., Church, D., Clamp, M., Copley, R.R., Doerks, T., Eddy, S.R.,

Eichler, E.E., Furey, T.S., Galagan, J., Gilbert, J.G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H.,

Hokamp, K., Jang, W., Johnson, L.S., Jones, T.A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W.J., Kitts, P.,

Koonin, E.V., Korf, I., Kulp, D., Lancet, D., Lowe, T.M., McLysaght, A., Mikkelsen, T., Moran, J.V., Mulder,

N., Pollara, V.J., Ponting, C.P., Schuler, G., Schultz, J., Slater, G., Smit, A.F., Stupka, E., Szustakowski, J.,

Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y.I., Wolfe, K.H.,

Yang, S.P., Yeh, R.F., Collins, F., Guyer, M.S., Peterson, J., Felsenfeld, A., Wetterstrand, K.A., Patrinos, A.,

Morgan, M.J., de Jong, P., Catanese, J.J., Osoegawa, K., Shizuya, H., Choi, S., Chen, Y.J., Szustakowki, J.,

International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome.

Nature 409(6822), 860–921 (2001)

2. Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans,

C.A., Holt, R.A., Gocayne, J.D., Amanatides, P., Ballew, R.M., Huson, D.H., Wortman, J.R., Zhang, Q.,

Kodira, C.D., Zheng, X.H., Chen, L., Skupski, M., Subramanian, G., Thomas, P.D., Zhang, J., Gabor Miklos,

G.L., Nelson, C., Broder, S., Clark, A.G., Nadeau, J., McKusick, V.A., Zinder, N., Levine, A.J., Roberts, R.J.,

Simon, M., Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea,

L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh,

J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran, I., Charlab, R.,

Chaturvedi, K., Deng, Z., Di Francesco, V., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A.E., Gan, W.,

Ge, W., Gong, F., Gu, Z., Guan, P., Heiman, T.J., Higgins, M.E., Ji, R.R., Ke, Z., Ketchum, K.A., Lai, Z., Lei,

Y., Li, Z., Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G.V., Milshina, N., Moore, H.M., Naik, A.K., Narayan,

V.A., Neelam, B., Nusskern, D., Rusch, D.B., Salzberg, S., Shao, W., Shue, B., Sun, J., Wang, Z., Wang, A.,

Wang, X., Wang, J., Wei, M., Wides, R., Xiao, C., Yan, C., Yao, A., Ye, J., Zhan, M., Zhang, W., Zhang, H.,

Zhao, Q., Zheng, L., Zhong, F., Zhong, W., Zhu, S., Zhao, S., Gilbert, D., Baumhueter, S., Spier, G., Carter,

C., Cravchik, A., Woodage, T., Ali, F., An, H., Awe, A., Baldwin, D., Baden, H., Barnstead, M., Barrow, I.,

Beeson, K., Busam, D., Carver, A., Center, A., Cheng, M.L., Curry, L., Danaher, S., Davenport, L., Desilets,

R., Dietz, S., Dodson, K., Doup, L., Ferriera, S., Garg, N., Gluecksmann, A., Hart, B., Haynes, J., Haynes, C.,

Heiner, C., Hladun, S., Hostin, D., Houck, J., Howland, T., Ibegwam, C., Johnson, J., Kalush, F., Kline, L.,

Koduru, S., Love, A., Mann, F., May, D., McCawley, S., McIntosh, T., McMullen, I., Moy, M., Moy, L.,

Murphy, B., Nelson, K., Pfannkoch, C., Pratts, E., Puri, V., Qureshi, H., Reardon, M., Rodriguez, R., Rogers,

Y.H., Romblad, D., Ruhfel, B., Scott, R., Sitter, C., Smallwood, M., Stewart, E., Strong, R., Suh, E., Thomas,

R., Tint, N.N., Tse, S., Vech, C., Wang, G., Wetter, J., Williams, S., Williams, M., Windsor, S., Winn-Deen,

E., Wolfe, K., Zaveri, J., Zaveri, K., Abril, J.F., Guigó, R., Campbell, M.J., Sjolander, K.V., Karlak, B.,

Kejariwal, A., Mi, H., Lazareva, B., Hatton, T., Narechania, A., Diemer, K., Muruganujan, A., Guo, N., Sato,

S., Bafna, V., Istrail, S., Lippert, R., Schwartz, R., Walenz, B., Yooseph, S., Allen, D., Basu, A., Baxendale, J.,

Blick, L., Caminha, M., Carnes-Stine, J., Caulk, P., Chiang, Y.H., Coyne, M., Dahlke, C., Mays, A., Dombroski,

M., Donnelly, M., Ely, D., Esparham, S., Fosler, C., Gire, H., Glanowski, S., Glasser, K., Glodek, A., Gorokhov,

M., Graham, K., Gropman, B., Harris, M., Heil, J., Henderson, S., Hoover, J., Jennings, D., Jordan, C., Jordan,

J., Kasha, J., Kagan, L., Kraft, C., Levitsky, A., Lewis, M., Liu, X., Lopez, J., Ma, D., Majoros, W., McDaniel,

J., Murphy, S., Newman, M., Nguyen, T., Nguyen, N., Nodell, M., Pan, S., Peck, J., Peterson, M., Rowe, W.,

Sanders, R., Scott, J., Simpson, M., Smith, T., Sprague, A., Stockwell, T., Turner, R., Venter, E., Wang, M.,

Wen, M., Wu, D., Wu, M., Xia, A., Zandieh, A., Zhu, X.: The sequence of the human genome. Science

291(5507), 1304–51 (2001)

3. Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., Haussler, D.: The human

genome browser at ucsc. Genome Res 12(6), 996–1006 (2002)

4. Karolchik, D., Barber, G.P., Casper, J., Clawson, H., Cline, M.S., Diekhans, M., Dreszer, T.R., Fujita, P.A.,

Guruvadoo, L., Haeussler, M., Harte, R.A., Heitner, S., Hinrichs, A.S., Learned, K., Lee, B.T., Li, C.H., Raney,

B.J., Rhead, B., Rosenbloom, K.R., Sloan, C.A., Speir, M.L., Zweig, A.S., Haussler, D., Kuhn, R.M., Kent,



Butyaev et al. Page 12 of 19

W.J.: The ucsc genome browser database: 2014 update. Nucleic Acids Res 42(1), 764–70 (2014)

5. Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Cu↵, J., Curwen, V., Down, T.,

Durbin, R., Eyras, E., Gilbert, J., Hammond, M., Huminiecki, L., Kasprzyk, A., Lehvaslaiho, H., Lijnzaad, P.,

Melsopp, C., Mongin, E., Pettett, R., Pocock, M., Potter, S., Rust, A., Schmidt, E., Searle, S., Slater, G.,

Smith, J., Spooner, W., Stabenau, A., Stalker, J., Stupka, E., Ureta-Vidal, A., Vastrik, I., Clamp, M.: The

ensembl genome database project. Nucleic Acids Res 30(1), 38–41 (2002)

6. Flicek, P., Amode, M.R., Barrell, D., Beal, K., Billis, K., Brent, S., Carvalho-Silva, D., Clapham, P., Coates, G.,

Fitzgerald, S., Gil, L., Girón, C.G., Gordon, L., Hourlier, T., Hunt, S., Johnson, N., Juettemann, T., Kähäri,

A.K., Keenan, S., Kulesha, E., Martin, F.J., Maurel, T., McLaren, W.M., Murphy, D.N., Nag, R., Overduin, B.,

Pignatelli, M., Pritchard, B., Pritchard, E., Riat, H.S., Ru�er, M., Sheppard, D., Taylor, K., Thormann, A.,

Trevanion, S.J., Vullo, A., Wilder, S.P., Wilson, M., Zadissa, A., Aken, B.L., Birney, E., Cunningham, F.,

Harrow, J., Herrero, J., Hubbard, T.J.P., Kinsella, R., Mu↵ato, M., Parker, A., Spudich, G., Yates, A., Zerbino,

D.R., Searle, S.M.J.: Ensembl 2014. Nucleic Acids Res 42(1), 749–55 (2014)

7. 1000 Genomes Project Consortium, Abecasis, G.R., Altshuler, D., Auton, A., Brooks, L.D., Durbin, R.M.,

Gibbs, R.A., Hurles, M.E., McVean, G.A.: A map of human genome variation from population-scale sequencing.

Nature 467(7319), 1061–73 (2010)

8. Genome 10K Community of Scientists: Genome 10k: a proposal to obtain whole-genome sequence for 10,000

vertebrate species. J Hered 100(6), 659–74 (2009)

9. Mercer, T.R., Edwards, S.L., Clark, M.B., Neph, S.J., Wang, H., Stergachis, A.B., John, S., Sandstrom, R., Li,

G., Sandhu, K.S., Ruan, Y., Nielsen, L.K., Mattick, J.S., Stamatoyannopoulos, J.A.: Dnase i-hypersensitive

exons colocalize with promoters and distal regulatory elements. Nat Genet 45(8), 852–9 (2013)

10. Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie,

B.R., Sabo, P.J., Dorschner, M.O., Sandstrom, R., Bernstein, B., Bender, M.A., Groudine, M., Gnirke, A.,

Stamatoyannopoulos, J., Mirny, L.A., Lander, E.S., Dekker, J.: Comprehensive mapping of long-range

interactions reveals folding principles of the human genome. Science 326(5950), 289–93 (2009)

11. Trieu, T., Cheng, J.: Large-scale reconstruction of 3d structures of human chromosomes from chromosomal

contact data. Nucleic Acids Res 42(7), 52 (2014)

12. Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y.J., Lee, C., Shendure, J., Fields, S., Blau, C.A.,

Noble, W.S.: A three-dimensional model of the yeast genome. Nature 465(7296), 363–7 (2010)

13. Asbury, T.M., Mitman, M., Tang, J., Zheng, W.J.: Genome3d: a viewer-model framework for integrating and

visualizing multi-scale epigenomic information within a three-dimensional genome. BMC Bioinformatics 11, 444
(2010)

14. Zhou, X., Lowdon, R.F., Li, D., Lawson, H.A., Madden, P.A.F., Costello, J.F., Wang, T.: Exploring long-range

genome interactions using the washu epigenome browser. Nat Methods 10(5), 375–6 (2013)

15. Guttman, A.: R-Trees: a Dynamic Index Structure for Spatial Searching. In: SIGMOD (1984)

16. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel Approaches to the Indexing of Moving Object Trajectories. In:

VLDB (2000)

17. Song, Z., Roussopoulos, N.: SEB-tree: An Approach to Index Continuously Moving Objects. In: MDM (2003)

18. Rasetic, S., Sander, J., Elding, J., Nascimento, M.A.: A Trajectory Splitting Model for E�cient

Spatio-Temporal Indexing. In: VLDB (2005)

19. Prasad, V., Adam, C., Everspaugh, C., Patel, J.M.: Indexing Large Trajectory Data Sets With SETI. In: CIDR

(2003)

20. Botea, V., Mallett, D., Nascimento, M.A., Sander, J.: PIST: An E�cient and Practical Indexing Technique for

Historical Spatio-Temporal Point Data. GeoInformatica 12(2), 143–168 (2008)

21. Patel, J.M., Chen, Y., Chakka, V.P.: STRIPES: An E�cient Index for Predicted Trajectories. In: SIGMOD

(2004)

22. Porkaew, K., Lazaridis, I., Mehrotra, S.: Querying mobile objects in spatio-temporal databases. In: International

Symposium on Advances in Spatial and Temporal Databases (2001)

23. Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: OPTICS: Ordering Points to Identify the Clustering

Structure. In: SIGMOD (1999)

24. Wang, W., Yang, J., Muntz, R.R.: STING: A Statistical Information Grid Approach to Spatial Data Mining. In:

VLDB (1997)

25. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An E↵cient Data Clustering Method for Very Large

Databases. In: SIGMOD (1996)

26. Apache Hadoop NextGen MapReduce. http://hadoop.apache.org/

27. HBase. http://hbase.apache.org/

28. Impala. http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html

29. ENCODE Project Consortium: The encode (encyclopedia of dna elements) project. Science 306(5696), 636–40
(2004)

30. PostGIS. http://postgis.net/

31. Sayers, E.W., Barrett, T., Benson, D.A., Bolton, E., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M.,

DiCuccio, M., Federhen, S., Feolo, M., Fingerman, I.M., Geer, L.Y., Helmberg, W., Kapustin, Y., Landsman,

D., Lipman, D.J., Lu, Z., Madden, T.L., Madej, T., Maglott, D.R., Marchler-Bauer, A., Miller, V., Mizrachi, I.,

Ostell, J., Panchenko, A., Phan, L., Pruitt, K.D., Schuler, G.D., Sequeira, E., Sherry, S.T., Shumway, M.,

Sirotkin, K., Slotta, D., Souvorov, A., Starchenko, G., Tatusova, T.A., Wagner, L., Wang, Y., Wilbur, W.J.,

Yaschenko, E., Ye, J.: Database resources of the national center for biotechnology information. Nucleic Acids

Res 39(Database issue), 38–51 (2011)

32. Rustici, G., Kolesnikov, N., Brandizi, M., Burdett, T., Dylag, M., Emam, I., Farne, A., Hastings, E., Ison, J.,

Keays, M., Kurbatova, N., Malone, J., Mani, R., Mupo, A., Pedro Pereira, R., Pilicheva, E., Rung, J., Sharma,

A., Tang, Y.A., Ternent, T., Tikhonov, A., Welter, D., Williams, E., Brazma, A., Parkinson, H., Sarkans, U.:

Arrayexpress update–trends in database growth and links to data analysis tools. Nucleic Acids Res 41(Database

issue), 987–90 (2013)



Butyaev et al. Page 13 of 19

33. Haeussler, M., Raney, B.J., Hinrichs, A.S., Clawson, H., Zweig, A.S., Karolchik, D., Casper, J., Speir, M.L.,

Haussler, D., Kent, W.J.: Navigating protected genomics data with ucsc genome browser in a box.

Bioinformatics (2014)

34. de Jong, M.C., Kors, W.A., de Graaf, P., Castelijns, J.A., Kivelä, T., Moll, A.C.: Trilateral retinoblastoma: a

systematic review and meta-analysis. Lancet Oncol 15(10), 1157–67 (2014)

35. Macchi, M.M., Bruce, J.N.: Human pineal physiology and functional significance of melatonin. Front

Neuroendocrinol 25(3-4), 177–95 (2004)

36. Cudre-Mauroux, P., Wu, E., Madden, S.: Trajstore: An adaptive storage system for very large trajectory data

sets. In: ICDE, pp. 109–120. IEEE, ??? (2010)

37. Pagel, B.-U., Six, H.-W., Toben, H., Widmayer, P.: Towards an Analysis of Range Query Performance in

Spatial Data Structures. In: PODS (1993)

38. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book, 2nd edn. Prentice Hall

Press, Upper Saddle River, NJ, USA (2008)

39. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S.,

O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik, S.: C-store: A column-oriented dbms. In: Proceedings of the

31st International Conference on Very Large Data Bases. VLDB ’05, pp. 553–564. VLDB Endowment, ???

(2005). http://dl.acm.org/citation.cfm?id=1083592.1083658



Butyaev et al. Page 14 of 19

Additional Files
Methods
Adaptive 3D Index

3DBG was devised to e�ciently handle extremely large amounts of genomic data associated to fine-grained 3D

models. Classical spatial indices such as R-Trees are inappropriate to our context, since they consider too many

overlapping bounding boxes (and hence, too many distinct reads) when indexing complex 3D models and their

associated metadata (see the database description section). Instead, we adapt our own, state-of-the-art

TrajStore [36] spatial index to e�ciently index arbitrary large amounts of genomic data and metadata along three

dimensions.

Our index has the three following desirable properties: it is i) sparse (i.e., it does not grow linearly as the indexed

data grows), ii) non-overlapping (yielding limited index look-ups event for 3D range queries on complex meshes) and

iii) adaptive (i.e., it continuously adjusts to the local densities of the indexed data). Formally, our basic index

structure is an adaptive 3D octree (i.e., a 3D multi-level grid, that can also be represented as a tree data structure

in which each internal node has exactly eight children), where each cell (sub-cube) in the octree corresponds to a

distinct entry in the chunk index (see below).

Our octree index is always updated to yield the minimal query execution cost given a set of queries q 2 W on the

current indexed data points. In our Big Data context where potentially large amounts of data are scanned to answer

the queries, the query execution cost is dominated by the cost of reading large chunks of data from the distributed

filesystem holding the bulk of the data. State-of-the-art distributed filesystems (e.g., like the very popular HDFS

[1]
)

organize data into large contiguous blocks (typically 64 MB) to amortize the cost of locating and reading data from

the distributed infrastructure. Our goal in the following is to take advantage of those large blocks in order to

regroup as much relevant data as possible in such chunks. Hence, we attempt to intelligently co-locate spatially

adjacent data from the 3D space into the same 1D chunks on disk, in order to minimize the number of data chunks

accessed through the filesystem to answer a given spatial query. We hence express the cost of a query as follows:

Cost(q) ⇠ #Chunks accessed.

If the query only targets a small, homogeneous cubic cell in the octree cell

3
w

with a density D of data points per

square unit and an average of C chunks of data and metadata stored per indexed point, the query answering cost

becomes:

Cost

cell

(q) ⇠
l
(cell

3
w

) C D
m

We note that the above function is highly non-linear—a cell with no point costs 0 (in practice, keeping track of

empty cells can be done without disk access) whereas a cell containing a one-byte metadata associated to a single

point costs 1, corresponding to the cost of locating, accessing and reading a large data chunk (several megabytes)

in the distributed file system used to store the actual data. We see from this expression how important it is to

reorganize and co-locate spatially adjacent data on disk, in order to avoid accessing many chunks containing only

little relevant data.

To cover a larger homogeneous region of volume volume, more cells are needed. The cost associated with

accessing this region given a random spatial query of size q

x

⇥ q

y

⇥ q

z

for a given cell size is thus [37]:

Cost

area

(q) ⇠
X

cell

P (q \ cell)

l
(cell

3
w

) C D
m

where P (q \ cell) is the probability that the random query intersects the cell cell. This probability depends on the

spatial extents of both the query and the cell. Clearly, the query intersects a cell when its center falls within the

boundaries of the cell. It also intersects the cell when its center falls just outside of the cell (e.g., if its center is up

to a distance of {q
x

, q

y

, q

z

}/2 of the corresponding edge of the cell [18]). For a volume volume and by neglecting

border e↵ects that happen at the edges of the region (outside of which queries would not be allowed), the

probability of a random query q intersecting a given cell is thus:

P (q \ cell) ⇠
(cell

w

+ q

x

)(cell

w

+ q

y

)(cell

w

+ q

z

)

volume

.

By substituting this probability in the cost expression, we obtain the final cost expression for a query:

Cost

area

(q) =

X

cell

(cell

w

+ q

x

)(cell

w

+ q

y

)(cell

w

+ q

z

)

volume

l
(cell

3
w

) C D
m
.

Our 3D spatial index dynamically splits cells into 8 sub-cells or merge 8 sub-cells into one super-cell in order to yield

the minimal cost, for a (training or observed) sample workload W defined by a series of queries q

i

and for a given

state of the database:

octree

opt

 argmin

octree

X

q

i

2W

Cost

octree

(q

i

).

[1]
http://hadoop.apache.org/docs/stable1/hdfs_design.html



Butyaev et al. Page 15 of 19

We describe the exact technique through which we build and maintain our optimal octree index below (Database

Insertions and Update section).

Using the octree and a low-resolution 3D model of the genes, the 3D index translates the 3D query issued by the

client into a series of chunk ids that hold the targeted data and that have to be retrieved from the distributed

filesystem. Query execution is described in greater detail below the Query execution section.

Immutable Data Chunks

Finally, the data itself is stored compactly on disk in series of immutable data chunks. The size of each data chunk

is fixed, and is dictated by the underlying distributed filesystem used

[2]
. Each data chunk corresponds to one and

exactly one cell in the 3D index. Each data chunk contains data or metadata pertaining to the gene portions

contained in its corresponding 3D cell in the 3D index. Each chunk typically regroups data pertaining to several

nucleotides (from one or several genes) that are adjacent in the 3D space.

Data is laid-out in the chunk using a standard slotted-page mechanism [38]: the page starts with an index pointing

to di↵erent subregions (slots) in the chunk (e.g., by base index, where each entry points to the exact location where

the information associated to each nucleotide is stored). Each chunk may either contain one type or several types of

data/metadata depending on the exact application. Our architecture is agnostic to the exact contents of the slots,

which may store structured or unstructured data of varying size. In our experimental evaluation (see main

manuscript), we for instance store all information currently available from the 1’000 genomes project

[3]
as well as

higher-resolution 3D models of the genes. Other applications could for instance store arbitrary semi-structured data

(e.g., serialized in XML or RDF/OWL) associated to the nucleotides.

The chunks in 3DBG are immutable and cannot be updated once written. Only append-only operations (e.g., when

adding some data at the end of chunk if space permits) are allowed. This allows us to dense-pack data into the

chunks (potentially even compressing the payload) in order to optimize scan operations on the chunks. When data

needs to be modified in the chunks or when new information needs to be inserted, a batch-oriented operation is

launched in order to completely swipe and rewrite all a↵ected chunks. Such operations are very expensive in our

system and should only be carried out whenever necessary. In case the application requires frequent punctual

updates, a write-optimized store should be implemented in addition to our read-optimized chunks (this is today a

common solution, promulgated by the latest generations of columnar database systems like C-store [39]).

Data Insertions & Updates

As mentioned above, data is typically inserted or updated in a batch-oriented manner in our system. Inserts and

updates are expensive in 3DBG—since they often require to update the 3D octree index and rewrite the data

chunks, though their cost is amortized when considered in bulk.

Data insertion proceeds as follows:

1 first, the data to be inserted is associated to the corresponding 3D points p in the low-resolution 3D model.

For each point p

i

2 P in the model, the system computes the total amount of data [in MB] associated to

this point by summing up the corresponding data already stored in the chunks to the newly inserted data. A

weight w

p

corresponding to that amount of data stored is hence derived for each point a↵ected by the

update.

2 for each cell cell in the octree, the system updates the cost associated to the cell by summing the weights

w

p

of all points p appearing in the cell. The resulting cost for a given query q is:

Cost

cell

(q) =

(cell

w

+ q

x

)(cell

w

+ q

y

)(cell

w

+ q

z

)

volume

&P
p2cell

w

p

ChunkSize

'
.

The total cost follows by summing on all queries as described previously.

3 a similar cost is recomputed for the cell considered, by splitting this time the cell into 8 subcells (hence, by

considering finer cells in the octree for this region) and by summing the individual costs of the eight

sub-cells potentially considered. The configuration (i.e., either the whole cell or the 8 sub-cells) yielding the

smaller cost is chosen.

4 points 2. and 3. are repeated until the octree yielding the minimal query cost is found, by iteratively

splitting some of the cells or sub-cells in eight.

5 finally, once the optimal octree index is found, the overall 3D index is updated and the a↵ected chunks are

written onto disk to consider the newly inserted data as well as the new organization of the index.

Updates and deletes are handled in a similar manner, but may also require 8 sub-cells to be merged into one parent

cell when the weight of some of the points diminishes (e.g., when data is deleted or replaced by more compact

data). The index constructed in this way is optimal, in the sense that the expected cost of answering the workload is

iteratively minimized by splitting and merging cells. This is of paramount importance in our context, where query

resolution is directly dependent on the reorganization of the data into the filesystem chunks, dictated by the

organization of the cells in the index. Big cells are inadequate for smaller queries, as they contain many segments

and data points that do not intersect with the user query. Smaller cells, on the other hand, require more filesystem

accesses to retrieve a given spatial region. The optimal grid cell is hence challenging to determine, as it depends

both on the exact spatial extents of the 3D objects, the volume of the associated data, and the query load.

[2]
typically, 32 MB, 64 MB, or 128 MB

[3]
http://www.1000genomes.org/



Butyaev et al. Page 16 of 19

Query Execution

Finally, we describe the end-to-end query resolution strategy we devised for 3DBG using the various structures and

techniques explained above. The client first issues some query by navigating through the 3D genomic space or by

selecting some area of interest in that space. The exact query is sent to our back-end system, which processes it as

follows:

1 first, the 3D range query issued by the user (e.g., q ⌘ metadata A 2 [x1, x2][y1, y2][z1, z2]) is

compared with the 3D octree; all octree cells that intersect the query are selected.

2 for each selected cell cell in the octree, the system determines the corresponding list of chunks

{C1, . . . , CN

} holding the actual data in the filesystem

3 for each chunk C considered, the system determines whether or not it holds the type of data requested by

the client (metadata of type A in our example query); in case the chunk is relevant to the query, the system

issues a subquery to the distributed filesystem to fetch the chunk and select the appropriate data contained

in the chunk

4 each subquery is processed in parallel in the distributed filesystem, which reads the targeted chunk, extracts

the relevant pieces of data from the payload of the chunk, and sends the results directly back to the client

5 finally, the client gathers all pieces of data retrieved from the distributed filesystem and displays the desired

information to the end-user (e.g, all metadata of type A in the selected region).

The whole process has been optimized to allow for interactive queries even with very large amounts of related

metadata. Points 1. to 3. are straightforward, given that our index is sparse, non-overlapping, and given that it

keeps relevant metadata about each data chunk. Point 4. is executed in parallel in a scale-out fashion. It is definitely

the most expensive part of our query resolution but can be handled e�ciently by adding new machines to the

back-end as data or query tra�c grows (our back-end is in that sense scalable and elastic). Each read operation

from the distributed filesystem is amortized as much as possible in 3DBG since i) chunks co-locate spatially

contiguous data and metadata and since ii) chunks are optimized for reads.



Butyaev et al. Page 17 of 19

Cell type Organism Type Scale Number of fragments Reference

K562 human simulated whole genome 1 [13]

B-cell GM06990 human real individual chromosomes 13 [11]

B-cell leukemia human real individual chromosomes 13 [11]

Table 1 Origin and description of the 3D models stored in 3DBG.

Data Node 42

Metadata Chunks

Hi-Res 3D Chunks

Client 12

key 4563 : value 12.1561
key 46773 : value 58.561

key 4873 : value 2.15
key 13563 : value 14.1561
key 45642 : value 14.1561

key 94563 : value 12.14531
key 45423 : value 14.1561

Metadata Hi-Res
3D Data

Spatial Browser

Adaptive 3D Index

Chunk ids (+ gene ranges 
or metadata types)

Chunk465 (Gene465 [4799:4913], 
Gene156 [56:413]);

Chunk466 (Gene465 [4913:5110], 
Gene156 [413:582]);

Chunk702 (Gene465 [5110: 5364], 
Gene156 [582:589]);

Data Node 78

Metadata Chunks

Hi-Res 3D Chunks Data Node 122

Metadata Chunks

Hi-Res 3D Chunks

3D Query
Chunk ids

Gene Metadata
and/or Hi-Res 3D Data

Horizontally-Scalable Distributed Filesystem
Octree Index

Figure 1 The overall architecture of 3DBG

Figure 2 A Sample screenshot of our 3D Web browser



Butyaev et al. Page 18 of 19

0"

100"

200"

300"

400"

500"

600"

0" 20" 40" 60" 80" 100" 120" 140"

Av
er
ga
ge
'q
ue

ry
'e
xe
cu
-o

n'
-m

e'
[m

s]
'

Records'returned'

PostGIS"

3DBG"
index"

Figure 3 Comparison of latencies for reaching the data through 3DBG and PostGIS. The x-axis

shows the number of record returned and the y-axis the latency in ms.

0"

100"

200"

300"

400"

500"

600"

1" 26" 45" 83" 133" 200" 300" 453" 814" 1127" 1797"

Av
er
ag
e'
qu

er
y'
ex
ec
u-

on
'-
m
e'
[m

s]
'

Records'returned'

100pt"

200pt"

300pt"

400pt"

Threshold"for"
normal"
vizualiza>on"

Figure 4 Comparison of latencies (y-axis) with the size of the cube query (100 points to 400

points depending of the curve considered) and number of records retrieved (x-axis).



Butyaev et al. Page 19 of 19

0 200 400 600 800 1000
Records returned

0

100

200

300

Ex
ec

ut
io

n 
tim

e 
[m

s]

Hbase
3DBD

Figure 5 Comparison of query latencies between 3DBG and HBase. The x-axis shows the number

of record returned and the y-axis the latency in ms.


