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Micropost Event Detection

Akansha Bhardwaj, Jie Yang, Philippe Cudré-Mauroux

Abstract—Platforms such as Twitter are increasingly being used for real-world event detection. Recent work often leverages
event-related keywords for training machine learning based event detection models. These approaches make strong assumptions on
the distribution of the relevant microposts containing the keyword — referred to as the expectation — and use it as a posterior
regularization parameter during model training. Such approaches are, however, limited by the informativeness of the keywords and by
the accuracy of the expectation estimation for keywords. In this work, we introduce a human-in-the-loop approach to jointly discover
informative rules for model training while estimating their expectation. Our approach iteratively leverages the crowd to estimate both
rule-specific expectation and the disagreement between the crowd and the model in order to discover new rules that are most
beneficial for model training. To identify such rules, we introduce a hybrid human-machine workflow that engages human workers in
rule discovery through an interactive hypothesis creation and testing interface and leverages automatic methods for suggesting useful
rules for human verification. We empirically demonstrate the merits of our approach, on multiple real-world datasets and show that our
approach improves the state of the art by a margin of 25.63% in terms of AUC.

Index Terms—Event Detection, Human-in-the-loop Al, Rules in Machine Learning, Interactive Machine Learning

1 INTRODUCTION

Icroblogging platforms are important sources of in-

formation about real-time events happening around
the world and are leveraged by many news agencies for the
task of event detection. For example, Twitter is a popular
microblogging service that has a monthly active user list of
145M daily active users who post about 500M tweets per
day'. An important task in the field of event detection is
detecting events of predetermined types [1], such as concerts
or controversial events based on microposts matching spe-
cific event descriptions. This task has extensive applications
ranging from cyber security [2, 3], political elections [4] to
public health [5, 6].

Due to the highly ambiguous and inconsistent terms
used in microposts, event detection is generally performed
using statistical machine learning models to classify the
relevance of microposts to a given event type. Training those
models often requires a large set of labeled microposts,
which is laborious and costly to create. More specifically,
though we can collect positive labels (e.g., using targeted
hashtags, or event-related date-time information), there is
no straightforward way to generate negative labels that are
useful for model training. To fill this gap, Ritter et al.(2015)
introduced a weakly supervised approach, which uses only
positively labeled data, accompanied by unlabeled exam-
ples by filtering microposts that contain a certain keyword
indicative of the event type under consideration (e.g., ‘hack’
for cyber security).
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Model training on positive-only datasets is typically
achieved by leveraging expectation regularization tech-
niques [7, 8]. In that context, the estimated proportion
of relevant microposts in an unlabeled dataset containing
a keyword is given as a keyword-specific expectation. This
expectation is then used in the regularization term of the
model’s objective function to constrain the posterior distri-
bution of the model predictions. By doing so, the model is
trained with an expectation on its prediction for microposts
that contain the keyword. The method for event detection
proposed by Ritter et al.(2015), for instance, leverages expec-
tation regularization; however, it suffers from two problems:

1) Due to the unpredictability of event occurrences and
the constantly changing dynamics of users’ posting
frequency (Myers and Leskovec 2014), estimating the
expectation associated with a keyword is a challenging
task, even for domain experts;

2) The performance of the event detection model is con-
strained by the informativeness of the keyword used
for model training. As of now, we lack a principled
method for discovering new keywords and hence im-
prove model performance.

Another major issue of previous work is the limitation
of using keywords as an indicator of relevance [2, 10]. A
keyword by itself is limited in its usefulness because of the
lack of information it provides when characterizing event
relevance in microposts. For example, for the predefined cat-
egory of CyberAttack, the relevance of the keyword ‘hack’
in a micropost changes if another specific keyword like ‘life’
appears, compared to ‘cyber” in the same micropost.

To address the above issues, we advocate a human-Al
loop approach for discovering informative rules and esti-
mating their expectations reliably. These rules are patterns
in the microposts that encompass any features (not only
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keywords) and can describe complex relationships between
features using any logical operators. A rule is a simple
statement consisting of a condition (also called antecedent)
and a prediction. In our case, the antecedent can be any
feature or combinations of features in a micropost, while
the prediction is always an indication of event relevance.
For example, a simple rule (‘hack’ N ‘Cyber’) =
event-category (expectation) = 0.4, states that if
keywords ‘hack’ and ‘cyber” are present in a micropost, then
the expectation of this micropost being relevant to the event
category of interest is 0.4.

This paper introduces an approach that iteratively lever-
ages 1) crowd workers for estimating rule-specific expecta-
tions, and 2) the disagreement between the model and the
crowd for discovering new informative rules. More specifi-
cally, at each iteration, we obtain a rule-specific expectation
from the crowd by sampling a subset of the unlabeled
microposts containing the rule and asking crowd workers
to label these microposts. Then, we train the model us-
ing expectation regularization and select those rule-related
microposts for which the model’s prediction disagrees the
most with the crowd’s expectation; such microposts are then
presented to the crowd to identify new rules that best ex-
plain the disagreement. By doing so, our approach identifies
new rules which convey more relevant information with
respect to existing ones, thus effectively boosting model
performance. By exploiting the disagreement between the
model and the crowd, our approach can make efficient use
of the crowd, which is of critical importance in a human-
in-the-loop context (Yan et al. 2011, Yang et al. 2018). An
additional advantage of our approach is that by obtaining
new rules that improve model performance over time, we
can gain insight into how the model learns for specific
event detection tasks. Such an advantage is particularly
useful for event detection using complex models, e.g., deep
neural networks, which are intrinsically hard to understand
(Ribeiro et al. 2016; Doshi-Velez and Kim 2017).

We introduce a comprehensive set of strategies for effec-
tive rule discovery. First, as rules are inherently complex, we
facilitate the process of rule discovery using an interactive
interface where rules can be explored, and their utility
be verified. Our interactive interface is useful for creating
and verifying hypothesis about a relevant rule. Second, we
automate the process of rule discovery by using decision
trees. These decision trees are learned by leveraging the dis-
agreement between the model’s prediction and the crowd’s
expectation. Microposts with the highest disagreement are
compared against microposts with the least disagreement
to discover relevant rules automatically. An additional chal-
lenge during rule discovery is the unrealistic expectation
from expert workers to have an exhaustive list of concepts
and items for rule discovery. In this context, we explore the
benefits of semantic enrichment through data augmenta-
tion [15, 16] and use it to augment our knowledge of the
tweets’ contents to give them a more meaningful feature
representation. The data augmentation step is useful for ex-
pert workers, as they can also use these additional concepts
obtained from data augmentation during rule discovery.

An additional challenge when involving crowd work-
ers is that their contributions are not fully reliable
(Vaughan 2018). In the crowdsourcing literature, this prob-
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Fig. 1. An overview of our proposed human-Al loop approach. Start-
ing from a (set of) new rule(s), it contains the following components:
1) Micropost Classification, which samples a subset of the unlabeled
microposts containing the rule and asks crowd workers to label these mi-
croposts; 2) Expectation Inference & target model Training, which gen-
erates a rule-specific expectation and a micropost classification(target)
model for event detection; 3) Rule Discovery, which applies the trained
model and calculates the disagreement between target model prediction
and the rule-specific expectation for discovering new rules. This is done
through a hybrid human-machine workflow that engages human workers
in discovering new rules via an interactive interface or verifying rules
suggested by an automatic rule discovery component (here the decision
tree).

lem is usually tackled with probabilistic latent variable
models (Dawid and Skene 1979; Whitehill et al. 2009; Zheng
et al. 2017), which are used to perform truth inference
by aggregating a redundant set of crowd contributions.
Our human-AI loop approach improves the inference of
keyword expectation by aggregating contributions not only
from the crowd but also from the model. This, however,
comes with its own challenge as the model’s predictions are
further dependent on the results of expectation inference,
which is used for model training. To address this problem,
we introduce a unified probabilistic model that seamlessly
integrates expectation inference and model training, thereby
allowing the former to benefit from the latter while resolving
the inter-dependency between the two.
In summary, we make the following key contributions:

1) A novel human-AI loop approach for micropost event
detection that jointly discovers informative rules and
estimates their expectation;

2) A unified probabilistic model that infers rule expec-
tation and simultaneously performs machine learning
model training;

3) A hybrid human-machine workflow that engages hu-
man workers in rule discovery through an interactive
interface and leverages automatic methods for suggest-
ing rules for human verification;

4) Semantic data exploration that augments the knowl-
edge of expert workers by providing them with addi-
tional information related to tweets.

2 HumAN-Al LoorP WORKFLOW

Given a set of labeled and unlabeled microposts, our goal
is to extract informative rules and estimate their expectation
in order to train a machine learning model, referred to as
target model in the paper. To achieve this goal, our proposed
human-AI loop approach comprises two crowdsourcing
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tasks, i.e., micropost classification followed by rule discov-
ery, and a unified probabilistic model for both expectation
inference and target model training. Figure 1 presents an
overview of our approach. Next, we describe our approach
from a process-centric perspective.

Following previous studies [2, 10, 3], we collect a set of
unlabeled microposts U/ from a microblogging platform and
post-filter, using an initial (set of) rule(s), those microposts
that are potentially relevant to an event category. Then,
we collect a set of event-related microposts (i.e., positively
labeled microposts) L, post-filtering them with a list of seed
events. I{ and L are used together to train a discriminative
model (e.g., a deep neural network) for classifying the rele-
vance of microposts to an event. We denote the target model
as po(y|x), where 6 is the model parameter to be learned
and y is the label of an arbitrary micropost, represented
by a bag-of-words vector x. Our approach iterates several
times ¢ = {1,2,...} until the performance of the target
model converges. Each iteration starts from the initial rule(s)
or the new rule(s) discovered in the previous iteration.
Given such a rule, denoted by r(t), the iteration starts by
sampling microposts containing the rule from U/, followed
by dynamically creating micropost classification tasks and
publishing them on a crowdsourcing platform.

2.1 Micropost Classification

The micropost classification task requires crowd workers to
label selected microposts into two classes: event-related and
non event-related. In particular, workers are given instruc-
tions and examples to differentiate event-instance related
microposts and general event-category related microposts. To
understand the exact difference between those two classes,
consider, for example, the following microposts, given in the
context of Cyber attack events:

Credit firm Equifax says 143m Americans’ social secu-
rity numbers exposed in hack

The micropost describes an instance of a cyber attack event
that the target model should identify. It is, therefore, an
event-instance related micropost and should be considered
as a positive example. Contrast this with the following
example:

Companies need to step their cyber security up

This micropost, though related to cyber security in general,
does not mention an instance of a cyber attack event, and is
of no interest to us for event detection. This is an example
of a general event-category related micropost and should be
considered as a negative example.

For our task, each selected micropost is labeled by
multiple crowd workers. The annotations are passed to
our probabilistic model for expectation inference and target
model training.

Expectation Inference & Model Training. Our probabilistic
model takes crowd-contributed labels and the target model
trained in the previous iteration as input. As output, it
generates a rule-specific expectation, denoted as e(*), and
an improved version of the micropost classification model,
denoted as py«) (y|z). The details of our probabilistic model
are given in Section 3.3.

2.2 Rule Discovery

The rule discovery task aims at discovering a new rule (or, a
set of rules) that is most informative for target model train-
ing with respect to existing rules. A useful rule consists of
concepts and logical connections between them to indicate
why (or, why not) a micropost belongs to an event category.

Formally, we aim to discover features that satisfy rules
of the form:

features = Not event-category @)
features = event-category 2

In the above rules, features can be related to the presence
or absence of relevant keywords, their combinations, the
language of tweet, presence or absence of an entity, or
an entity type; event-category is the event that we aim to
discover. To illustrate the point further, the rule (‘toll’
N ‘death’) =—> Not PoliticianDeath indicates that
the tweet is likely to be irrelevant to PoliticianDeath event
category. For example, the above rule applies to the tweet
‘Death toll rises up to 100, PM will brief the conference’; how-
ever, it does not indicate the death of a politician. As for any
rule, the rule holds for the vast majority of the cases, but
there can be exceptions.

Knowledge Augmentation. An additional important step
to facilitate rule discovery is the knowledge augmentation
of microposts so that expert workers can leverage the ad-
vantages of semantic enrichment when discovering rules.
Knowledge augmentation of microposts is the process of
enriching microposts with semantic annotations [21]. In the
context of machine learning, models that have semantically
meaningful representations are useful in helping humans
make sense of the model behaviors [16]. Specifically, in
classification problems, humans usually possess knowledge
about the target class and can come up with hypotheses on
the underlying concepts relevant to the problem.

We approach the idea of semantic annotations in the
context of microposts. To accomplish this, we apply entity
linking techniques to tag words and phrases with semantic
annotations [22]. These inferred annotations then become
part of the annotations of the microposts and can later be
optionally used by the expert workers to form rules. This
task is important as it is costly and unrealistic to ask humans
to provide an exhaustive list of concepts. We explain this
with an example further in Rule Discovery Process.

Rule Discovery Process. During rule discovery, we first
apply the current target model py) (y|x) on the unlabeled
microposts U. For those that contain the rule r® we calcu-
late the disagreement between the target model predictions

and the rule-specific expectation, e*):

Disagreement(x;) = [pge (yilz:) — ], ®)

and select the ones with the highest disagreement for rule
discovery. These selected microposts are supposed to con-
tain information that can explain the disagreement between
the target model prediction and rule-specific expectation,
and can thus provide information that is most different from
the existing set of rules for target model training.

For instance, our study shows that the expectation for
the rule, hack = CyberAttack (expectation) =
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0.20, which means that only 20% of the initial set of micro-
posts retrieved with the rule are event-related. A micropost
selected with the highest disagreement (cf. Equation 3),
whose likelihood of being event-related as predicted by the
target model is 99.9%, is shown in the example below:

RT @xxx: Hong Kong securities brokers hit by cy-

ber attacks, may face more: requlator #cyber #security

#hacking https://t.co/rC1s9CB
This micropost contains rules that can better indicate the
relevance to a cyber security event, for e.g., (‘cyber’
N ‘hack’) = CyberAttack is more relevant than
the initial rule (‘hack’) = CyberAttack. Further-
more, using knowledge augmentation, we find that the
tweet is referencing two entities from Wikipedia, ‘Hacking
(computer security)’ and a location ‘Hong Kong’.
The presence of the augmented feature ‘Hacking
(computer security)’ isimportant as it leads to tweets
that talk about cyber hacking, and not just ‘hacking” which
could have another connotation. Besides, a rule formed us-
ing referenced entities like *Hong Kong’ could be useful to
discover relevant tweets for a CyberAttack event associated
with the location.

Note that when the rule-specific expectation, e in
Equation 3 is high, the selected microposts will be the ones
that contain rules indicating the irrelevance of the microp-
osts to an event category. Such rules are also useful for target
model training as they help improve the model’s ability to
identify irrelevant microposts. For example, in the case of
PoliticianDeath event, the rule (‘innocent’ N "bomb’ N
"explosion’) == Not PoliticianDeath usually
indicated the event not related to the death of a politician
but, an event where politician addressed a tragedy, which
can be easily misclassified by an automatic classifier.

In this subsection, we explained how microposts show-
ing disagreement with our target model (cf. Equation 3)
help facilitate rule discovery. In the following subsection,
we discuss two strategies to facilitate rule discovery by
leveraging human input. The first strategy is through an
interactive user interface, and the second is through the
effective use of decision trees.

2.2.1 Expert Input via Interactive Interface

We use expert workers for rule discovery as the rules we
consider are inherently complex and their utility needs to
be verified.

One micropost can have multiple concepts, and a con-
cept can be present in multiple microposts. In order to find
relevant rules, it is important to be able to tease apart a
concept (or, combination of concepts) and find microposts
whose predictions do not align with the corresponding con-
cepts. To achieve this, we propose an interactive visualiza-
tion where microposts can be visualized with respect to the
concepts they contain. We represent this relationship using
a radial visualization where microposts are arranged inside
the circle, and concepts are present on the circumference of
the circle. Expert workers can use concepts as anchors to
spread microposts based on the similarity between a micro-
post and selected anchors. As expert workers are supposed
to be familiar with the concepts related to the chosen micro-
posts, they can associate and contrast microposts” relations
to the anchors (concepts).

Our interface design is explained in detail in Section 4.

2.2.2 Decision Trees

Decision trees are popular for their capability of learning
interpretable rules (i.e., decision paths) [23, 24]. Along with
rule discovery using our interactive interface, we also use
decision trees to discover rules in an automated way. To
facilitate rule discovery using decision trees, we leverage
the difference between the tweets with the highest disagree-
ment (cf. Equation 3) compared to those with the lowest
disagreement. We build a decision tree using features from
two classes - microposts with the lowest disagreement, and
those with the highest disagreement with respect to rule ex-
pectation. As an example, during decision tree learning, the
rule micropost_length < 100 = Not CyberAttack
was generated as relevant. Before moving to the next step
of expectation inference, automatically generated rules are
verified by an expert worker.

3 UNIFIED PROBABILISTIC MODEL

This section introduces our probabilistic model that infers
rule expectation and trains the target model simultaneously.
We start by formalizing the problem and introducing our
model, before describing the learning process.

Problem Formalization. We consider the problem at itera-
tion ¢ where the corresponding rule is 7(!). In the current
iteration, let ) C U denote the set of all microposts
containing the rule and M® = {z,}M_ < U® be the
randomly selected subset of M microposts labeled by N
crowd workers C = {c,, }_;. The annotations form a matrix
A € RM*N where A,,, is the label for the micropost z,,
contributed by crowd worker ¢,,. Our goal is to infer the
rule-specific expectation e(*) and train the target model by
learning the model parameter §(). An additional param-
eter of our probabilistic model is the reliability of crowd
workers, which is essential when involving crowdsourcing.
Following Dawid and Skene [18, 20], we represent the anno-
tation reliability of worker c,, by a latent confusion matrix
("), where the ab-th element 71'((;;) denotes the probability
of ¢, labeling a micropost as class a given the true class b.

3.1 Expectation as Model Posterior

First, we introduce an expectation regularization technique
for the weakly supervised learning of the target model
Pow (y]|z). In this setting, the objective function of the target
model is composed of two parts, corresponding to the
labeled microposts £ and the unlabeled ones U/.

The former part aims at maximizing the likelihood of the
labeled microposts:

L
Ji =Y _log py(yilz:) + log po (6), 4)
i=1
where we assume that ¢ is generated from a prior distribu-
tion (e.g., Laplacian or Gaussian) parameterized by o.

To leverage unlabeled data for target model training, we
make use of the expectations of existing rules, i.e., {(r(l),
ey, ..., (D), 68’1)), (r®, e®)} (Note that e® is in-
ferred), as a regularization term to constrain model training.
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To do so, we first give the target model’s expectation for
each rule r*) (1 < k < t) as follows:

1
U®| > polyilza), ®)

z, €U K)

Eqzit0 (y)

which denotes the empirical expectation of the target
model’s posterior predictions on the unlabeled microposts
U containing rule (k). Expectation regularization can
then be formulated as the regularization of the distance be-
tween the Bernoulli distribution parameterized by the target
model’s expectation and the expectation of the existing rule:

t
J2=-\Y_ Dgr[Ber(e®

k=1

) Ber(Beyn (y))], (6)

where Dkp[-||-] denotes the KL-divergence between the
Bernoulli distributions Ber(e®)) and Ber(E,, ;) (v)), and
A controls the strength of expectation regularization.

Figure 2 depicts a graphical representation of our unified
probabilistic model, which combines the target model for
training (on the left) with the generative model for crowd-
contributed labels (on the right) through a rule-specific
expectation.

3.2 Expectation as Class Prior

To learn the rule-specific expectation e®) and the crowd
worker reliability 7w (1 < n < N), we model the like-
lihood of the crowd-contributed labels A as a function of
these parameters. In this context, we view the expectation
as the class prior, thus performing expectation inference
as the learning of the class prior. By doing so, we connect
expectation inference with target model training.

Specifically, we model the likelihood of an arbitrary
crowd-contributed label A,,,,, as a mixture of multinomials
where the prior is the rule-specific expectation e(*):

Zeg”w Y, @)

where egt) is the probability of the ground truth label being
b given the rule-specific expectation as the class prior; K
is the set of possible ground truth labels (binary in our
context); and a = A,,,, is the crowd-contributed label. Then,
for an individual micropost x,,, the likelihood of crowd-
contributed labels A,,. is given by:

Z e(f) H ﬂ.(”) 8)

Therefore, the objective function for maximizing the likeli-
hood of the entire annotation matrix A can be described as:
M

J3 = Z 1ng(Am:)- )

m=1

3.3 Unified Probabilistic Model

Integrating target model training with expectation inference,
the overall objective function of our proposed model is
given by:

T=N+T+Ts. (10

e

O

55
/|

vi Apn

(9}_>

Fig. 2. Our proposed probabilistic model contains the target model (on
the left) and the generative model for crowd-contributed labels (on the
right), connected by rule-specific expectation.

Figure 2 depicts a graphical representation of our model,
which combines the target model for training (on the left)
with the generative model for crowd-contributed labels (on
the right) through a rule-specific expectation.

4 INTERACTIVE INTERFACE DESIGN

In this section, we introduce our interactive interface. The
objective of our design is to let the expert workers create
rule hypotheses, and subsequently test their utility (ie.,
informativeness for target model training).

The design of our interface is motivated by the field
of interactive machine learning for error discovery, and
it draws inspiration from previous work like AnchorViz
and D&M [25, 26]. To facilitate rule discovery, we pre-
select frequently-occurring concepts in microposts. We also
include the concepts obtained through micropost knowl-
edge augmentation. Expert workers can look at all mi-
croposts related to a given concept (or, combinations of
concepts) and discover relevant rules. When a relevant rule
is selected, our interface filters out microposts that satisfy
the rule. For example, an expert worker may discover a
rule (‘Wiki:Election’ N ‘Wiki:Hacker (Computer
security)’) == CyberAttack, as microposts fil-
tered with this rule are likely to be relevant to CyberAttack
event related to elections.

4.1 Workflow Design

The goal of the interface is to let expert workers create
rules and validate their utility, which is supported by the
following actions:

1) Let expert workers choose concepts for a given rule.
First, the interface presents concepts to expert workers
based on a chosen criterion. If needed, expert workers
can also suggest a new concept that they deem as
relevant.

2) The selected concepts are placed as anchors in the radial
visualization (cf. Figure 3).

3) Microposts are spread around inside the radial visual-
ization, based on the anchors. Anchors impact the posi-
tions of microposts in the radial visualization such that,
microposts that are semantically closer to the anchors
are situated closer to the anchors.

4) Microposts are colored according to the current target
model prediction about the relevance or irrelevance of
the micropost to an event category.
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Fig. 3. Overview of our interface for rule discovery. The interface includes

the radial visualization (A) and explore pane (B) that includes keyword

based concepts and concepts obtained using knowledge augmentation. Based on the prediction of the model, the microposts can be colored.
This is done using the color pane (C). Selecting multiple options from Tooltip pane (D) gives detailed information about each micropost features’

when mouse is hovered over a micropost in radial visualization. Rules can
displayed in the results pane (F).

5) Let expert workers create rules and validate the utility
of the rules with resulting microposts.

Next, we discuss the design details of the interface.

4.2

Figure 3 shows our interface, which is based on RadViz [27].
Microposts that have the most disagreement (cf. Equation 3)
are arranged inside the radial visualization (A). Concepts
associated with these microposts are arranged as anchors
on the boundary of the radial visualization. When a concept
is selected from the explore pane (B), the microposts inside
the radial visualization rearrange themselves to reflect the
update.

Topology and Layout Manipulation Once a concept(s) is
selected, the expert worker can see the correlation between
the concept(s) and the microposts as well as the relationship
between several concepts with respect to the microposts. We
map the relative similarity between the microposts and the
anchors to the position of microposts in a non-orthogonal
coordinate system on a circle; the center point of the circle
to each anchor forms a set of axes on a 2D surface. Namely,
an axis k is a vector with the length of the circle’s radius r
and an angle 6 to the corresponding anchor.

Interface Design

Vi = (r x cos O, 7 x sin ) (11)

A micropost m along an axis forms a vector with an
angle identical to that of the axis and valuey,,,), magnitude
of the cosine similarity in the bag-of-words space between

the micropost’s concepts and the concept(s) represented by

be tested using the Feature selection option (E), filtered microposts are

the anchor(s). The final position of a micropost m in the

visualization is the sum of the vectors to each anchor.
valuey _ valueg)

Z >, value;(m)

In addition, to ensure that all items are inside the circle,
a microposts’ value on an axis is normalized by the sum
of all its values on all the axes. We use the normalization
introduce in RadViz [27] in that context.

This implies that the microposts that are closer to an
anchor are more similar to the concept(s) represented by
that anchor. The items that are affected by selecting or dese-
lecting the anchor will change their positions accordingly.
Items that do not share any similarity with the selected
anchor will remain still. In this way, the expert workers can
effectively create a topology in the concept space defined by
the selected anchors. We considered multiple options but ul-
timately chose Radviz because of its support for an arbitrary
number of axes and its flexibility in positioning axes while
preserving the relative independence of the axes [28].

In the following subsections, we detail the features that
can be used by an expert worker.

x Vi (12)

l'ma ym

4.2.1 Associating Model predictions with Concepts

Our rule discovery process is based on the level of disagree-
ment (cf. Equation 3) with the target model prediction. The
color of the micropost in the visualization corresponds to the
model prediction. By contrasting model predictions against
anchors, expert workers can see which concept correlates
with the presence, absence (or, indifference) of an event
category. This helps expert workers to discover relevant
rules for positive and negative model predictions.
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Microposts with similar concept representations are clus-
tered into a rectangle. These clusters move along with the
anchors that they are most similar to, just like individual
microposts. When an expert worker hovers on a micropost
inside this cluster, they can view all the concepts of the
corresponding micropost that have been selected in the
tooltip pane (cf. Figure 3 D).

Inspecting clusters of similar items

4.2.3 Hypothesis creation and testing

A feature pane (Figure 3 E) can be used by an expert
worker during rule discovery for hypothesis creation. Any
rule hypothesis with the logical operators ‘and’, ‘or’, ‘not’
can be typed and tested using the feature pane. To test a
rule hypothesis, an expert worker writes it in the feature
pane. Microposts that satisfy this rule are updated in the
selection pane (F). An expert worker validates the utility of
the rule hypothesis by inspecting the relevance of resulting
microposts to the event category. The combination of feature
pane and selection pane supports rule hypothesis creation
and testing.

5 EXPERIMENTS AND RESULTS

This section introduces the experimental setup for evalu-
ating our approach, followed by the results. Through our
evaluation, we aim at answering the following questions:

e Q1 How effectively does our proposed human-AlI loop
approach enhance the state-of-the-art machine learning
models for event detection?

e Q2 What is the effect of enriching microposts using
knowledge augmentation?

e Q3 What is the added advantage of introducing au-
tomated rule discovery methods as compared to rule
discovery using an interactive interface alone?

e Q4 How effective is our approach at obtaining new
rules compared with an approach labeling microposts
for target model training under the same cost?

5.1 Experimental Setup

Datasets. We perform our experiments with two predeter-
mined event categories: cyber security (CyberAttack) and
death of politicians (PoliticianDeath). We found that though
there are a few publicly available datasets for this task,
the available ones do not suit our requirements. For exam-
ple, the publicly available Events-2012 Twitter dataset [29]
contains generic event descriptions such as Politics, Sports,
Culture, etc. Our work targets more specific event cate-
gories [15]. Following previous studies [2], we collected
event-related microposts from Twitter using 11 and 8 seed
events for CyberAttack and PoliticianDeath, respectively. Un-
labeled microposts were collected by using the keyword
‘hack’ for CyberAttack, while for PoliticianDeath, we used
a set of keywords related to “politician” and ‘death’ (such
as ‘bureaucrat’, ‘“dead’ etc.). The dataset was collected for
one year using Twitter public API. For each dataset, we
randomly selected 500 tweets from the unlabeled subset and
manually labeled them for evaluation. Table 1 shows key
statistics from both datasets.

TABLE 1
Statistics of the datasets in our experiments.

Dataset #Positive #Unlabeled #Test
CyberAttack 2,600 86,000 500
PoliticianDeath 900 7,000 500

Comparison Methods. We consider Logistic Regres-
sion (LR)[2] and Multilayer Perceptron (MLP)[3] as the
target models®. These widespread models demonstrate the
generality and effectiveness of our new model training
technique.

For both LR and MLP, we evaluate our proposed ap-
proach for keyword discovery and expectation estima-
tion by comparing against the weakly supervised learning
method proposed by Ritter et al.(2015) which uses only one
initial keyword with an expectation estimated by an indi-
vidual worker and a LR model. Similarly, Chang et al.(2016)
also used a neural model with one initial keyword with the
same model training technique as Ritter et al. (2015). Wher-
ever possible, we also compare to our previously proposed
human-AlI loop approach (Bhardwaj et al. 2020).

Parameter Settings. We empirically set optimal parameters
based on a held-out validation set that contains 20% of the
test data. These include the hyperparameters of the target
model, those of our proposed probabilistic model, and the
parameters used for training the target model. We explore
MLP with 1, 2, and 3 hidden layers and apply a grid search
in 32, 64, 128, 256, 512 for the dimension of the embeddings
and that of the hidden layers. For the coefficient of expecta-
tion regularization, we follow Mann and McCallum (2007)
and set it to A = 10x #labeled examples. For target model
training, we use the Adam [31] optimization algorithm for
both models. We repeat the experiments 10 times and report
the average results.

Evaluation. Following Ritter et al. (2015), Konovalov
et al. (2017), we use accuracy and area under the precision-
recall curve (AUC) metrics to measure the performance of
our proposed approach. We note that due to the imbalance
in the datasets (20% positive microposts in CyberAttack and
27% in PoliticianDeath), accuracy is dominated by negative
examples; AUC—area under the precision-recall curve—in
comparison, better characterizes the discriminative power
of the model for imbalanced datasets. Higher values of
accuracy and AUC indicate better performance.

Crowdsourcing. We have two categories of crowdsourcing
tasks: rule discovery, and micropost classification. Rule dis-
covery is performed by four expert workers who are our
in-house participants as it requires domain expertise®. To
avoid bias, the chosen expert workers are different for each
experimental setting. Micropost classification is a binary
classification task where the goal is to check if a micropost

2. Our experiments with large pretrained language models revealed
that they are not suitable for our task and offer a lower increase in AUC
as compared to LR and MLP (cf. Appendix A.2).

3. For a new task, one can consider finding experts in open crowd-
sourcing or social media platforms through expertise modeling and
engagement, which are related research topics.
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TABLE 2
Performance of the target models trained by our proposed human-Al loop approach on the experimental datasets at different iterations. Results
are given in percentage.

. Iteration

Dataset Method Metric 5 3 7 5 3
LR AUC 66.69 6620 69.90 67.30 69.07 70.44
CyberAttack Accuracy 7104 7239 71.04 7138 7239 71.04
MLP AUC 60.79 7547 7518 7445 7491 77.06
Accuracy 7037 7407 7407 7407 7407 75.08
IR AUC 49.37 6385 6246 6533 6323 64.95
PoliticianDeath Accuracy 7653 8322 8322 8322 8288 8355
MLP AUC 56.81 73.71 794 7852 81.01 77.37
Accuracy 7653 79.53 8691 84.22 8422 84.56

belongs to a relevant event category. It is performed by
crowd workers*and does not require domain expertise.

For rule discovery, potentially relevant concepts are pre-
sented to our expert workers using our interactive interface.
In-house participants then suggest rules, which are con-
structed using these concepts, their combinations with logi-
cal operators, and further any other rule that they find rele-
vant to the task. We also use these concepts for decision tree-
based automatic rule discovery. Our rule discovery process
consisted of two parts: the first part (20 minutes) involved
an introduction to basic machine learning knowledge such
as classification, errors, precision and recall, description of
the dataset, an overview of the interactive interface, and
introduction of the event categories. The second part (10-
20 minutes) was a practice round to get familiar with the
interface, followed by an introduction to the CyberAttack
and PoliticianDeath event categories, which are used for the
actual task. The third part was the actual task where we
asked the participants to use the interface to discover rules.

4. We have chosen Appen (https://appen.com/, formerly Figure-
eight) as a crowdsourcing platform and have picked Level-3 workers
which, correspond to the highest quality of crowdworkers.

= Qurmethod == Baseline

= Qurmethod == Baseline

AUC
AUC

lteration Iteration

(a) LR - CyberAttack (b) MLP - CyberAttack

= Ourmethod == Baseline == Ourmethod == Baseline

80

AUC
AUC

lteration lteration

(c) LR - PoliticianDeath (d) MLP - PoliticianDeath

Fig. 4. Comparison of AUC performance of our method against the base-
line for CyberAttack (a) Logistic Regression (b) Multi Layer Perceptron.
Comparison of AUC performance of our method against the baseline for
PoliticianDeath (c) Logistic Regression (d) Multi Layer Perceptron.

In terms of cost-effectiveness, our approach is motivated
by the fact that crowdsourced data annotation can be expen-
sive, and is thus designed with minimal crowd involvement.
For each iteration, we selected 50 tweets for rule discovery
and 50 tweets for micropost classification per rule. For a
dataset with 80k tweets (e.g., CyberAttack), our approach
only requires to manually inspect 600 tweets (for 6 rules),
which is less than 1% of the entire dataset.

5.2 Q1: Comparison with SoTA

Table 2 reports the results of our approach on both the
CyberAttack and PoliticianDeath event categories. Our ap-
proach improves LR and MLP by 9.17% and 8.6% in terms of
accuracy, respectively, and by 19.79% and 31.48% in terms
of AUC, respectively. Recall that AUC better characterizes
the discriminative power of the model as accuracy is domi-
nated by negative examples. Such significant improvements
clearly demonstrate that our approach is effective at improv-
ing model performance.

Figure 4 shows a comparison of AUC performance
against our previous keyword based approach [30]. We
show the results for CyberAttack and PoliticianDeath event
categories using the same LR and MLP models on the same
dataset. Overall, we observe that results on PoliticianDeath
dataset show more improvement using our approach. This
is likely due to the fact that microposts that are relevant
for PoliticianDeath are semantically more complex than those
for CyberAttack as they enclose noun-verb relationship (e.g.,
‘the king of ... died ..") rather than a simple verb (e.g.,
‘... hacked.”) for the CyberAttack microposts. Our approach
is useful here as rules (e.g., ‘King’ N ‘died’ =
PoliticianDeath) are more effective than keywords at
characterizing the death of a politician. We also note that
in the majority of the cases, our approach reaches higher
AUC scores in earlier iterations. This is because concepts
related to a specific event instance were suggested by the
crowd in earlier iterations when compared to our previ-
ous work [30]. For example, rules that contained concepts
‘Donald_Trump’ and ‘Election’ from Wikipedia were
suggested as a relevant rule during the second iteration
using our approach as compared to ‘trump” and ’election’
being discovered as keywords during the tenth and twelfth
iterations using previous keyword discovery method. The
unexpected low AUC performance in the initial iteration
of LR model for CyberAttack shows that it is sometimes
possible that a less useful rule can decrease the performance.
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Despite a low AUC score in the earlier iterations for such
a case, the performance improves as the target model is
trained with novel information in further iterations.

W with W without

80
60
40

20

CA_LR CA_MLP PD_LR PO_MLP

(a) Effect of knowledge augmentation

W with Decision Tree M without Decision Tree
80

60
40

20

CA_LR CA_MLP PD_LR PO_MLP

(b) Effect of decision tree in rule-discovery

Fig. 5. Effective performance difference in terms of AUC with a) keyword
augmentation b)Decision Trees. For brevity: CA — CyberAttack , PD —
PoliticianDeath, LR — Logistic Regression, MLP — Multi-layer percep-
tron.

5.3 Q2: Effect of Knowledge Augmentation

In this subsection, we study the effects of our knowledge
augmentation approaches. Figure 6 shows the quantita-
tive difference in the AUC performance for both models
from both event categories. The model with knowledge
augmentation outperforms the model without knowledge
augmentation by 13.62% in terms of AUC on CyberAttack
but shows no difference on PoliticianDeath.

With knowledge augmentation, for the CyberAttack
category, expert workers discovered a frequently occur-
ring Wikipedia obtained concept, ‘Hacker (Computer
security)’ in the first iteration. This was clearly a better
indicator of micropost’s relevance to the event category than
the initial keyword ‘hack’, which could be used in an-
other context. Microposts filtered using these rules usually
discussed the alleged election hack in the USA. Using these
augmented concepts, expert workers were able to discover
rules containing these concepts.

Interestingly for the PoliticianDeath event category,
knowledge augmentation was not very useful. This is
a more complex event category where merely the pres-
ence of ‘politician’ and ‘death’ does not indicate
the death of a politician event. For example, a lot of
microposts are about bomb attacks, explosions, protests
where both ‘politician’ and ‘death’ keywords are
present. Instead of knowledge augmentation, for this
case, rules containing phrasal patterns were more help-
ful. For example, ‘death to the dictator’ = Not
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PoliticianDeath indicated protests in Iran, which was a
useful rule and indicated the irrelevance to our target event
category, PoliticianDeath.

5.4 Qg3: Effect of Decision Trees

In this subsection, we study the effective advantage of
using decision trees. Figure 5(b) shows the quantitative
difference in performance obtained using decision trees.
The model with decision trees consistently outperforms the
model without decision trees across all datasets and models
by an average of 4.42% in terms of AUC.

Decision trees generated about 20% of the rules. They
are more useful to detect rules related to syntax that expert
workers might miss. For example, in the case of CyberAttack,
decision trees selected micropost_length < 100 —
Not CyberAttack. When we further observed, this was
quite true as the microposts with a length of fewer than 100
characters had relevant concepts like *cyber, ‘attack’,
‘security’, but were mostly advertisements about an up-
coming event. This rule was discovered only using decision
trees and was quite useful to eliminate noisy microposts
with relevant concepts.

For the case of PoliticianDeath, it was quite interesting
that decision paths indicated a difference in the classes
based on the singular/plural form of certain concepts.
For example, (‘ministers’ U ‘politicians’) =
Not PoliticianDeath. When we looked further into
this, we noticed that the plural form was usually associated
with the absence of an event compared to the singular
form. Though intuitive, this rule was discovered only using
decision trees.

5.5 Q4: Cost effectiveness

In our previous work [30], we demonstrated the cost-
effectiveness of using crowdsourcing for obtaining new
keywords and consequently, their expectations, by com-
paring their performance with an approach using crowd-
sourcing to only label microposts for target model training
at the same cost. Specifically, we conducted an additional
crowdsourcing experiment where the same cost used for
keyword discovery in our approach is used to label addi-
tional microposts for target model training. These newly
labeled microposts are used with the microposts labeled
in the micropost classification task (see Section Micropost
Classification) and the expectation of the initial keyword to
train the target model for comparison. The model trained
in this way increases AUC by 0.87% for CyberAttack, and
by 1.06% for PoliticianDeath; in comparison, our proposed
approach [30] increases AUC by 33.42% for PoliticianDeath
and by 15.23% for CyberAttack over the baseline presented
by Ritter et al.[2]). These results proved that using crowd-
sourcing for keyword discovery is significantly more cost-
effective than simply using crowdsourcing to get additional
labels when training the target model.

With respect to the cost-effectiveness of the interactive
interface in comparison to the previously presented key-
word discovery approach, the upper cost bound in rule
discovery is the cost if the expert worker chooses to go
through each tweet one by one. The initial reported time
for an expert worker to discover new rules was 24 minutes,
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but once they got used to the task - it took an average of
15 minutes for each iteration (50 tweets)’. In comparison to
this, during keyword discovery, a crowd worker spent 40
seconds on each tweet for each iteration. This cost in terms
of time is at least twice better than our previous keyword
discovery approach where a worker goes through each
tweet one by one. With respect to the costs of decision tree-
based rule discovery, automatic rule generation takes about
3 seconds as we are comparing only 50 selected microposts
with highest disagreement against the ones with lowest
disagreement. The top-generated rules are verified by an
expert worker and the costs of verification is lower than
the cost incurred for generating a new rule using interactive
interface (which is itself low as seen above).

6 RELATED WORK
6.1 Event Detection

The techniques for event extraction from microblogging
platforms can be classified into three groups [1] based on
domain specificity. The first group contains approaches for
detecting unspecified events [32, 33], these are events of
general interest but with no advance description. The sec-
ond group contains approaches for detecting predetermined
events, such as concerts, local festivals, earthquakes, and
disease propagation [34, 35, 36]. The third group contains
approaches for detecting specific events, which typically
use IR methods to match a query [37, 38]. For example,
‘Trump meets Obama’. Early works mainly focus on open
domain event detection [36, 39, 40]. Our work falls into
the category of domain-specific event detection [15], which
has drawn increasing attention due to its relevance for
various applications such as cyber security [2, 3] and public
health [5, 6].

In terms of technique, our proposed detection method
is related to other previously proposed weakly supervised
learning methods [2, 10, 4]. These approaches come in
contrast with fully-supervised learning methods, which are
often limited by the size of the training data (e.g., a few
hundred examples) [34, 41].

6.2 Human-in-the-Loop Approaches

Our work extends weakly supervised learning methods
by involving humans in the loop (Vaughan 2018). Exist-
ing human-in-the-loop approaches mainly leverage crowds
to label individual data instances (Yan et al. 2011; Yang
et al. 2018) or to debug the training data (Krishnan
et al. 2016; Yang et al. 2019) or components (Parikh and
Zitnick 2011; Mottaghi et al. 2013; Nushi et al. 2017) of
a machine learning system. Unlike these works, we lever-
age crowd workers to label sampled microposts in or-
der to obtain rule-specific expectations, which can then
be generalized to help classify microposts containing the
same rule, thus amplifying the utility of the crowd. Our
work is further connected to the topic of interpretabil-
ity and transparency of machine learning models (Ribeiro
et al. 2016; Lipton 2016; Doshi-Velez and Kim 2017), for

5. The interface loading and response time are excluded since they
are negligible in our case, as the dataset is relatively small for those
purposes.
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which humans are increasingly involved, for instance for
post-hoc evaluations of the model’s interpretability. In con-
trast, our approach directly solicits informative rules from
the crowd for model training, thereby providing human-
understandable explanations for the improved model.

6.3 Neuro-symbolic Methods

Our method of integrating logic rules into machine learning
is related to the current trend of Al research moving from
machine learning to neuro-symbolic methods, and from
data — to hybrid data — and knowledge-driven approaches.
Those methods have shown to be more robust due to their
capability in representing concepts and the causal relations
among them, and have demonstrated their effectiveness for
several tasks including health monitoring [5], document
filtering [48], stock pricing [49]. Methodologically, there are
mainly two approaches for integrating symbolic knowledge
into neural networks. Xu et al. [50] introduce the semantic
loss that augments the training objective of neural net-
works with soft-constraints specified with domain knowl-
edge; Allamanis et al. [51] propose to learn continuous
representations of symbolic knowledge for integration into
neural networks. Those work, while providing methods for
knowledge integration, does not discuss what knowledge
to be integrated. Our approach of knowledge integration is
similar to Xu et al. [50] while addressing specifically the
discovery of most informative rules leveraging a hybrid
human-AI approach.

6.4 Error Discovery

There are two primary strategies for searching items to
label: machine-initiated and human-initiated approaches.
The machine-initiated approaches use learning algorithms
to suggest items for humans to label so that the model needs
fewer training items to perform better, e.g., according to the
uncertainty of the prediction by the model [52]. Such meth-
ods are, however, not suitable to identify errors produced
with high confidence, namely unknown unknowns. Unlike
machines that fully rely on knowledge explicitly encoded in
predefined training data, humans excel at leveraging broad
and tacit knowledge in justification. Human computation
has, therefore, emerged as a major class of approaches
to detecting unknown unknowns [53, 54]. Existing human
computation methods mainly rely on humans to verify
model predictions on a per-instance basis. In contrast, our
approach involves humans to provide the reasons for model
predictions that disagree with human expectation through
a carefully designed rule discovery workflow, exploiting
human intelligence in a more effective and efficient manner.

6.5 Visualization in ML

Interactive visualization in ML has been a key approach to
facilitate model training [55]. Our design is based on a polar
coordinated visualization method inspired by D&M [26]
and Anchorviz [25]. D&M uses magnet metaphor to attract
similar items using pre-defined dimensions of the data.
Anchorviz is an interactive visualization interface that fa-
cilitates error discovery through data exploration. Our visu-
alization is a part of our rule discovery step. It is inspired
by two ideas of semantic exploration and decomposition of
the dataset through anchors.
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7 CONCLUSION

In this paper, we presented a new human-Al loop approach
for rule discovery and expectation estimation to better train
event detection models. Our approach discovers informa-
tive rules and leverages the joint power of the crowd and the
model in expectation inference. Our rule discovery method
is a hybrid human-machine workflow that engages human
workers through an interactive interface and leverages auto-
matic methods for suggesting rules for human verification.
We evaluated our approach on real-world datasets and
showed that it significantly outperforms the state of the
art, and is particularly useful for detecting events where
categories are semantically complex, e.g., the death of a
politician. In future work, we would like to explore how
our approach scales with number of rules, size of datasets
and kinds of event categories.
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