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Abstract—Understanding the irregular crowd movement and
social activities caused by urban events such as city festivals
and concerts can benefit event management and city planning.
Although various urban data can be exploited to detect such
irregularities, the crowd mobility data (e.g., bike trip records) are
usually in a mixed state with several basic patterns (e.g., eating,
working, recreation), making it difficult to separate concurrent
events happening in the same region. The social activity data (e.g.,
social network check-ins) are usually over-sparse, hindering the
fine-grained characterization of urban events. In this paper, we
propose a tensor co-factorization based data fusion framework
for fine-grained urban event detection and characterization lever-
aging crowd mobility data and social activity data. First, we adopt
a Nonnegative Tensor Co-Factorization (NTCoF) approach to
decompose the crowd mobility tensor into several basic patterns,
with the help of the auxiliary social activity tensor. We then
use a Multivariate Outlier Detection (MOD) based method to
identify irregularities from the decomposed basic patterns, and
aggregate them to detect and characterize the associated urban
events. We evaluate the performance of our framework using
real-world bike trip data and check-in data from New York City
and Washington, D.C, respectively. Results show that by fusing
the two types of urban data, our method achieves fine-grained
urban event detection and characterization in both cities, and
consistently outperforms the baselines.
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I. INTRODUCTION

The rapid progress of urbanization has modernized many
people’s lives. Today, 54% of the world’s population lives
in urban areas [1]. With the increasing population in cities,
one of the key challenges faced by urban authorities is the
management of urban events, i.e., the notable occurrences
that attract large crowds of people gathering at specific venues
for certain activities during a period of time, such as public
concerts, sports games, and festival parades [2], [3]. Such
urban events usually incur significant and unusual irregularities
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of human movement and activities, bringing issues such as
traffic congestion and potential security risks [4]. For example,
during the opening game of the FIFA World Cup 2010, a traffic
jam occurred for more than four hours around Johannesburg,
South Africa, where the game was taking place. Understanding
the irregularities associated with urban events can help urban
authorities gain a panoramic view of these events, especially
in the following aspects [5]:

• The influenced regions of an event: citywide events
such as parades and fireworks shows usually attract large
crowds to different regions, which might be different from
the pre-arranged routes and venues by event organizers.

• The gathering time for an event: people might start
to gather for events earlier than scheduled. For example,
the audiences of lawn concerts and sport games usually
arrive much earlier before the starting time.

• The popular activities of an event: people might
perform different activities during an urban event. For
example, on Independence Day in Washington, D.C.,
many people might gather at parks for picnic, attend
public concerts, and watch fireworks.

The above-mentioned fine-grained characterization of urban
events can not only benefit decision making in future urban
event management [4]–[6], but also help long-term city plan-
ning such as building new stadiums or making evacuation
plans for urban centers [7]–[9]. Traditionally, urban authorities
usually collect event information from organizers before the
events take place [5]. However, such information might not
align well with the real-world situation, resulting in potentially
sub-optimal urban event management and city planning.

Fortunately, with the ubiquity of urban sensing infrastruc-
tures and paradigms, the large-scale digital traces that people
leave while interacting with urban spaces can be well captured
[10]–[12]. These urban data [13] provide us with new opportu-
nities to understand the crowd movement and social activities
associated with urban events. In particular, the following two
categories of urban data have been exploited by researchers:
(1) crowd mobility data, which can be collected from bike trip
records in bike sharing systems [14], GPS trajectories of taxis
and cars [15], [16], and cell-phone traces in cellular networks
[6], etc., and (2) social activity data, which include users’
check-ins in Location-Based Social Networks (LBSNs) [17],
Mobile Crowdsensing platforms [18], [19], and noise or traffic
complaints reported to government services [20].

Based on these urban data, various kinds of urban event
detection methods have been proposed [2], [3], [21]. On one
hand, by exploiting the crowd mobility data, one can model
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the crowd movement in a region by estimating a probability
distribution, and then identify irregular occurrences associated
with urban events [2]. However, since crowd movement is
usually a mixture of various basic patterns [22] (e.g. working,
eating, recreation), such method can not separate irregularities
caused by concurrent events taking place in the same region
(e.g., a parade and a lawn concert near a park). Moreover, the
detected crowd movement irregularities do not carry semantic
information about people’s activity (e.g., gathering for parade
or for concert), hindering the fine-grained characterization of
the associated urban events. On the other hand, the social activ-
ity data contain rich semantic information [6], [23], which can
be used to describe the fine-grained characteristics of urban
events. For example, a crowd of people checking-in at a music
stadium may correspond to a concert event. However, such
data are often very sparse in the spatio-temporal dimensions
due to the way they are collected [24], [25] (in our check-in
dataset, only 1.16% of the entries are non-zero). For example,
people may not check-in in certain place and time [20], [24].
Detecting urban events directly from such sparse data is very
difficult [21] and might lead to unreliable results.

Recently, researchers have started to exploit both categories
of data for better event detection and characterization [21],
[26], [27]. The common approach is to detect irregularities in
the crowd mobility data as urban events, and find the semantic
explanations from the social activity data to characterize the
events. However, as the crowd mobility data is a mixture of
basic patterns, the semantic explanation of the irregularity can
be diverse and difficult to interpret. Moreover, due to the sparse
nature of the social activity data, directly splitting the crowd
mobility data according to the percentage of activity types is
usually inconsistent and error prone. To address these issues,
in this paper, we propose a tensor co-factorization based
data fusion framework to augment the crowd mobility data
with semantic information from the social activity data, and
decompose the crowd mobility data into several basic patterns,
each corresponding to a set of social activities. By identifying
the irregularities in each crowd mobility basic pattern, we
can detect the associated urban events and characterize the
influenced regions, gathering time, and popular activities of
these events. The main contributions of this work include:

• We propose a tensor co-factorization based data fusion
framework to augment the crowd mobility data with
semantic information from the social activity data for
fine-grained urban event detection and characterization.
We first adopt a Nonnegative Tensor Co-Factorization
(NTCoF) approach to decompose the crowd mobility
tensor into several basic patterns, with the help of the
auxiliary social activity tensor. We then use a Multivariate
Outlier Detection (MOD) based method to detect signif-
icant and unusual human flow irregularities from these
basic patterns, and aggregate the irregularities to detect
and characterize the associated urban events. Such a
framework can separately detect concurrent urban events
taking place in the same region, and leads to fine-grained
characterization of these events.

• We evaluate the performance of our framework using

real-world bike sharing system data and LBSN check-in
data collected from Washington, D.C. and New York City
for one year. Results show that our framework achieves
fine-grained urban event detection and characterization
in both cities, and outperforms baselines that separately
detect urban events from bike trip data and check-in data.

The rest of this paper is organized as follows. We first
present the related work in Section II, and then analyze the
collected datasets in Section III. In Section IV we propose
our data fusion framework, and then detail the human flow
decomposition and urban event detection steps in Section
V and VI, respectively. We report the evaluation results in
Section VII. We discuss several issues in Section VIII and
conclude the work in Section IX.

II. RELATED WORK

With the wide deployment of urban sensing infrastructures
and the increasingly popularity of crowd sensing paradigms
[18], [19], [28], the urban digital footprints that people leave
while interacting with cyber-physical spaces are accumulating
in an unprecedented pace [10]. Research on understanding the
urban dynamics by mining these urban data has drawn exten-
sive attention in recent years, especially in urban planning [7],
[8], [29], urban environment monitoring [20], [30], [31], and
urban event detection [2], [21]. In this section, we first survey
the research work on urban event detection, and then focus on
existing data fusion methods for urban event detection.

A. Urban Event Detection

Urban event detection has been extensively studied by
researchers, especially in the urban computing community
[13]. The research interests include detecting anomalous taxi
trajectories [32], diagnosing traffic anomalies [7], [26], and
predicting abnormal crowd gathering patterns [4], [25]. Two
main categories of urban data, i.e., social activity data and
crowd mobility data, have been exploited in urban event
detection. For example, Liang et al. [25] used LBSN check-
ins to model the size, duration, and temporal dynamics of
short-lived crowds formed in urban events. However, as the
user-contributed LBSN data are often noisy and sparse [17],
directly detecting urban events from the sparse social activity
data can be very difficult and unreliable [17], [24]. Zhang et
al. [2] took a different approach, leveraging taxi GPS traces to
extract crowd mobility patterns in urban areas, and proposed
a probability-based method to detect urban events based on
the social activeness of a region. Similarly, Fan et al. [4]
proposed an online approach for predicting crowd movement
during urban events leveraging large-scale mobile phone GPS
log data. However, these methods might not be able to separate
concurrent events taking place in the same region, as the
semantic information of these irregularities is often unavailable
and needs to be inferred indirectly.

B. Data Fusion Methods for Urban Event Detection

Recently, researchers have started to combine multiple
datasets to detect urban events [21], [33]. For example, Pan et
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al. [26] proposed a successive data fusion approach to first
detect traffic anomalies from vehicle GPS trajectories, and
then analyze the causes of anomalies using the correlated
social media data. However, since the trajectories represent a
mixture of various traffic patterns, it is difficult to correspond
one traffic anomaly to an event in the social network. Coffey
et al. [27] separately decomposed mobility flows and social
media data into components using different topic models,
and presented a correlation and causation analysis between
irregularities of mobility flows and social media streams.
However, since the two data are decomposed separately,
corresponding the irregularities in the two datasets require
intensive human interaction [27]. Yao et al. [34] propose a
crowd mobility tensor decomposition method to predict a
person’s future mobility event, however this work focuses
on individual mobility instead of crowd mobility, which is
more significant in describing urban events. In this paper, we
directly augment the crowd mobility data with the semantic
information from the social activity data by leveraging a
tensor co-factorization technique proposed in [35]. In this way,
the fine-grained spatio-temporal-semantic characteristics of the
associated urban events can be captured.

III. DATASET ANALYSIS

In this section, we describe the data collection process,
and present an empirical study on the collected datasets. In
particular, we first present essential details about the crowd
mobility data from bike sharing system, and the social activity
data from LBSN user check-ins. We then study the spatial,
temporal, and semantic characteristics of these datasets.

A. Data Collection

1) Crowd Mobility Datasets: crowd mobility data can be
collected from various sources in the urban space, including
bike sharing systems [14], GPS-equipped taxicabs [29], and
cellular network users [6], [22]. In this paper, we use the
bike trip records from the bike sharing systems as a proxy
of the crowd mobility data, since bike sharing systems have
become an important transportation means for citizens to
attend social events [36], [37]. We collect bike trip records
from Washington, D.C. Capital Bikeshare System1 and New
York Citi Bike System2), respectively. In particular, each bike
trip record contains the following fields (departure_station,
departure_time, arrival_station, arrival_time). The GPS coor-
dinates and the IDs of stations are also available from both
cities. Based on the bike trip records, we count the number
of bikes arriving at each station in each time span (e.g. one
hour), which we refer to as the bike arrival number.

2) Social Activity Datasets: social activities in urban en-
vironment can be captured from various sources, including
location-based social networks [24] and mobile crowdsensing
platforms [28], [38]. We collect social activity data from the
popular LBSN service Foursquare3, which has a wide coverage
in many cities for several years since 2009. In foursquare,

1http://www.capitalbikeshare.com/system-data
2https://www.citibikenyc.com/system-data
3http://foursquare.com

(a) Washington, D.C. (b) New York City

Fig. 1: The distributions of bike stations in both cities, respectively.

(a) Washington, D.C. (b) New York City

Fig. 2: The heat maps of one years’ check-ins collected in DC
(01/01/2012–12/31/2012) and NYC (01/01/2014–12/31/2014).

users’ activities are mainly represented by check-ins, which
indicate that users visited certain venues at certain time.
Based on the category of the venue, we can semantically
characterize the users’ social activities [6], [17]. For exam-
ple, if users are checking-in at a restaurant at 19:00, they
might probably be having dinner there. We collect Foursquare
check-in data and venue category information in Washington,
D.C. and New York City by crawling the Foursquare-tagged
geo-tweets from Twitter Public Stream4 [39]. In particular,
each check-in record contains the following fields: (venue_id,
venue_location, venue_category, check-in_time), where the
venue location is manually selected by user from a list
provided by Foursquare based on the user’s current location
to avoid GPS positioning errors, and the venue category is
defined by the Foursquare Venue Category API5. Based on
the check-in records, we count the number of check-ins in
each venue category in each time span (e.g. one hour) and
define it as the check-in number.

3) Urban Neighborhood Dataset: we aggregate bike sta-
tions and check-in venues into regions as the minimal units
to study human flow in urban areas. Each region consists
of a number of blocks and communities, standing for a
neighborhood structure that might have a similar human flow
constitution. Simply adopting a uniform grid-based urban
partition [22] might lose the semantic information of such
neighborhood structure, while a partition using ZIP codes is
often too coarse [20]. Therefore, we use a region partition
based on census block [40]. Census blocks are neighborhood
units established by the Bureau of Census for analyzing pop-
ulations and urban social dynamics [40], [41]. We retrieve the
2010 census block datasets from U.S. Government Open Data

4https://dev.twitter.com/docs/streaming- apis/streams/public
5https://developer.foursquare.com/categorytree
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Fig. 3: The human flow in the region of the National Mall during
the 2012 Independence Day (July 4th).

Portal1 for Washington, D.C. and New York City respectively.
Based on the region partition, we aggregate the bike arrival
number and check-in number in the same region to denote the
crowd mobility and LBSN user activity, respectively.

B. Empirical Study

1) Spatio-Temporal Patterns of the Bike Arrival Data: Fig.1
presents the geographical distributions of the bike stations in
Washington, D.C. and New York City, respectively, where
each black dot represents one bike station. In practice [37],
[42], bike sharing stations are usually deployed in regions
with Urban Activity Centers (UACs) [9], such as stadiums,
urban parks, shopping malls, and university campus, making
it convenient to rent public bikes for attending sports games,
concerts and city festivals. By counting and comparing the
number of bikes arriving in a region during different periods
of time, we can infer the potential events causing the large
human flow. However, such human flow extracted from bike
trips do not carry semantic information, making it difficult
to separate concurrent events and characterize the associated
events. In particular, when a region contains many UACs
and several urban events take place concurrently, the mixed
human flow irregularities are difficult to interpret. For example,
Fig.3 shows the human flow in the region of the National
Mall during the 2012 Independence Day (July 4th). The three
irregularities (denoted by red circles in Fig.3) might corre-
spond to various celebrations taken place in the National Mall
region, such as parades, picnics, and outdoor concerts. Without
further semantic information about these irregularities, we are
not able to separate them apart, or capture the fine-grained
characteristics (e.g. popular activities) of these events.

2) Semantic Information of the Check-in Data: Fig.2 shows
the heat maps of the check-ins in Washington, D.C. and New
York City, respectively, where the brighter areas observe more
check-ins. Most check-ins are performed by users when they
go to restaurants, stores, concerts, games, and etc., providing a
proxy for depicting their activities [6], [23], [43]. More specif-
ically, by investigating the categories of check-in venues in a
region during a period of time, we can infer the corresponding
human activities [6], [17]. For example, Fig.4 presents the
percentage of three check-in categories during each hour
of a typical-day in the National Mall region (check-ins are
aggregated over one month’s weekdays since the original data
is sparse). Based on the venue categories, we can infer the
working activities around 9:00, eating activities around 13:00,
and recreation activities around 15:00, respectively.

1http://www.data.gov/
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Fig. 4: Check-in percentage of three main categories during each
hour of a typical-day in the National Mall region (aggregated over
one month’s weekdays). Red circles denote irregularities.

In summary, the bike trip records capture the spatio-
temporal patterns of crowd mobility, while the check-in
records depict the semantic information of collective activities.
In order to better detect and characterize urban events, we need
to fuse them together to exploit the spatio-temporal-semantic
information from both datasets.

IV. FRAMEWORK OVERVIEW

We propose a framework for fine-grained urban event
detection characterization leveraging urban data, as shown
in Figure 5. Our framework consists of three phases, i.e.,
crowd mobility decomposition, urban event detection, and
urban event characterization. In the first phase, we construct
two tensors from urban data, i.e., the crowd mobility tensor
and social activity tensor, and adopt the Nonnegative Tensor
Co-Factorization (NTCoF) method to decompose the crowd
mobility tensor into basic patterns, with the help of the
auxiliary social activity tensor. In the second phase, we use a
Multivariate Outlier Detection (MOD) based method to detect
significant and unusual irregularities from the decomposed
crowd mobility basic patterns, and aggregate these irregulari-
ties to detect the associated urban events. In the third phase, we
characterize different aspects of the detected events in terms of
the influenced regions, gathering time, and popular activities.
We detail the framework in the following sections.

V. CROWD MOBILITY TENSOR DECOMPOSITION

In this phase, our objective is to decompose the crowd
mobility data into several basic patterns, such as working,
eating, and recreation. To this end, we first find the corre-
sponding structure to represent the crowd mobility data and
the social activity data, and then design an effective approach
to decompose the crowd mobility data into basic patterns.

More specifically, we first construct a two-dimensional
crowd mobility tensor to capture the spatio-temporal human
flow patterns. We then need to decompose this tensor into
several basic patterns, as illustrated in Fig.6. A common
approach is Non-negative Tensor Factorization (NTF) [4], [34].
The philosophy of the NTF algorithm is to approximate the
tensor through the multiplication of a few latent, low-rank
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Fig. 5: Framework overview.

factors (matrices) under the non-negative constraints [35].
Then each basic pattern can be formed by the multiplication
of a column of the factor matrices, respectively. For example,
as shown in Fig.7, the crowd mobility tensor A is factorized
into two rank-K matrices R and T , indicating K basic
patterns. However, these decomposed basic patterns do not
necessarily carry semantic information, hindering the semantic
interpretation of each basic pattern.

To address this issue, we adopt a Non-negative Tensor
Co-Factorization (NTCoF) [35] approach to incorporate the
semantic information from the social activity tensor in the
tensor decomposition, as illustrated in Fig.7. We construct
an auxiliary social activity tensor with three dimensions, i.e.,
regions, time span, and venue categories, where the venue
category dimension carries rich semantic information about
social activity [6], [17]. We then decompose both tensors
simultaneously using the NTF algorithm, while forcing the
two tensors to share the spatial and temporal factor matrices
R and T , respectively. In this way, the semantic information of
the venue category factor C (i.e. social activity) is propagated
to the crowd mobility tensor.

A. Tensors Construction

We construct the crowd mobility tensor from the bike arrival
data and the social activity tensor from the Foursquare check-
in data as follows.

1) Crowd Mobility Tensor: we build a tensor A ∈ RNr×Nt

with two dimensions denoting Nr regions and Nt time spans,
respectively:
• Region dimension: we map bike stations to the corre-

sponding regions r = [r1, r2, . . . , rNr
].

• Time span dimension: we divide the duration of observa-
tion into equal time spans t = [t1, t2, . . . , tNt ], each time
span lasts for a period of time, e.g., one hour.

Correspondingly, an entry A(r, t) stores the number of bikes
arriving at region rr during time span tt.

2) Social Activity Tensor: we build the check-in tensor B ∈
RNr×Nt×Nc with three dimensions denoting Nr regions, Nt

time spans, and Nc categories, respectively:
• Region dimension: we map check-in venues to the corre-

sponding regions r = [r1, r2, . . . , rNr
].

A
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Fig. 6: Illustration of crowd mobility data tensor decomposition.
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Fig. 7: Illustration of the Nonnegative Tensor Co-Factorization
Approach.

• Time span dimension: we divide the duration of observa-
tion into equal time spans t = [t1, t2, . . . , tNt ], each time
span lasts for a period of time, e.g. one hour.

• Venue category dimension: we organize check-ins accord-
ing to their venue category c = [c1, c2, . . . , cNc

].
As a result, B(r, t, c) stores the total number of check-ins
in region rr during time span tt of category dc. We note
that tensor B itself is usually very sparse. For example, in
Washington, D.C. only 1.16% entries of tensor B have values.
Detecting urban events from such a sparse tensor is very
difficult. Moreover, decomposing tensor B solely based on its
non-zero entries is not accurate enough neither [20]. Therefore,
we need to combine the two tensors together to for further
event detection and characterization.

B. NTCoF-Based Crowd Mobility Tensor Decomposition

With the crowd mobility tensor A and the social activity
tensor B at hand, we now simultaneously decompose them into
low-rank, latent factors, and force the spatial and temporal fac-
tors to be shared. As illustrated in Fig.7, we model each factor
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as a rank-K matrix, where K denotes the number of latent
basic patterns. Correspondingly, we obtain the region factor
R ∈ RNr×K , the time factor T ∈ RNt×K , and the venue
category factor C ∈ RNc×K . In order to absorb differences
in scale between factorizations, we introduce two rank-K
diagonal core tensors [35] SA = diag(u) and SB = diag(v)
for each tensor A and B respectively, where u,v ∈ R1×K ,
SA ∈ RK×K , and SB ∈ RK×K×K . Finally, we use the
Canonical decomposition model [44] to decompose the two
tensors as follows:

Â = SA ×R R×T T (1)

B̂ = SB ×R R×T T ×C C (2)

The symbol ×n denotes the mode-n tensor product with
matrix [20]. We define the objective function to control the
error of the coupled decomposition as

L(SA,SB,R,T ,C) = ‖A − SA ×R R×T T ‖2

+‖B − SB ×R R×T T ×C C‖2

+(‖R‖2 + ‖T ‖2 + ‖C‖2 + ‖SA‖2 + ‖SB‖2)
(3)

where ‖A−SA×RR×T T ‖2 and ‖B−SB×RR×T T×CC‖2
are used to control the error of decomposing A and B,
respectively, and ‖R‖2 + ‖T ‖2 + ‖C‖2 + ‖SA‖2 + ‖SB‖2
is a regularization penalty to avoid over-fitting. As there is no
closed-form solution for finding the global optimal result of the
objective function (Equation 3), we resort to a numeric method
to find a local optimization. More specifically, we adopt the
Nonlinear Least Square (NLS) method to iteratively improve
an initial (random) solution with additive updates obtained
by minimizing a second-order approximation of the objective
function based on first-order derivatives [35].

Finally, we decompose the crowd mobility tensor A into
the multiplication of SA, R, and T . Since SA is a diagonal
tensor SA = diag(u), the values of each entry of A can then
be approximated by:

Â(r, t) =
K∑

k=1

u(k) ·R(r, k) · T (t, k) (4)

In other words, we can approximate tensor A by the sum of
a number of basic patterns Â(k):

Â =
K∑

k=1

Â(k) (5)

In this way, the semantic information of each basic pattern is
expressed by the venue category matrix C, each column of
which corresponds to a specific basic pattern. For example,
the working pattern can be represented by a column having
relatively large intensity in venue categories such as office,
government building, and subway station. We present the
expression of basic patterns in the evaluation part.

VI. URBAN EVENT DETECTION

In this phase, our goal is to detect urban events from
the crowd mobility basic patterns. The rationale behind this
approach is that when an urban event takes place in a region

at a time span, the intensity of the related basic patterns
will probably be higher than usual [3]. For example, during
Independence Day, the recreation pattern is more significant
than usual in major parks and streets. Therefore, by capturing
the significant and unusual irregularities in the decomposed
basic patterns, we can detect the associated urban events. We
note that irregularities with unusually low intensity might be
relevant to bad weather, device malfunction, etc., which is out
of the scope of urban event detection.

Although we can detect irregularities in each basic pattern
separately and then aggregate them together, this method
requires individual thresholds to control the irregularity sig-
nificance for each basic pattern and each region. Instead, we
detect irregularities from all basic patterns at once using a
Multivariate Outlier Detection [45] method. More specifically,
we first model the basic patterns of a region by a set of
K-dimensional vectors, where each vector corresponds to a
time span, and each vector element corresponds to a basic
pattern intensity. We then detect the unusual vectors using a
clustering-based approach, and select the significant irregu-
larities with higher intensities than normal samples in history.
Finally, we aggregate the irregularities based on their temporal
co-occurrence to detect the associated urban events. We detail
the steps of this approach in the following steps.

A. MOD-Based Crowd Mobility Irregularity Detection

As illustrated in Equation 5, the crowd mobility intensity
A(r, t) of region r and time span t can be approximated by
the sum of K basic patterns. We arrange these basic pattern
components into a vector θ, i.e.,

θ(r, t) = (θ1, θ2, . . . , θK) (6)

where θk = Â(k)(r, t). We model the crowd mobility basic
patterns of region r along all time spans as a set of vectors:

Θ(r) = {θ(r, 1),θ(r, 2), . . . ,θ(r,Nt)} (7)

In this way, we model the crowd mobility basic patterns of a
region as a multivariate variable with the observation samples
Θ(r). We take an example to elaborate on the modeling. Using
6 consecutive weeks of data from May to July, 2012, we
decompose the crowd mobility data into three basic patterns,
i.e., working, eating, and recreation. We draw a set of basic
pattern vectors for the National Mall region from 9:00 to
10:00. Fig.8 shows the distributions of these vectors in a
ternary plot. In this plot, each apex represents a basic patterns,
while each point corresponds to a vector. The distance between
a point and an apex is inversely proportional to the intensity
of the corresponding vector element intensity. We can find
two clusters in this ternary plot: the top-left cluster features
days with high working intensity, which may correspond
to regular workdays, and the bottom-right cluster contains
days with high recreation intensity, which may indicate the
weekend crowd mobility patterns. The two outliers in the red
circles correspond to two national holidays, i.e., Memorial
Day (05/28/2012) and Independence Day (07/04/2012). The
significant increase in the recreation patterns may corresponds
to the picnic and sightseeing activities in National Mall and
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working

eating recreation

holidays

Fig. 8: An ternary plot of the three example basic pattern vectors
in the National Mall region from 9:00 to 10:00 over 6 consecutive
weeks (05/28/2012–07/08/2012).

the surrounding monuments and landmarks. Based on the
crowd mobility basic pattern modeling, we turn the urban event
detection into a Multivariate Outlier Detection problem [46].
We first perform outlier detection for each vector set Θ(r) in
region r to identify unusual irregularities, and then select the
significant ones using a threshold.

1) Finding unusual crowd mobility irregularities: for the
crowd mobility vector set Θ(r) of region r, we define the
unusual outliers as vectors that are distant from other vector
clusters in the basic pattern space. In order to detect such
outliers, we first adopt the density-based clustering method
OPTICS [47] to identify clusters of vectors. OPTICS generates
an R-tree to order the data and identify the n nearest neigh-
bors. It can identify clusters of arbitrary shape and varying
density, and autonomously determine the number of clusters.
The algorithm requires a parameter MinPts to be specified,
i.e., the minimum number of points required to form a cluster.
We detail the parameter selection in evaluation. Finally, we
mark vectors not belonging to any clusters as outliers.

2) Detecting significant crowd mobility irregularities: for
each outlier θ′(r, t) = (θ′1, θ

′
2, . . . , θ

′
K), we compare it with

the historical observation samples in the same hour Θ(r)′ =
{θ(r, t−24), θ(r, t−48), ...}. we define θ′(r, t) as a significant
irregularity if the intensity of its largest dimension is higher
than the average value of the dimension in Θ(r)′, and the
difference is larger than three times of the standard deviation
[21]. We then determine the irregularity type based on the
largest dimension. For example, the types of the two outliers
in Fig.8 is detected as significant irregularities, and their types
being recreation, since they have relatively large intensity in
that dimension.

B. Crowd Mobility Irregularity Aggregation

Since an urban event might cause multiple crowd mobility
irregularities in more than one region and time span, we need
to aggregate these irregularities to correspond them to the
associated event. We note that irregularities associated with
the same urban event are usually detected concurrently (i.e.
temporal close to each other), however these irregularities
might occur in different regions. For example, during the
evening of Independence Day, people might gather at different
regions to watch the 4th of July Fireworks show. Therefore, we

TABLE I: A summary of the datasets

Dataset Item Washington, D.C. New York City

Bike trip

Duration 01/01–12/31, 2012 01/01–12/31, 2014
# Station 203 328
# Bike 3,296 4,077
# Record 1,869,980 8,081,188

Check-in

Duration 01/01–12/31, 2012 01/01–12/31, 2014
# Venue 26,740 62,240
# Category 266 287
# Check-in 259,770 404,256

Neighborhood # Census blocks 198 317

derive a heuristic rule to guide the irregularities aggregation
procedure: the irregularities associated with an event should
occur within several hours range.

Formally, given the set of detected irregularities Θ′, the
formed subset Θ′

i ⊂ Θ′ associated with a potential urban
event should meet the following criterion:

∀θ′1 ∈ Θ′
i,θ
′
2 ∈ Θ′i, |θ′1.t− θ′2.t| ≤ δt (8)

where θ′.t denotes the corresponding time span of the irregu-
larity. δt is a time threshold controlling the temporal distance
of the irregularities in the same subset. We empirically set
δt to 3 hours, since most urban events, such as concerts and
football games, usually last for only one or two hours. Finally,
we associate each subset of irregularities Θ′

i with a detected
urban event ei, i.e.,

Θ′
i → ei (9)

VII. EVALUATION

We evaluate the performance of our framework using
datasets collected from Washington, D.C. and New York City,
respectively. We first present the experiment settings including
dataset statistics and the evaluation metrics. We then conduct a
parameter tuning process to select optimal parameters for our
model. Finally, we present the experiment results on crowd
mobility decomposition and urban event detection, and con-
duct a series of case studies on urban event characterization.

A. Experiment Settings

1) Datasets: we collect the bike trip datasets, the check-in
datasets, and the neighborhood datasets from DC and NYC,
respectively. The statistics of the collected datasets are shown
in Table I. We then aggregate bike stations and check-ins
venues into regions, and count the bike arrival number and
check-in number in different regions, respectively.

2) Evaluation Plan: we split the datasets into two parts, and
use one half for model tuning and the other half for testing.
We adopt an interleaving splitting scheme, i.e., using every
second day for training and testing, respectively. In order to
reduce the impact of seasonality, we use the bike trip data and
the check-in data in the recent two months for modeling the
crowd mobility and social activity patterns, respectively.
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TABLE II: 10 important UACs in DC and NYC, respectively

No. Washington, D.C. New York City

1 National Mall Times Square
2 Nationals stadium Madison Square Garden (Stadium)
3 Verizon Center Manhattan Center
4 RFK Stadium Radio City Music Hall
5 Capitol Hill Herald Square
6 Washington Convention Center Jacob K. Javits Convention Center
7 West Potomac Park New York Botanical Garden
8 Library of Congress New York Public Library
9 National Gallery of Art Metropolitan Museum of Art
10 The White House Greenwich Village

3) Ground Truth Data: evaluating urban events in a real-
world setting is an open challenge [21], since it is difficult
to obtain a complete set of ground truth recording all events
happened in the city. In this paper, we compile a list of
urban events that took place in the important Urban Activity
Centers (UACs) in both cities, such as stadiums, parks, and
museums, during the time span of the experiment dataset. We
select UACs of DC according to the map published by DC
Metropolitan Washington Council of Governments1, and select
UACs of NYC based on the “Selected Facilities and Program
Sites” list published by NYC Department of City Planning2.
We then retrieve the event name, scheduled venue, scheduled
time, and event descriptions from the corresponding official
websites and Facebook Event pages3 of these UACs. Table
II shows 10 important UACs in each city, respectively. In
summary, we obtain 103 urban events from the 10 important
UACs in Washington, D.C. during 2012, and 142 urban events
from the 10 important UACs in New York City during 2014.

4) Evaluation Metrics: we compute the accuracy of the
urban event detection results to evaluate the proposed frame-
work. More specifically, we compare the event detection
results with the ground truth event list to compute the precision
and recall. For each detected event, if a real-world event in the
ground truth list has a temporal overlapping with the detected
event, we mark the detection as a hit, and otherwise a miss.
Based upon this, the precision and recall are calculated as
follows:

precision =
|{real-world event} ∩ {detected event}|

|{detected event}|
(10)

recall =
|{real-world event} ∩ {detected event}|

|{real-world event}|
(11)

In addition, we compute the F1-Score as

F1-Score =
2 · precision · recall
precision+ recall

(12)

to assess the overall performance of our model and assist in
the model parameter selection.

B. Parameter Selection

There are two important parameters in our framework. First,
in the crowd mobility decomposition phase, the number of
basic patterns K determines the number of semantic features

1http://www.mwcog.org/store/item.asp?PUBLICATION
2http://www1.nyc.gov/site/planning/data-maps/open-data/dwn-selfac.page
3e.g., https://www.facebook.com/NationalMallNPS/events
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Fig. 9: Parameter selection of the basic pattern numbers in DC and
NYC, respectively.
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Fig. 10: Parameter selection of the irregularity sensitivity in DC and
NYC, respectively.

involved in the tensor factorization process. Decomposition
with small values of K may result in mixed basic patterns
that are not able to approximate the tensors well, while
decomposition with large K will make it difficult to interpret
the meanings of the basic patterns. Second, in the urban event
detection phase, the minimum number of points to form a
cluster MinPts determines the sensitivity of irregularities to
be detected, and thus affecting event detection accuracy. We
study the impact of these two parameters in both cities.

1) Determining Basic Pattern Number: in order to quan-
titatively evaluate the performance of the decomposition, we
compute the element-wise correlation η(K) between the recon-
structed tensors and the original tensors [22]:

η
(K)
A = Corr(Â(K),A), η

(K)
B = Corr(B̂(K),B) (13)

We vary K from 3 to 10. Fig.9 reports the correlation results
in both cities. We see that with the increase of the basic
pattern number, the correlations also increase. We observe no
significant improvement in correlation values for K larger than
5, which indicates the convergence in therms of basic patterns.
Therefore, we set K = 5 for both cities.

2) Determining Irregularity Detection Sensitivity: varying
the value of MinPts directly changes the number of detected
irregularities, and thus affecting the accuracy of the event
detection results. On one hand, setting a large MinPts results
in small clusters to be detected as irregularities, and may lead
to low precision. On the other hand, setting MinPts to a
relative small value only excludes isolated points as irregu-
larities, which will result in low recall as few irregularities
are detected. Taking the overall accuracy into consideration,
we determine the optimal value of MinPts based on the F1-
score, as shown in Fig.10. We set MinPts = 7 for both cities
in the following experiments.
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C. Baseline Methods

We compare our framework with the following baselines.
• Multi-dataset-skyline method: We compare our method

with a start-of-the-art event detection method using mul-
tiple spatio-temporal datasets, which follows the similar
idea as in [21]. More specifically, this method combines
the bike trip dataset and the check-in dataset in a topic
model to infer the distributions of the check-in data,
since the check-in data itself is over-sparse to describe
a distribution. It then generates irregularity candidates in
each dataset by testing the likelihood of the null and
alternative models given the estimated distribution, and
use a heuristic skyline detection algorithm [48] to further
select the most significant irregularities across different
datasets. Finally it aggregates the irregularities to detect
urban events by applying spatio-temporal constraints.
Although this method fuses both datasets together to
address the data sparsity problem, the irregularities in
each dataset are detected separately and the semantic
information is not shared.

• Single-dataset-bike method: this baseline method directly
detects irregularities from the bike trip dataset using
a deviation-based method, and then aggregates these
irregularities to detect urban events, as described in our
previous paper [3]. More specifically, if the deviation
of the bike arrival number of a station is greater than
three times of the standard deviation, it is marked as an
irregularity. Although this method can detect some urban
events, it fails to separate concurrent events apart if the
human flow irregularities are mixed together. Moreover,
the semantic information of the human flow related to the
events can not be interpreted.

• Single-dataset-check-in method: this baseline method di-
rectly detects irregularities from the check-in dataset. As
such a dataset is usually very sparse, the deviation-based
method can not be directly applied. Instead, we first use a
tensor completion method to decompose and reconstruct
the check-in tensor, as proposed in [17], [20], and then
apply the deviation-based method to detect irregularities.

D. Crowd Mobility Data Decomposition Results

We perform the NTCoF algorithm for crowd mobility data
decomposition in both cities. For each city, we obtain five basic
patterns. To visualize the spatio-temporal-semantic features
of each pattern, we employ (1) tag cloud [17] to represent
the most popular check-in venues, (2) city map to show the
most visited regions in a basic pattern, and (3) temporal plot
to demonstrate the temporal distribution of a basic pattern,
respectively. We aggregate crowd mobility data into a typical
day in the temporal plot for a clear visualization.

We present the visualization of the basic patterns of both
cities in Fig.11. Based on the corresponding tag clouds, we
label the five basic patterns as working, recreation, eating,
nightlife, and sports & concert. For example, the recreation
activities are mostly observed in museums and parks during
afternoon hours, while the sports & concert activities corre-
spond to sports games in the stadiums during after-work hours.

(a) DC Working (b) NYC Working

(c) DC Recreation (d) NYC Recreation

(e) DC Eating (f) NYC Eating

(g) DC Nightlife (h) NYC Nightlife

(i) DC Sports & Concert (j) NYC Sports & Concert

Fig. 11: The spatio-temporal-semantic distributions of the five de-
composed crowd mobility basic patterns in DC and NYC.

E. Urban Event Detection Results

The urban event detection results in both cities are presented
in Fig.12. Our method is consistently better than the baselines
over all metrics, achieving 77.1% and 75.9% F1-Score in DC
and NYC, respectively. The two single dataset baselines do not
achieve balanced precision and recall scores. Specifically, the
single-dataset-bike method achieves relatively low precision
score as it detects many pseudo irregularities which can not
be correspond to urban events (e.g., 172 events detected with
only 74 events hit in DC), while the single-dataset-check-in
method achieves relatively low recall score as it detects less
irregularities than the ground truth. The multi-dataset-skyline
baseline does not perform well regarding the recall score as it
detects 16% less events compared to the ground truth in both
cities. We investigate the results of this method and find out
that many of these missing events correspond to irregularity
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Fig. 12: Urban event detection accuracy in DC and NYC.

points close to the skyline. As the scales of urban events may
vary, less significant events are covered by larger events (i.e.,
the skyline points) and thus being omitted. In contrast, our
method achieves consistently higher precision and recall scores
as well as the F1-Scores in both cities.

F. Case Studies on Urban Event Characterization
In order to evaluate the urban event characterization results,

we conduct case studies on DC and NYC, respectively. In each
case study, we present (1) the influenced regions where large
crowds of people gather for the event1, (2) the gathering time
for the event, and (3) the popular activities in different regions
and time during the event.

1) Independence Day in DC: serving as the capital of the
United States, Washington, D.C. hosts a series of grand cele-
brations on Independence Day each year, which attract large
crowd of people gathering to the city center. Understanding the
spatial, temporal, and semantic patterns of the crowd mobility
is of great importance for urban authorities managing these
events. Using the proposed framework, we separately detect
and characterize the following important events on the 2012
Independence Day.
• A National Parade: The parade takes place at around

12:00 on Constitution Avenue. However, people might
arrive at early to secure a spot and have picnic in the
nearby National Mall after the parade. As shown in
Fig.13, we detect a human flow irregularity of recreation
during 11:00–12:00, corresponding to the early arrival of
the audience. We also detect an eating irregularity after
the parade, indicating the lunch or picnic activities of the
crowd after the parade in nearby regions.

• A Capitol Fourth Concert: The outdoor concert takes
place at the West Lawn of the U.S. Capitol Building at
around 20:00. Interestingly however, the audience starts
to gather at the West Lawn from nearby transit stations
very early at about 15:00, as shown in Fig.14a. The
probable reason is that the general admission gates for
public opens at 15:002. Knowing when and where people
are gathering for the concert might help urban authorities
make responsive decisions when emergency occurs, such
as temporarily closing several transit stations to control
gathering flow when the region becomes over-crowded.

1To better represent the crowd scale in a region, we use the corresponding
bike station location to denote the region center, as shown in Fig.13–15.

2http://www.pbs.org/a-capitol-fourth/about/faqs/

(a) 11:00–12:00, recreation (b) 12:00–13:00, eating

Fig. 13: Crowd mobility irregularities associated with A National
Parade.

(a) 15:00–16:00, recreation (b) 21:00–22:00, nightlife

Fig. 14: Crowd mobility irregularities associated with A Capitol
Fourth Concert and Fourth of July Fireworks, respectively.

• Fourth of July Fireworks: This famous fireworks show is
usually launched at around 21:30 from the the Lincoln
Memorial Reflecting Pool in the National Mall. During
the fireworks show (21:00–22:00), we observe significant
nightlife activities in the surrounding areas. We note that
besides the National Mall region, the downtown areas
are also the influenced regions for the fireworks show.
This can be explained that many people might choose to
watch the show from nearby nightlife venues, probably in
bars and rooftop restaurants, which are also recommended
spots to watch the fireworks on the local guide3.

2) Lady Gaga Concert in New York City: in 05/13/2014,
Lady Gaga performed at a sold out concert in Madison
Square Garden (MSG)4, a major stadium in New York City.
Our method successfully detects this event by identifying
several sports & concert irregularities in the nearby regions,
as illustrated in Fig.15a. In contrast, the single-dataset-bike
baseline method misses irregularities near the Pennsylvania
Station (PS) and United States Post Office (USPO) region,
as highlighted by the yellow circle in Fig.15b. The probable
reason is that the concert crowd is overwhelmed by the daily
commuting crowd at PS and the sightseeing crowd at USPO
(which is a famous land mark and keeps open from 9:00 to
22:00 on weekdays). Since the single-dataset-bike baseline
method models crowd mobility as a whole, the concert crowd
near PS and USPO is not significant enough to be detected
as irregularities. In contrast, by detecting irregularities in
the decomposed basic pattern space, our method effectively
captures such irregularity.

VIII. DISCUSSION

We discuss the following limitations of our work.

3http://washington.org/DC-focus-on/top-spots-catch-fireworks
4http://www.rollingstone.com/music/news/lady-gagas-live-artflop-nyc-ghosts-
and-flowers-20140514
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Fig. 15: Crowd mobility irregularities detected for the the Lady Gaga
Concert in MSG during 19:00–20:00 in 05/13/2014.

1) Data bias in bike sharing and LBSN users. The user
communities of bike sharing and LBSNs are not com-
pletely representative of all the citizens, i.e., some strata
of the population are more visible than others. Previous
studies [17], [49] have shown that the bike sharing and
LBSN users tend to be youngsters. The urban events we
detect, such as lawn concerts, sports games, city festi-
vals, and fireworks, are attractive to the communities.
Therefore, by capturing the crowd mobility and social
activity patterns of the communities, we can still detect
and characterize many types of urban events. In the
future, we plan to incorporate more urban data sources
to better model the crowd mobility and social activity.

2) Seasonality of bike usage patterns. We observe seasonal
patterns in the bike trip data, i.e., there are usually more
bikes arriving at each region in the summer than in
the winter. Such seasonality may hinder the effective
modeling of the crowd mobility patterns. Hence, in this
work, we only use two month’s data before to model the
crowd mobility patterns, as mentioned in the evaluation
plan. In the future, we plan to explore streaming methods
for modeling such time-varying patterns.

IX. CONCLUSION

With the increasing ubiquity of urban sensing infrastructures
and social network services, rich urban data about crowd
mobility and social activity has become available, providing
us with new opportunities to understand urban events at a
low-cost and automatic manner. In this paper, we proposed a
data fusion framework to detect and characterize urban events
from crowd mobility and social activity data. We augment
the crowd mobility data with semantic information from the
social activity data, leveraging a proposed Nonnegative Tensor
Co-Factorization (NTCoF) approach. A Multivariate Outlier
Detection (MOD) based method is adopted to identify crowd
mobility irregularities from the decomposed basic patterns.
Evaluations on real-world datasets from DC and NYC show
that our framework effectively detects and characterize urban
events in a fine-grained manner, and outperforms baselines that
separately detect urban events from individual dataset.

In the future, we plan to incorporate more urban data
sources to better model the crowd mobility and social activity,
including taxi trace data [15], 311 complain data [21], and
event-based social network data [50]. We also intend to explore

real-time detection and prediction of crowd mobility associated
with urban events.
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