
TransactiveDB: Tapping into Collective Human Memories

Michele Catasta†, Alberto Tonon*, Djellel Eddine Difallah*, Gianluca Demartini*,
Karl Aberer†, and Philippe Cudre-Mauroux*

†EPFL—Switzerland *eXascale Infolab, University of Fribourg—Switzerland
(firstname.lastname)@epfl.ch (firstname.lastname)@unifr.ch

ABSTRACT
Database management systems (DBMSs) have been
rapidly evolving in the recent years, exploring ways to
store multi-structured data or to involve humans processes
during query execution. In this paper, we outline a future
avenue for DBMSs supporting transactive memory queries
that can only be answered by a collection of individuals
connected through a given interaction graph. We present
TransactiveDB and its ecosystem, which allow users to pose
transactive queries in order to reconstruct collective human
memories. We describe a set of new transactive operators
including TUnion, TSelection, TJoin and TProjection.
We also describe how TransactiveDB leverages such
transactive operators—by mixing query execution, social
network analysis and human computation—in order to
effectively and efficiently tap into the memories of all
targeted users.

1. INTRODUCTION
Humans can store, process—and eventually forget—

personal memories on their own, but also collectively;
The notion of transactive memory [6] was established
almost 30 years ago to denote the capacity of groups of
individuals to collectively store and retrieve knowledge.
Classical examples of transactive systems are older couples
or families living together. Even if an individual in the
group cannot remember a specific fact, he/she will often
have a systematic way of retrieving the desired piece of
information (e.g., by asking a specific individual from the
group).

Recently, crowdsourcing has been used to complement
classical database systems by leveraging human intelligence
at scale [3]. While crowdsourcing DB systems can answer
queries that purely automated systems cannot, they are still
for the most part confined to relatively simple and generic
tasks such as translating sentences from on language to an-
other or tagging documents.

In this paper, we present our vision for TransactiveDB:
a futuristic system able to leverage personal memories
collectively and automatically in order to answer queries

whose results are not necessarily available in digital
form, but are rather in the brains of relevant individuals.
In Hippocampus [1], we presented a first example of
transactive processing approach, which was able to
reconstruct a shared memory more effectively than either
machine-based or crowdsourcing-based approaches. We
show how to generalize and systematize this approach
in the following, and outline a generic architecture for
a transactive DB system combining distributed query
execution, human intelligence, and social networking to
satisfy a novel class of information needs.

TransactiveDB works as a Peer Data Management Sys-
tem [4] in which each user represents an autonomous system
combining relational tables (i.e., digital information) and
human memories (i.e., personal information). Contrary to
classical federated DB systems, the closed-world assumption
is applied on the union of digital and personal information
across the network of nodes. Both sources of information
are fundamental to answer transactive queries expressing
information needs that can only be satisfied by tapping into
certain group memories, e.g., “Who is the person on the left
of this picture that I took during the eXascale lab retreat in
Anzere, Switzerland on Jan 30th, 2014?”

The rest of this paper is structured as follows. We
start below by describing the rational behind our
system. Section 3 presents an overview of TransactiveDB
architecture followed by the transactive operators that
we introduce in section 4. We describe the social graph
supporting TransactiveDB query execution in section 5 .
Section 6 outlines our query execution strategy. Finally, we
lay out a research agenda for TransactiveDB and present
our conclusions in sections 7 and 8, respectively.

2. SYSTEM RATIONALE
“What was the name of that amazing drink I
ordered yesterday at the hipster bar?”

There are many reasons why a person might wish to ask
such a question; more importantly for us is the fact that
not everybody can provide an answer to it. That question
actually translates into a transactive query that can neither
be answered by querying the Web, nor by asking arbitrary
Internet users via crowdsourcing. In order to give a precise
answer to that query, one has to have interacted with the re-
quester in the context of that query, meaning that one needs
to have been with him at the hipster bar (direct interaction)
or, at least, have heard about that event (indirect interac-
tion). This question is an example of a transactive point
query, a particular kind of transactive query supported by
TransactiveDB that is processed iteratively and collabora-
tively by exploiting the interaction graph, that is, the graph

1



human
memories

U
D
F

Local
relations

input 
(query description, crowdsourcing data, etc.)

output 
(new tuples, target nodes for next iteration, etc.)

Transactive
Memory
Peer

Peer1

TransactiveDB

Peer2

Peer5

Peer4

Peer3

interaction graph #1 interaction graph #2 social graph

information
need #1

seed
node

Figure 1: Architecture of TransactiveDB. In the depicted sce-
nario, Peer3 has the information need #1, which can be satisfied
by the Transactive Memory peers belonging to the interaction
graph #1. As such, Peer3 exploits its social network connections
to discover that Peer2 can behave as the seed node for the query
(i.e., Peer2 can route the query to all the other peers involved in
the relevant interaction graph).

representing all the relations among the people involved in
the event the query refers to (a more detailed description of
the interaction graph is given below, in Section 5). In that
case, the point query targets one particular attribute (the
name of the drink), but might also involve a second trans-
active element in order to determine the selection condition
(i.e., to determine the name of the hipster bar).

In addition to point queries, TransactiveDB is also
able to process further types of transactive queries such
as transactive joins for matching entities, or transactive
projections for completing missing data (see below
Section 6). TransactiveDB could also by leveraged to
reconstruct the transactive memory of an enterprise. In
that case, employees could for example programmatically
tap into the memories of their colleagues who participated
in a given meeting in order to recover detailed events or
decisions taken during a meeting.

A transactive DBMS sets itself apart from a crowd-
augmented DBMS in the way participants are selected and
incentivised, and in the way queries are collectively and
iteratively executed. Where crowdsourcing employs a large
number of anonymous, paid workers, our system leverages
the acquaintances of the query requester to iteratively
augment a shared corpus of information, i.e, the collective
memory relating to the query. Subqueries are dispatched
to the most suitable individuals depending on the
interaction context (extending in that sense our previous
push-crowdsourcing approach [2]). Nonetheless, we leverage
classical crowdsourcing techniques to execute generic
operators that do not require any specific knowledge, e.g.,
“Are these two photos depicting the same person?”.

3. OVERALL ARCHITECTURE
We envision a decentralized data management system

that exposes memories of individuals or groups in order
to answer transactive queries. A simplified architecture
of TransactiveDB is depicted in Figure 1. The first key
component of our system is the Transactive Memory Peer
(a node hereafter), mainly composed of the memory of a
person and a physical store onto which particular memories
gets transcribed over time.

The physical store is a classical database system running
for example in the cloud or on a personal device of the user.
All the database system components are transactive-enabled,
in the sense that they can execute transactive queries; in ad-
dition, these systems can also query the crowd via generic
crowd operators (such as those defined in CrowdDB[3]). The
memory transcription process can be triggered by two dif-
ferent types of events i) a voluntary act of documenting an
experience, e.g., “record the following grocery list”, or ii)
the reception of a query coming from the user or from a
different node e.g.: “How much did last night meal at the
restaurant cost?”.

The transcribed data is organized into relational tables
that users create following a standard schema definition.
With the proper security and privacy mechanisms (e.g.,
access control credentials), the data can be exposed and
queried by trusted nodes in the system.

The second key element of our architecture is the inter-
action graph connecting the different nodes participating in
query execution. The interaction graph is a subset of the un-
derlying social network connecting the different end-users.
The exact set of nodes and edges constituting the interac-
tion graph is progressively elicited as the transactive query
gets executed. Different queries can hence generate different
interaction subgraphs (see Section 5).

4. TRANSACTIVE OPERATORS
TransactiveDB borrows from the standard relational al-

gebra for basic operations. It uses operators defined by
CrowdDB [3] for crowd-enabled queries. It also supports
two new basic transactive operators, namely TUnion and
TSelection, and two derivate operators, namely TJoin and
TProjection, in order to handle transactive queries. It is up
to the end-user providing the query to specify whether to
use the crowdsourcing operations or the transactive mem-
ory ones in a declarative fashion. The set of operators we
define below is not exhaustive, but regroups from our per-
spective all the key operators required to correctly express
a transactive query.

TUnion. The TUnion operator, denoted by T∪, takes a re-
lation R as input and returns a new relation R′ conaining
all the tuples in R as well as new tuples retrieved transac-
tively from other nodes. The experiment described in [1] is
an application of the T∪ operator and can be formalized by
the following relational algebra operation:

all participants← T∪(initial set),

where initial set = {(name1, sname1, email1), . . . , (namen,
snamen, emailn)} is the initial set of participants to the
ISWC conference provided by the user who started the
transactive memory experiment (notice that initial set
may be an empty relation with a specified schema and,
possibly, the starting seed).

2



TSelection. The TSelection operator, denoted by Tσ, takes
as input a relation R and a predicate p, and exploits the
transactive memory features of TransactiveDB to return a
new relation R′ composed of all the tuples of R that satisfy
p. For example, to get all the participant of a conference
that also attended the gala dinner, one can use the follow-
ing operation, which leverages the transactive memory of
the group to filter out participants that did not attend the
dinner:

hungry participants← Tσattended dinner=true(all participants).

TJoin. The TJoin operator, denoted by T1, is a ternary op-
erator that takes as arguments two relations, R and S, and
a predicate p. T1 leverages the transactive memory to ex-
ecute a join between the tuples from two different relations
satisfying the predicate. The transactive part of the opera-
tor selects which tuple of S should be associated with which
tuples of R. This operator can be rewritten in different ways
depending on the query and the instance data, opening the
door to various query optimization strategies; when R and
S are sufficiently small or when the interaction graph is suf-
ficiently large, one can rewrite T1 as Tσ on R× S with p as
predicate. In other cases, projecting on the join attributes
and running TUnion queries to determine the values of those
attributes separately before running the join might be more
efficient.

TProjection. The TProjection operator, denoted by Tπ, is
a binary operator that takes as input a relation R and a
set of attribute A = {a1, . . . , an}. The output produced
by Tπ(R,A) is the projection of the TUnion of R onto the
attributes in A, that is,

Tπ(R,A) = πa1,...,an(T∪(R)).

We note that the order of the selection and the TUnion
is important: If the system first computes the selection,
some contextual information required by the nodes to
correctly process the transactive part of the query can be
lost. For instance, with Tπ(initial set, {email}), where
initial set is as defined above, the system returns a list of
emails from the participants of a conference, while with
T∪(πemail(initial set)) we obtain a generic set of e-mail
addresses, since the peers might not have enough context
to decide whose e-mails to contribute in that case.

5. LEVERAGING HUMAN MEMORIES
THROUGH INTERACTIONS

TransactiveDB aims at reconstructing and gathering dis-
tributed information stored as human memories, be it digi-
tally documented or dwelling inside the individuals’ brains.
Reconstructing such memories a posteriori requires some a
priori exposure to the required information as well explicit
social interactions to recompose the missing pieces. Social
networks are today the canonical way of representing so-
cial interactions in a digital form. In fact, the existence
of multiple social networks (e.g., professional, friendship, or
celebrity networks) is a manifestation of the diverse social
interactions human nurture. We define a social graph as
the implicit or explicit graph encompassing the different in-
teractions people have. Since a transactive query typically
requires some very specific knowledge, it is only aimed at a
subset of the social graph, called the interaction graph, see
figure 2.

5.1 Interaction Graph
In our setting, collective memories are associated to a spe-

cific context where participants interact with each other,
forming what we call an Interaction Graph. This notion is
key to our system as it is created, expanded, and leveraged
during query execution. To further illustrate this concept,
we take the example of enumerating all participants of a
conference (as we did in [1]); the interaction relates in that
case to individuals participating to the particular confer-
ence; the interaction graph derived from this is a directed
graph where the nodes correspond to attendees, and the
edges are memories relating attendee A to attendee B. In a
sense, interaction graphs are overlays sitting on top of social
graphs.

5.2 Graph Creation
For queries relating to an interaction not yet observed

in the system, TransactiveDB tries to discover the implicit
interactions connecting the nodes by means of connection
elicitation query routing. Practically, this requires recur-
sively asking current nodes about further potential connec-
tions, and selectively routing the query to those nodes (old
or new) that are the most susceptible of contributing new
connections.

5.3 Graph Seed Selection
If the query requester did not take part in the interaction,

the system engages in a seed discovery to bootstrap the
interaction graph by iteratively exploring the social graph
(e.g., similarly to the well-known Milgram experiment [5]).
The seed is therefore defined as the first person whom the
system identifies and who has taken part in the requested
interaction. The quality of the seed plays an essential role in
the efficiency of the subsequent transactional queries. For in-
stance, selecting a potential “hub”, i.e., a person with many
outgoing edges to further nodes in the interaction graph, is
preferable to selecting more isolated nodes (in that sense,
selecting the right seed participant for our conference at-
tendance example might require ranking the potential seeds
w.r.t. their connections in that field, their age, or their level
of commitment for the conference.)

5.4 Leveraging the Interaction Graph
Interaction graphs are often created as new transactive

queries arrive. As time goes by, however, queries relating
to the same or similar interaction patterns may surface.
TransactiveDB tries to reuse previously elicited interaction
graphs for such queries. To follow up on our previous ex-
ample, imagine a follow-up query asking for the “list of at-
tendees of the benchmarking workshop that was co-located
with the main conference”. In this case, the persons holding
the information are already listed in the system thanks to
the previous transactive query. This new query can hence
leverage (at least in part) the interaction graph built for the
preceding query directly.

6. QUERY EXECUTION
We give below an overview on how we envision queries to

be executed through TransactiveDBȦll operators are imple-
mented as User Defined Functions (UDF) and exploit the
interaction graph described in Section 5. Since the system
may iteratively interact with its users in order to get miss-
ing information, a key factor we take into account is focus
on humane-readable information. In that sense, tables, at-
tributes and queries should all carry enough textual infor-
mation to be self-explanatory.

3



(a) Iterations 1 and 2 (b) Iterations 3 and 4 (c) Iterations 5, 6 and 7

Figure 2: Interaction graphs while executing two transactive queries in parallel on the same set of peers. Each color encodes the new
connections elicited by the different queries, while the visualization at different iterations shows how the contributions gradually move
from central to peripheral peers.

The main steps of query execution are given in Algo-
rithm 1. Query execution is iterative, and continues until a
convergence criterion has been reached, or the budget used
to operate the transactive memory system is exhausted.

At each step, the transactive memory peers are first se-
lected and contacted based on the information contained in
the interaction graph. Each Transactive Peer that the sys-
tem reaches tries to retrieve the requested data using its
local store. In case the information retrieved is deemed ac-
ceptable, the data is directly returned to the requester. Oth-
erwise, the system generates a human-readable representa-
tion of the query, to which the local user can answer by filling
out a Web-based form with information from his/her mem-
ory. At this step, missing data values can also be gathered
trough conventional crowdsourcing (e.g., emails of newly dis-
covered participants). Finally, the results are post-processed
and merged together and the peers used for next iteration
are selected.

Data: empty or incomplete relation
Result: output relation after n iterations
initialization from seed node;
while converging or no more budget do

i = iteration number;
contact Transactive peers reached at iteration i ;
run Transactive Operators on each peer;
collect results of iteration i ;
if data missing in collected results then

fill gaps with crowdsourcing;
end
merge results with output relation;
select target peers for iteration i+1 ;

end
Algorithm 1: Steps of the Transactive Query execution

7. RESEARCH AGENDA
A number of research challenging relating to com-

puter science and social sciences arose while designing
TransactiveDB. One must tackle the following issues in
our context: 1) social network analysis techniques should
be developed in order to effectively and efficiently discover
and determine the right nodes to query; 2) proper incentive
mechanisms tailored to interaction networks should be
devised to obtain information from the members of the
transactive memory in a timely fashion. For instance,
one could supplement our incentive scheme with ideas
borrowed from collaboration platforms like Wikipedia,
instead of relying on monetary incentives only; 3) malleable
schema techniques coping with the heterogeneity of

the information handled by each individual should be
designed; 4) agreement mechanisms and probabilistic
metrics capturing the supposed validity of the records
gathered through the transactive process should be used; 5)
statistical tools should be developed in order to understand
if the transactive process reached a point of convergence
and if its execution should be stopped.

8. CONCLUSIONS
In this paper, we presented our vision for TransactiveDB

a new DBMS capable of answering transactive memory
queries. TransactiveDB fills a narrow, but in our opinion
important, gap that neither search engines nor standard
crowdsourcing technologies can fill and where the main
source of information is the collective memory of a group
of individuals connected through specific interactions.
TransactiveDB features the usual relational algebra
operators, the crowd operators of CrowdDB [3] and four
new operators, namely TUnion, TSelection, TJoin, and
TProjection, that allow the user to express transactive
memory queries and to exploit the resulting graphs
(“interaction graphs”) in order to discover which parts of
the user’s social network are connected to the interactions
processed by the system. We defined the key components
of our envisioned system, and outlined a research agenda
that we plan to further expand in the coming years in order
to implement our vision.

9. REFERENCES
[1] M. Catasta, A. Tonon, D. E. Difallah, G. Demartini,

K. Aberer, and P. Cudré-Mauroux. Hippocampus:
Answering Memory Queries using Transactive Search. 23rd
International Conference on World Wide Web (WWW
2014), Web Science Track, 2014.

[2] D. E. Difallah, G. Demartini, and P. Cudré-Mauroux.
Pick-a-crowd: Tell Me What You Like, and I’ll Tell You
What to Do. WWW ’13, pages 367–374, 2013.

[3] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. CrowdDB: Answering queries with crowdsourcing.
SIGMOD ’11, pages 61–72, 2011.

[4] A. Halevy, Z. Ives, J. Madhavan, P. Mork, D. Suciu, and
I. Tatarinov. The piazza peer data management system.
Knowledge and Data Engineering, IEEE Transactions on,
16(7):787–798, July 2004.

[5] S. Milgram. The small world problem. Psychology today,
2(1):60–67, 1967.

[6] D. M. Wegner. Transactive memory: A contemporary
analysis of the group mind. In Theories of group behavior,
pages 185–208. 1987.

4


