
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

LBSN2Vec++: Heterogeneous Hypergraph
Embedding for Location-Based Social Networks

Dingqi Yang, Bingqing Qu, Jie Yang, and Philippe Cudré-Mauroux

Abstract—Location-Based Social Networks (LBSNs) have been widely used as a primary data source for studying the impact of
mobility and social relationships on each other. Traditional approaches manually define features to characterize users’ mobility
homophily and social proximity, and show that mobility and social features can help friendship and location prediction tasks,
respectively. However, these hand-crafted features not only require tedious human efforts, but also are difficult to generalize. Against
this background, we propose in this paper LBSN2Vec++, a heterogeneous hypergraph embedding approach designed specifically for
LBSN data for automatic feature learning. Specifically, LBSN data intrinsically forms a heterogeneous hypergraph including both
user-user homogeneous edges (friendships) and user-time-POI-semantic heterogeneous hyperedges (check-ins). Based on this
hypergraph, we first propose a random-walk-with-stay scheme to jointly sample user check-ins and social relationships, and then learn
node embeddings from the sampled (hyper)edges by not only preserving the n-wise node proximity captured by the hyperedges, but
also considering embedding space transformation between node domains to fully grasp the complex structural characteristics of the
LBSN heterogeneous hypergraph. Using real-world LBSN datasets collected in six cities all over the world, our extensive evaluation
shows that LBSN2Vec++ significantly and consistently outperforms both state-of-the-art graph embedding techniques by up to 68%
and the best-performing hand-crafted features in the literature by up to 70.14% on friendship and location prediction tasks.

Index Terms—User mobility, Social relationship, Location-based social network, Heterogeneous hypergraph, Graph embedding

F

1 INTRODUCTION

LOCATION Based Social Networks (LBSNs), such as
Foursquare, have attracted millions of users and gen-

erated a considerable amount of digital footprints from
their daily life. Specifically, in LBSNs, users can share their
real-time presences with their friends by checking-in at a
Point of Interest (POI), such as a restaurant or a gym. In
addition to such fine-grained and semantic user mobility
information, the social network of the corresponding users
is also available. As such, LBSNs have become a primary
data source to study urban dynamics [1], human mobility
and social network analysis [2], [3].

Using LBSN data, two typical applications have been
widely investigated, i.e., friendship prediction (a.k.a. link
prediction) and location prediction. Friendship prediction
aims at recommending social relationships that are likely
to be established in the future [3], while location prediction
tries to predict which POI a user will go to in a given
context (e.g., at a given time) [2]. Due to the intrinsic
correlation between human mobility and social relation-
ships [2], [3], [4], [5], [6], existing work has shown that
considering such correlation can improve the performance
of both friendship prediction [3], [6], [7], [8], [9] and location
prediction [2], [7], [10], [11], [12]. More precisely, these
approaches usually select a set of hand-crafted features
from both user mobility data and the corresponding social
network, and then combine those features for friendship
or location prediction. For example, social features usu-

Dingqi Yang is with the University of Fribourg, Switzerland and the Uni-
versity of Macau, SAR China. Bingqing Qu and Philippe Cudré-Mauroux
are with the University of Fribourg, Switzerland, E-mail: {dingqi.yang,
bingqing.qu, philippe.cudre-mauroux}@unifr.ch. Jie Yang is with Delft Uni-
versity of Technology, E-mail: jie@exascale.info.
Manuscript received xxx; revised xxx.

Fig. 1. A LBSN heterogeneous hypergraph containing both user mobility
data (check-ins) and the corresponding social network. A friendship is
represented by a homogeneous edge (a black dotted line) linking two
user nodes. A check-in is represented by a heterogeneous hyperedge
(a colored thick line) linking four nodes, i.e., a user, an activity type, a
time stamp and a POI.

ally involve different network proximity metrics including
common neighbor, Adamic-Adar [13], Katz index [14], etc.
For mobility features, co-location rate is a widely used
metric to measure the homophily between two users in
terms of mobility traces; it has different variations such
as normalized/unnormalized, weighted/unweighted, spa-
tial only/spatiotemporal [3], [15]. However, such a manual
feature engineering process not only requires tedious efforts
from domain experts, but also shows less generalizability
[16] (see Section 4.2.2 and 4.3.2 for more detail).

Against this background, automatic feature learning
(a.k.a. representation learning) has been proposed to over-
come the limitation of hand-crafted features [17]. When
applied to networks or graphs, this paradigm is typically
known as graph (or network) embedding [18], which repre-
sents nodes of a graph in a low-dimensional vector space
while preserving key structural properties of the graph (e.g.,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

topological proximity of the nodes). Based on such embed-
dings, graph analysis tasks (e.g., link prediction) can then
be efficiently performed. As shown in Figure 1, LBSN data
in this context intrinsically form a heterogeneous hypergraph
consisting of four different data domains, i.e., spatial, tem-
poral, semantic and social domains. This graph contains not
only classical homogeneous edges (i.e., friendships between
two users in the social network), but also heterogeneous
hyperedges (i.e., check-ins linking four nodes, one from each
domain, representing a user’s presence at a POI at a specific
time along with the semantics information about the user’s
activity there).

However, existing graph embedding techniques cannot
fully grasp the complex data structure of LBSNs. First,
most of the existing techniques were developed for clas-
sical graphs [19], [20], [21], [22], [23], [24], [25], where an
edge links two nodes only; the node embeddings are then
learnt such that the pairwise node proximity is preserved.
However, preserving the pairwise node proximity cannot
fully capture the information from the check-in hyperedges.
Even though a hypergraph can be transformed into a
classical graph by breaking each hyperedge into multiple
classical edges, such an irreversible process causes a certain
information loss [16], leading to degraded performance of
the learnt node embeddings on different tasks (see Section
4.2 and 4.3 for more detail). Second, there are also a few
techniques studying the hypergraph embedding problem,
but they either focus on a n-uniform hypergraph (where
all hyperedges contain a fixed number n of nodes) and
thus capture only fixed-n-wise node proximity [26], [27],
[28], or learn from hyperedges for heterogeneous events
only (hyperedges linking nodes from different data do-
mains) while ignoring homogeneous edges within a data
domain [29]. However, as shown in Figure 1, the LBSN
heterogeneous hypergraph typically contains both classi-
cal friendship edges within the user domain and check-
in hyperedges across all four data domains. Subsequently,
these techniques cannot be directly applied to the full LBSN
heterogeneous hypergraph. Even though these techniques
could be applied on check-in hyperedges only, ignoring
social relationship indeed shows suboptimal performance
for different tasks (see Section 4.3 for more detail). Third,
the heterogeneity nature of the LBSN hypergraph implies
that learning node embeddings in a unified space (as most
of the existing techniques do [16], [30], [31], [32]) may not
be able to fully capture the complex characteristics of the
LBSN heterogeneous hypergraph. Specifically, considering
a case where a popular user is connected to many friends
via friendships, and this user is also connected to a POI
via a check-in hyperedge while none of her friends are
linked to this POI via check-ins. If we learn user and POI
embeddings in a unique vector space, this user should be
closely surrounded by her friends in the embedding vector
space because of friendship edges, and this user should
also be close to the POI because of the check-in hyperedge.
However, as none of the user’s friends have check-ins on
this POI, the POI should be put far away from them and
subsequently from the user as well. This is in conflict with
fact that the user should be close to the POI because of the
check-in hyperedge.

In this paper, we propose LBSN2Vec++, a heterogeneous

hypergraph embedding approach designed specifically for
LBSN data. Specifically, we first propose a random-walk-
with-stay scheme to jointly sample friendship and check-
ins from a LBSN heterogeneous hypergraph. To balance the
impact of social relationships and user mobility on the learnt
node embeddings, we incorporate a tunable parameter to
control the proportion of social relationships and check-
ins in the learning process in a probabilistic manner. Sub-
sequently, we learn node embeddings from both sampled
friendship homogeneous edges and check-in heterogeneous
hyperedges by not only capturing the n-wise node prox-
imity encoded by the hyperedges, but also considering the
embedding space transformation between node domains
to fully grasp the structural characteristics of the LBSN
heterogeneous hypergraph. More precisely, for a social re-
lationship connecting two users, we maximize the cosine
similarity between the two corresponding user nodes in the
embedding vector space. For a check-in hyperedge linking
four nodes across the four data domains (as shown in Figure
1), we first transform the corresponding user node and POI
node into the semantic domain via two temporal-specific
projections, respectively, and then preserve the triple-wise
proximity of the activity node, the transformed user and POI
nodes, simultaneously. The intuition behind such a design
is that, under a specific temporal context, a user has an
intended activity and a POI provides a potential activity; a
check-in happens when the user intended activity matches
the activity provided by the POI. Analogically, in the LBSN
heterogeneous hypergraph, a user node and a POI node are
projected to an “intended” activity and a “potential” activity
via two temporal-specific projections, respectively. Incorpo-
rating such embedding space transformations gives more
flexibility to capture the complex structure of the LBSN
heterogeneous hypergraph. We then learn to preserve the
triple-wise proximity between the three nodes (the actual
activity node and the “intended” and “potential” activity
nodes). Our contributions are summarized as follows:

• We study an automatic feature learning problem for
LBSN data, and propose LBSN2Vec++, a heterogeneous
hypergraph embedding approach designed specifically
for the LBSN heterogeneous hypergraph.

• We propose a random-walk-with-stay scheme to jointly
sample friendship and check-ins from the LBSN het-
erogeneous hypergraph, while balancing the impact
of social relationships and user mobility on the learnt
node embeddings.

• We learn node embeddings from both sampled friend-
ship edges and check-in hyperedges by not only cap-
turing the n-wise node proximity encoded by the hy-
peredges, but also considering the embedding space
transformation between node domains to fully grasp
the complex structural characteristics of the LBSN het-
erogeneous hypergraph.

• We conduct a thorough evaluation using real-world
LBSN datasets in six cities all over the world. Our
results show that LBSN2Vec++ significantly and con-
sistently outperforms not only state-of-the-art graph
embedding techniques by up to 68%, but also the best-
performing hand-crafted features in the literature by up
to 70.14%, on friendship and location prediction tasks.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Moreover, using LBSN2Vec++, we discover the asym-
metric impact of user mobility and social networks on
predicting each other.

Compared to our previous work LBSN2Vec [16], in this
paper, we further consider the heterogeneous nature of
the LBSN hypergraph, and design LBSN2Vec++ leveraging
embedding space transformation when learning from check-
in heterogeneous hyperedges such as to more subtly capture
user mobility information. Our experiment results show
that compared to LBSN2Vec, LBSN2Vec++ significantly im-
proves the performance on location prediction by 68%,
while being able to maintain the same level of performance
on friendship prediction. In essence, the embedding space
transformation significantly helps to preserve the complex
structure of the LBSN heterogeneous hypergraph.

2 RELATED WORK

2.1 Human Mobility and Social Relationships

The interaction between human mobility and social relation-
ships has been widely studied using different data sources
over the past decade. In the earlier stage, call detail records
[2], [15] and (taxi) trajectory data [33], [34] are widely used
to study human mobility, social ties and link prediction
problems. However, these data sourses often has a common
limitation, as they do not contain actual information about
social relationships between users; the corresponding social
network are usually built from the users’ communication
activities based on certain heuristics. For example, a friend-
ship is assumed between a pair of users when there is at
least one call between them [15] (or 10 calls in [2]).

The emergence of Location-Based Social Networks pro-
vides a novel opportunity to collect both large-scale user
mobility data (i.e., check-ins) and the corresponding social
network [35], [36]. Using LBSN data, positive correlations
between social proximity and mobility homophily have
been universally found [2], [15], [16]. For example, Wang et
al. [15] found positive correlations between social proximity
(measured by various network proximity metrics includ-
ing common neighbors, Adamic-Adar, Jaccard coefficient,
and Katz index on the user social network) and mobility
homophily (i.e., the similarity between mobility patterns
measured by distance, spatial or spatiotemporal co-location
rate under Jaccard/Cosine similarity). In this paper, we take
a step forward by further investigating the impact of user
check-ins and the corresponding social network on both
friendship and location prediction tasks.

First, friendship prediction is a classical problem in so-
cial network analysis. It predicts the potential friendship
between two users based on the existing social network
[37]. Using LBSN data, friendship prediction approaches [3],
[6], [7], [8], [9] often combine social proximity and mobility
pattern similarity to achieve better prediction performance.
For example, Scellato et al. [3] investigated a set of hand-
crafted features and showed that besides social proximity,
mobility pattern similarity is also a strong indicator to
predict future friendship. Sadilek et al. [7] manually com-
bined features from social proximity, mobility similarity, and
textual similarity extracted from users’ Tweets for friendship
prediction.

Second, location prediction is a typical problem in hu-
man mobility modeling, which predicts the location of a
user under a certain context based on the user’s histori-
cal mobility traces. Using LBSN data, location prediction
approaches incorporate social factors in mobility models,
showing an improved prediction performance [2], [7], [10],
[11], [12], [38]. For example, Gao et al. [11] combined
check-in patterns and social ties by considering mobility
similarity between friends (co-location rate measured by
cosine distance). Noulas et al. [10] investigated the next
place prediction problem and found that besides a user’s
own check-in history, a “social filtering” feature serves as an
important predictor for the user’s next location.

However, the manual feature engineering process
adopted by the existing work not only requires a lot of
human efforts, but also shows less generalizability [16], i.e.,
features designed for one task (e.g., friendship prediction)
do not perform well in the other task (e.g., location predic-
tion). In addition, we also note that some existing works
design generative models [39], [40], [41], [42], [43] for LBSN
data to perform specific tasks (most the location prediction
task) without involving hand-crafted features, but those
models are task-specific and cannot be applied to other
tasks. More importantly, they are not able to model the im-
pact of user mobility and social relationships on each other.
In this paper, we propose LBSN2Vec++, a heterogeneous
hypergraph embedding approach to automatically learn the
node embeddings from a LBSN heterogeneous hypergraph,
based on which both friendship and location prediction
tasks can be efficiently performed. Moreover, using our
proposed technique, we discovered the asymmetric impact
of mobility and social relationships on predicting each other.

2.2 Graph Embeddings

Most existing graph embedding approaches focus on pre-
serving pairwise node proximity in a classical graph, which
can be further classified into two categories according to
the embedding learning process. First, factorization based
approaches [19], [20], [21] measure pairwise node proximity
as a matrix using a certain network proximity metric, such
as common neighbor or Adamic-Adar, and then factorize
this proximity matrix using matrix factorization techniques
to learn the node embeddings. However, factorization-based
approaches have an intrinsic scalability limitation, due to
the quadratic complexity of matrix factorization algorithms
[44]. Second, graph-sampling based approaches [22], [23], [24],
[25], [32] sample node pairs (directly or via random walks)
from a graph, and then design specific models to learn node
embeddings from the sampled node pairs via stochastic
optimization. These graph-sampling based approaches are
able to scale up to large datasets, as their complexity mainly
depends on the number of the sampled node pairs.

Moreover, there are also a few approaches studying the
hypergraph embedding problem, but they either focus on a
homogeneous hypergraph (where all nodes with the same
domain) [45], a n-uniform hypergraph (where all hyper-
edges contain a fixed number n of nodes) and thus capture
only fixed-n-wise node proximity [26], [27], [28], or learn
from hyperedges for heterogeneous event only (hyperedges
linking nodes from different data domains) while ignoring

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

edges within a data domain [29], [46]. However, in this pa-
per, as shown in Figure 1, our LBSN heterogeneous hyper-
graph contains both friendship homogeneous edges within
the user domain and check-in heterogeneous hyperedges
across all four data domains. Subsequently, these techniques
cannot be directly applied to our full LBSN heterogeneous
hypergraph. Even though they can be applied only on the
check-in hyperedges for example, ignoring social relation-
ships indeed yields suboptimal performance (see Section
4.3 for more detail). Graph embedding problems have also
been studied on multiplex networks [47], where multiple
networks are aligned with each other via some common
nodes; it is essentially different from a hypergraph where
an edge links multiple nodes.

In addition, heterogeneous graph embedding problems
have also been widely studied in the current literature [16],
[30], [31], [32]. These approaches mainly focus on captur-
ing the meta-structures of a heterogeneous graph (using
meta-paths, for example) and project nodes into a unified
embedding space. However, as shown in our experiments
4.3, simply projecting nodes into a unified space fails to
fully capture the complex structural characteristics of the
LBSN heterogeneous hypergraph, resulting in unsatisfied
results. Against this background, we propose LBSN2Vec++
to efficiently learn high-quality node embeddings from the
LBSN heterogeneous hypergraph. It is designed to not only
capture the n-wise node proximity encoded by the hyper-
edges, but also consider the embedding space transforma-
tion between node domains to fully grasp the heterogeneous
nature of the LBSN hypergraph.

We also note that there are several works exploited
embedding techniques on LBSN data, but they mostly focus
on check-in data only (without using social networks) for
specific tasks, such as semantic annotation of POIs [48], POI
recommendation [49], [50], [51], next visitor prediction [52],
user profiling [53], urban community structure discovery
[54]. Only one recent work [55] used both social network
and check-in data on LBSNs for learning embeddings for
users and POIs, but it overlooks the temporal and semantic
information of check-ins. Moreover, none of these works
have investigated the correlations between human mobility
and social relationships.

3 LBSN2VEC++
In this paper, we adopt a graph-sampling based embed-
ding paradigm when designing LBSN2Vec++. Specifically,
our method first uses a random-walk-with-stay scheme to
jointly sample friendships and check-in hyperedges1 from
the LBSN heterogeneous hypergraph, and then learn node
embeddings from these hyperedges.

3.1 Random Walk with Stay

As shown in Figure 1, the LBSN heterogeneous hypergraph
consists of four data domains, i.e., spatial, temporal, se-
mantic and social domains, and two types of edges, i.e.,

1. A classical edge linking two user nodes (i.e., a friendship) can be
regarded as a special case of a hyperedge consisting of only two nodes.
In the following, besides the check-in hyperedges, we also use the term
“hyperedge” to describe a pair of user nodes.

Fig. 2. Random walk with stay on the LBSN hypergraph

classical edges (friendships) linking pairs of user nodes and
hyperedges (check-ins) linking four nodes, one from each
domain. Formally, the social domain contains a set of users
U ; the semantic domain contains a set of activity category
C ; the temporal domain contains a set of time slots T
(following our previous empirical study [16], we define in
this work the time granularity as 168 hours/time slots in
a full week); the spatial domain contains a set of POIs L. A
friendship can then be represented as a pair of users (ui, uj),
ui, uj ∈ U . A check-in hyperedge can be represented as a
quadruple (u, c, t, l), u ∈ U, c ∈ C, t ∈ T, l ∈ L.

To sample (hyper)edges from this graph, we propose
a random-walk-with-stay scheme to jointly sample friend-
ship and check-in hyperedges. As shown in Figure 2, our
random-walk-with-stay scheme performs classical random
walk only on user nodes based on their friendships in social
domain, while for each encountered user node, it stays
on the user node to sample a set of hyperedges (check-
ins) from the corresponding user. Subsequently, in the node
embedding learning process, when iterating over each user
node in a random walk sequence, we not only learn from
two user nodes appearing with a context window of length
k, but also stay on the corresponding user node to learn
from its check-in hyperedges. In other words, the node
embedding learning process alternates between these two
types of edges (i.e., friendships and check-ins). To perform
classical random walk on the user social network, we use
the same strategy as used by existing works [22], [24],
generating r walks of length l rooted on each user node.

Moreover, in order to balance the impact of friendships
and check-ins on the learnt node embeddings, LBSN2Vec++
incorporates a tunable parameter α to control the portion of
learning edges of each type. Specifically, for a given context
window of length k, we iterate over 2k contexts for each
user node ui (k context nodes on each side), resulting in
2k pairs of user nodes. Figure 2 shows an example where
the context window size is 2. Subsequently, we sample for
each user node the same number (2k) of check-ins using
a random sampling with replacement strategy, to ensure
the exact same number of check-ins and friendships are
sampled per user. Based these samples, we can then balance
the impact of friendships and check-ins on the learnt node
embeddings using a unique parameter α. Specifically, we
learn from each check-in (u, c, t, l) with a probability α,
while from each user node pair (ui, uj) with a probability
(1− α), where α and (1− α) actually specify the impact of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

(a) Euclidean space with per-
pendicular distance

(b) Cosine space with cosine
distance

Fig. 3. Examples of the best-fit-lines in Euclidean and Cosine spaces.
The given data points are represented in blue, while the corresponding
best-fit-line is shown in red.

mobility and social network on the learnt node embeddings,
respectively. In summary, for each node vi in a random
walk, the expected total number of learnt edges is 2k,
including an expected number 2kα of check-ins and an
expected number of 2k(1 − α) of user node pairs. A small
value of α gives less importance on the check-in data and
more on social network, and vice versa. In the following,
we present our node embedding learning process from both
sampled friendship2 and check-in hyperedges.

3.2 Learning from Hyperedges

From the sampled friendship and check-in hyperedges, we
design a customized embedding model to preserve not only
the social proximity between users in the social network,
but also user activity patterns from the check-in data. In the
following, we first propose a general technique of learning
node embeddings to preserve n-wise node proximity, which
serves as the foundation of our LBSN2Vec++. Afterwards,
we separately discuss our embedding learning process for
both friendship and check-in hyperedges.

3.2.1 Preserving n-wise Node Proximity via Best-Fit-Line

As the foundation of our LBSN2Vec++, we design a general
embedding technique to preserve the n-wise node prox-
imity captured by a hyperedge containing n nodes, where
{n ∈ Z+|n ≥ 2}. Specifically, to learn node embeddings
from a hyperedge containing n nodes, we borrow the idea
of best-fit-line (a.k.a. line of best fit) from linear regression
[56]. In general, a best-fit-line is a straight line that is
the best approximation of the given data points. Figure
3(a) illustrates an example of the best-fit-line in Euclidean
space that minimizes the sum of perpendicular distances,
which can be computed via linear least squares. In this
paper, following existing graph embedding techniques [19],
[20], [21], [22], [23], [24], [25], we learn node embeddings
in cosine space where the proximity between nodes are
measured using cosine similarity (or dot product of the
normalized embedding vectors). Moreover, we show below
that the computation of the best-fit-line in cosine space can
be significantly simplified. Formally, the best-fit-line of a set
of node embeddings is the vector that minimizes the sum
of cosine distances between each node embedding and the
best-fit-line, as shown in Figure 3(b), which can be efficiently
computed using Proposition 1 (please refer to [16] for its
proof):

2. We use the term “friendship” hereafter to refer to pairs of user
nodes sampled using our random walk with stay techniques.

Proposition 1. For a set of nodes (in a hyperedge) {vi|i =
1, 2, . . . , n}, the corresponding best-fit-line can be computed as

~vb =
n∑

i=1

~vi
‖~vi‖

(1)

where ~vi refer to the embedding vector of node vi.

Based on Proposition 1, we optimize the n-wise node
proximity by iteratively maximizing the cosine similarity
between each node embedding ~vi from the hyperedge
{vi|i = 1, 2, . . . , n} and the best-fit-line ~vb.

Θ =
n∑

i=1

cos(~vi, ~vb) (2)

Note that here we keep using cosine similarity rather than
dot product (which is widely used by existing techniques),
because cosine similarity is not affected by the norm of the
input vectors, in particular when the norm of the best-fit-
line ~vb computed by Eq. 1 has a large variance due to the
variant number of the nodes n in different hyperedges.

In addition, similar to other graph-sampling based em-
bedding techniques [22], [23], [24], [25], we also adopt a
negative sampling technique to maximize the cosine dis-
tance between each negative sample node vN and the best-
fit-line vector ~vb. Finally, we want to maximize the follow-
ing objective function for one node vi in the hyperedge
{vi|i = 1, 2, . . . , n}:

Θ = cos(~vi, ~vb) + γ · EvN [1− cos(~vN · ~vb)] (3)

where γ ∈ Z+ is the number of negative samples. Note that
as the LBSN hypergraph contains four data domains, the
negative samples for a node vi from one data domain are
randomly sampled from the nodes in the same data domain.
Such a negative sampling strategy ensures the negative
samples following the hyperedge structure. For example,
for a given hyperedge (u, c, t, l), a negative sample for the
POI node l should be another POI node lN ∈ L. Otherwise,
if a negative node is taken from user domain for example,
resulting in (u, c, t, uN), it breaks the intrinsic structure of
check-in hyperedges.

The above objective function can be optimized using
Stochastic Gradient Descent (SGD). Note that we only need
to update ~vi and ~vN when learning from one specific hy-
peredge, as the best-fit-line vector ~vb is fixed. The gradient
of the above objective function with respect to ~vi and ~vN is
computed as follows:

∂Θ

∂~vi
=

~vb
‖~vi‖‖~vb‖

− ~vi cos(~vi, ~vb)

‖~vi‖2
(4)

∂Θ

∂~vN
= − ~vb
‖~vN‖‖~vb‖

+
~vN cos(~vN , ~vb)

‖~vN‖2
(5)

In summary, the above technique is able to learn node
embeddings preserving the n-wise node proximity captured
by a hyperedge containing an arbitrary number of n nodes,
{n ∈ Z+|n ≥ 2}. Our previous work [16] has shown
the effectiveness of this technique in learning hypergraph
embeddings. In the following, we separately discuss the
embedding learning process of our LBSN2Vec++ for both
friendship and check-in hyperedges, based on the above
technique.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Algorithm 1 Learning from a sampled friendship edge
Input: a friendship edge (ui, uj), number of negative samples

γ
1: Compute the best-fit-line using Eq. 1
2: Update ~ui, ~uj using the gradients computed by Eq. 4
3: loop γ times
4: Sample a negative user node uN ∈ U , uN 6= ui, uj

5: Update ~uN using the gradient computed by Eq. 5
6: end loop

Fig. 4. Learning from a check-in hyperedge with two temporal-specific
projections.

3.2.2 Learning from Friendship Edges
For a sampled friendship edge connecting two users, we
directly adopt the above technique to maximize the cosine
similarity between the two corresponding user nodes in
the embedding vector space. Alg. 1 shows the learning
process for a sampled friendship edge (ui, uj). We start by
computing the best-fit-line of the input edge using Eq. 1
(Line 1). We then update the embedding vectors of the two
user nodes ~ui, ~uj using SGD with the gradients computed
by Eq. 4 (Line 2). Meanwhile, we also sample γ negative
user nodes and update their embedding vectors with the
gradients computed by Eq. 5 (Line 3-6).

3.2.3 Learning from Check-in Hyperedges
For a sampled check-in hyperedge linking four nodes across
the four heterogeneous data domains (as shown in Figure
1), we first transform the corresponding user node and POI
node into the semantic domain via two temporal-specific
projections, respectively, and then preserve the triple-wise
proximity of the activity node, the transformed user and POI
nodes, simultaneously. The intuition behind such a design
is that, under a specific temporal context, a user has an
intended activity and a POI provides a potential activity; a
check-in happens when the user intended activity matches
the activity provided by the POI. Analogically, in the LBSN
hypergraph, a user node and a POI node are projected to
an “intended” activity and a “potential” activity via two
temporal-specific projections. We then learn to preserve
the triple-wise proximity between three nodes (the actual
activity node and the “intended” and “potential” activity
nodes).

Figure 4 illustrates the learning process from a check-in
hyperedge. For a check-in hyperedge (u, c, t, l), u ∈ U, c ∈
C, t ∈ T, l ∈ L, we first transform the user and POI node
embeddings (~u and ~l, respectively), using two temporal
specific projections MU

t and ML
t . The transformed user and

POI node embeddings are denoted as ~u∗ = MU
t ~u and

~l∗ = ML
t
~l, respectively. Afterward, we adopt our technique

proposed in Section 3.2.1 to preserve triple-wise proximity
of the activity node embedding ~c, the transformed user node
embedding ~u∗ and the transformed POI node embedding
~l∗. Specifically, by computing the best-fit-line of the hyper-
edge {~c, ~u∗,~l∗}, we maximize the similarity between each
(transformed) node embeddings and the best-fit-line under
cosine similarity via SGD. While the objective function for
the activity node ~c remains the same as in Eq. 4, the one
for the transformed nodes needs to be derived w.r.t. the
original user node embedding ~u and the corresponding
transformation matrix MU

t , which we formulate as follows
(similar for ~l and ML

t):

Θ = cos(~u∗, ~vb)

+ γ · EuN
[1− cos(~u∗N · ~vb)]

+ γ · EtN [1− cos(~u∗tN · ~vb)]
(6)

where we consider negative samples for both user node
(uN ∈ U, uN 6= u) and time node (tN ∈ T, tN 6= t), resulting
two transformed negative user nodes ~u∗N = MU

t ~uN and
~u∗tN = MU

tN~u, respectively. Subsequently, the gradient w.r.t.
the transformed nodes needs to be further derived w.r.t. the
original node embedding vector ~u and the transformation
matrix MU

t via the chain rule. The gradient of the above
objective function w.r.t. ~u is computed as follows:

∂Θ

∂~u
=

∂Θ

∂~u∗
· ∂~u

∗

∂~u
+

∂Θ

∂~u∗tN
·
∂~u∗tN
∂~u

(7)

∂Θ

∂~u∗
· ∂~u

∗

∂~u
=

(
~vb

‖~u∗‖‖~vb‖
− ~u∗ cos(~u∗, ~vb)

‖~u∗‖2

)
·MU

t (8)

∂Θ

∂~u∗tN
·
∂~u∗tN
∂~u

= −
(

~vb
‖~u∗tN ‖‖~vb‖

−
~u∗tN cos(~u∗tN , ~vb)

‖~u∗tN ‖2

)
·MU

tN

(9)
Here we separate the gradient computation of the trans-
formed positive (~u∗) and negative samples (~u∗tN), as the
latter actually depends on the negative time sample MU

tN ,
which will be repeatedly sampled γ times for each check-
in hyperedge in the learning process (see Alg. 2 for more
detail). Similarly, the gradient w.r.t. MU

t is computed as
follows:

∂Θ

∂MU
t

=
∂Θ

∂~u∗
· ∂~u

∗

∂MU
t

+
∂Θ

∂~u∗N
· ∂~u

∗
N

∂MU
t

(10)

∂Θ

∂~u∗
· ∂~u

∗

∂MU
t

=

(
~vb

‖~u∗‖‖~vb‖
− ~u∗ cos(~u∗, ~vb)

‖~u∗‖2

)
⊗ ~u (11)

∂Θ

∂~u∗N
· ∂~u

∗
N

∂MU
t

= −
(

~vb
‖~u∗N‖‖~vb‖

− ~u∗N cos(~u∗N , ~vb)

‖~u∗N‖2

)
⊗ ~uN

(12)
where ⊗ denotes the outer product between two vectors.
Similarly, the gradient w.r.t. negative samples are computed
as follows:

∂Θ

∂~uN
= −

(
~vb

‖~u∗N‖‖~vb‖
− ~u∗N cos(~u∗N , ~vb)

‖~u∗N‖2

)
·MU

t (13)

∂Θ

∂MU
tN

= −
(

~vb
‖~u∗tN ‖‖~vb‖

−
~u∗tN cos(~u∗tN , ~vb)

‖~u∗tN ‖2

)
⊗ ~u (14)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Algorithm 2 Learning from a sampled check-in hyperedge
Input: a check-in hyperedge (u, c, t, l), number of negative

samples γ
1: Get the transformed user node ~u∗ = MU

t ~u
2: Get the transformed POI node ~l∗ = ML

t
~l

3: Compute the best-fit-line ~vb for {~c, ~u∗,~l∗} via Eq.1
4: Update ~c using the gradient in Eq.4
5: Update ~u (and ~l) using the gradients in Eq.8
6: Update MU

t (and ML
t) using the gradients in Eq.11

7: loop γ times
8: Sample a negative activity node cN ∈ C, cN 6= c
9: Update ~cN using the gradient in Eq. 5

10: Sample a negative user node uN ∈ U , uN 6= u
11: Update ~uN using the gradient in Eq. 13
12: Update MU

t using the gradient in Eq. 12
13: Sample a negative POI node lN ∈ L, lN 6= p

14: Update ~lN using the gradient in Eq. 13
15: Update ML

t using the gradient in Eq. 12
16: Sample a negative time node tN ∈ T , tN 6= t
17: Update MU

tN (and ML
tN) using the gradients in Eq. 14

18: Update ~u (and ~l) using the gradients in Eq. 9
19: end loop

The objective function and gradient are formulated in the
same way for ~l and ML

t , which are omitted for the sake of
brevity. Hereafter, we also use the above equations for the
gradients w.r.t. ~l and ML

t (See the algorithm below).

Alg. 2 shows the learning process for a sampled check-in
hyperedge (u, c, t, l). We start by transforming the user node
and POI node into the semantic domain via two temporal-
specific projections, and obtain the transformed user and
POI node embeddings ~u∗ and ~l∗, respectively (Line 1-2).
We then update the embeddings to preserve the triple-wise
proximity of the activity node embedding ~c, and the trans-
formed user and POI node embeddings ~u∗ and~l∗, using our
technique proposed in Section 3.2.1. Specifically, we start
by computing the best-fit-line of the hyperedge {~c, ~u∗,~l∗}
using Eq. 1 (Line 3). Subsequently, we update the activity
node embedding ~c, the user and POI node embeddings
(~u and ~l, respectively), and the corresponding temporal-
specific project matrices (MU

t and ML
t , respectively) (Line

4-6). Meanwhile, we repeat the negative sampling process γ
times. For each round, we perform negative sampling and
update the corresponding embedding vectors for an activity
node cN (Line 8-9), a user node uN (Line 10-12), a POI node
lN (Line 13-15), and a time node tN (Line 16-18). Note that
for the negative user node uN , we update not only uN ,
but also MU

t , since the gradient of the objective function
also depends on MU

t as shown in Eq. 12. Similarly, we also
update ML

t for the negative POI node lN . In addition, for
the negative time node tN , we update not only MU

tN (and
ML

tN), but also ~u (and ~l), since the gradient of the objective
function also depends on ~u (and ~l) as shown in Eq. 9.

In summary, to learn node embeddings from the
LBSN heterogeneous hypergraph, we first sample a set
of friendship edges and check-in hyperedges using our
proposed random-walk-with-stay scheme, and then alter-
natively learn from each friendship edge and check-in hy-
peredge (using algorithm 1 and 2, respectively).

TABLE 1
Statistics of the selected datasets

Dataset NYC TKY IST JK KL SP
#User 4,024 7,232 10,367 6,395 6,432 3,954
#POI 3,628 10,856 12,693 8,826 10,817 6,286
#Check-ins 105,961 699,324 908,162 378,559 526,405 249,839
#Friendships
(before) 8,723 37,480 21,354 11,207 16,161 9,655

#Friendships
(after) 10,545 51,704 36,007 16,950 31,178 14,402

4 EXPERIMENTS

In this section, we evaluate LBSN2Vec++ on both friendship
and location/activity prediction tasks. In the following, we
first present our experimental setup, and then discuss the
results on individual tasks, followed by a study on the trade-
off between social relationship and mobility on predicting
each other.

4.1 Experimental Setup

4.1.1 Dataset
We use a large-scale and long-term LBSN dataset collected
by [16]. It contains not only check-ins of a set of users over a
two-year period (from Apr. 2012 to Jan. 2014), but also two
snapshots of the corresponding user social network before
and after the check-in data collection period, respectively.
The chronological order of the two social networks provides
a unique opportunity to study the impact of user mobility
and the corresponding social network on predicting each
other (see Section 4.2 and 4.3 below). More precisely, we
investigate the friendship and location prediction at an
urban scale. Without loss of generality, we select six cities
with a large number of check-ins, while also considering
the cultural diversity of the selected cities: New York City
(NYC), Tokyo (TKY), Istanbul (IST), Jakarta (JK), Kuala
Lumpur (KL), Sao Paulo (SP). We select users in the largest
connected components of the old social network. Table 1
summarizes the statistics of the selected datasets.

4.1.2 Baselines
We compare our method to the following state-of-the-art
graph embedding methods from three categories:
• Classical graph embedding techniques for homogeneous graphs.

DeepWalk [22] feeds node sequences from random walks
to a SkipGram model to output node embeddings. We
set the walk length l = 80, the number of walks per
node r = 10, and the context window size k = 10.
Node2Vec [24] extends DeepWalk by introducing a pa-
rameterized random walk method to balance the breadth-
first search (return parameter p) and depth-first search
(in-out parameter q) strategies, to capture richer graph
structures. We tune p and q with a grid search over
p, q ∈ {0.25, 0.05, 1, 2, 4}, and keep the other parameters
same as for DeepWalk. LINE [23] separately learns from
1st and 2nd-order node proximity in a graph, and then
concatenates them together. NetMF [21] derives the closed
form of DeepWalk’s implicit matrix, and factorizes this
matrix to output node embeddings. We tune the implicit
window size T within {1, 10}. VERSE [25] directly sam-
ples node pairs to learn graph embeddings to preserve

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

the node proximity measured by personalized PageRank.
We tune the damping factor α of personalized PageRank
using the method suggested by the authors.

• Heterogeneous graph embedding techniques. Metapath2Vec
[30] first generates meta-path guided random walks based
on a given meta-path, then feeds them to a SkipGram
model. For our LBSN heterogeneous hypergraph, we
empirically use a meta-path “user-activity-time-POI-time-
activity-user”. Hin2Vec [31] automatically combines all
meta-paths shorter than a predefined length, in order
to jointly learn both node embeddings and meta-path
embeddings. We empirically set the maximum length of
meta-paths to 7, which is the length of the meta-path used
in Metapath2Vec, for a fair comparison.

• Heterogeneous hypergraph embedding techniques. HEBE [29]
learns node embeddings for heterogeneous event data using
tensor modeling, where a heterogeneous hyperedge links
nodes across different domains only and is modeled as
an entry in an high-order tensor. DHNE [28] uses a
deep autoencoder to learning node embeddings from a n-
uniform heterogeneous hypergraph. It preserves both fixed-n-
wise node proximity encoded by the hyperedges, and also
the high-order node proximity defined as the similarity
between nodes’ neighborhood structures. LBSN2Vec [16]
is our previously proposed technique. It uses the same
random-walk-with-stay scheme as LBSN2Vec++ to sam-
ple friendship and check-in hyperedges from a LBSN hy-
pergraph, but learn node embeddings without considering
the heterogeneous nature of the LBSN hypergraph. Specifically,
it learns to preserve the n-wise node proximity using the
general technique described in Section 3.2.1 only, without
involving the embedding space transformation in learning
from check-in hyperedges (see Section 3.2.3).

For our method LBSN2Vec/LBSN2Vec++, we keep the
same random walk parameters as for DeepWalk and
Node2vec (l = 80, r = 10, k = 10), and tune the parameter
α within [0, 1] with a step of 0.1 to balance the impact
of social and mobility on the learnt embeddings (more
discussion on this point in Section 4.5). The dimension of
the node embeddings d is set to 128 and the number of
negative samples γ is set to 10 for all methods in all exper-
iments, if not specified otherwise. The implementation of
LBSN2Vec/LBSN2Vec++ and the used datasets are available
online3.

4.1.3 Dataset Configuration
Except LBSN2Vec/LBSN2Vec++, other baseline methods
cannot directly take the LBSN heterogeneous hypergraph
as an input graph. Therefore, we propose three settings to
adapt our LBSN heterogeneous hypergraph:
• (S): Only the Social network is considered by keep-

ing nodes in user domain and their friendship edges.
This setting can be applied to classical graph embed-
ding techniques for homogeneous graphs, i.e., DeepWalk,
Node2vec, LINE, NetMF and VERSE.

• (M): Only the user Mobility is considered by keeping
check-in hyperedges only. This setting can be directly ap-
plied to HEBE and DHNE which can take heterogeneous
check-in hyperedges as input. For Metapath2Vec and

3. https://github.com/eXascaleInfolab/LBSN2Vec

Fig. 5. Friendship prediction performance comparison with other graph
embedding methods under setting setting S and S&M.

Hin2Vec, we break each heterogeneous hyperedge user-
activity-time-POI into three edges user-activity, activity-
time and time-POI, resulting in a classical heterogeneous
graph, which can be used as inputs to these techniques.
In addition, we also apply this setting to DeepWalk,
Node2vec, LINE, NetMF and VERSE by breaking each
check-in hyperedge into multiple classical edges linking
each pair of nodes in the hyperedge (e.g., user-time, time-
POI, etc.).

• (S&M): The full LBSN heterogeneous hypergraph is con-
sidered, and converted to a classical graph by 1) keeping
friendship edges and 2) also breaking each check-in hy-
peredge into multiple classical edges linking each pair of
nodes in the hyperedge (same as for the M setting). This
setting can be applied to DeepWalk, Node2vec, LINE,
NetMF, VERSE, Metapath2Vec and Hin2Vec.

4.2 Friendship (link) Prediction

Friendship prediction recommends friendships that will
probably be established in the future. In this study, we
advocate an unsupervised friendship prediction approach
[37], [57] which generates a ranking list of potential links
between pairs of users. Specifically, after learning the node
embeddings based on the old social network and check-ins,
we rank pairs of user nodes (not being friends in the old
social network) according to the cosine similarity between
their embeddings. We then evaluate the obtained ranking
list against the new friendships (appearing in the new but
not in the old social network), reporting precision and recall
on the top 10 predicted friendships [37]. As the number of
candidate pairs of nodes is too large, we randomly sample
1% pairs of nodes for the evaluation, and report the average
results from 10 independent trials.

4.2.1 Comparison with other graph embedding methods
We report only the methods including social networks
(setting S and S&M), since the social proximity in the old
social network is indeed the primary predictor of new
friendships [16] and since we found out that methods using
setting M perform very poorly on this task. Figure 5 shows
the results. Note that we report the results together for
LBSN2Vec/LBSN2Vec++, since there is no visible differ-
ence between their performance. This is reasonable because
both of the methods optimize the same objective function
when learning user node embeddings from user social rela-
tionships. We clearly observe that LBSN2Vec/LBSN2Vec++
achieve the highest precision and recall in general. For

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 6. Friendship prediction performance comparison with hand-crafted
features.

example, LBSN2Vec/LBSN2Vec++ outperform all baselines
with an average improvement of 62.56% on precision@10
over the best baselines across different datasets.

One interesting observation is that for all the baseline
methods, considering both the social network and mobility
(setting S&M) leads to worse performance than considering
only the social network (setting S) in most cases. In other
words, for all baseline methods, adding user mobility in-
formation decreases the friendship prediction performance.
Despite the counter-intuitive nature of this observation, we
notice that these methods fail to balance the impact of social
network and user mobility on the learnt node embeddings.
More precisely, as the number of check-ins is usually much
larger than the number of friendships, the S&M graph is
dominated by the edges representing check-ins. When the
baseline methods uniformly sample edges from the S&M
graph to learn the node embeddings, the sampled edges
are also dominated by the edges representing check-ins,
which naturally imposes a strong impact of mobility on the
learnt node embeddings. In fact, as reported by previous
studies [16], the social proximity in the old social network
is indeed the primary predictor of new friendships (our
parameter sensitivity study in Section 4.5 also verifies this
point below). Therefore, the learnt node embeddings from
those baseline methods (with setting S&M) result in the
worst performance in friendship prediction.

4.2.2 Comparison with hand-crafted features

We also compare our method with the following hand-
crafted features suggested specifically for the friendship
prediction task by previous work:
• Katz Index (Katz) [14] is the best performing social feature

suggested by [15]. It is defined as the weighted sum of all
paths between two users on the social networks, where
the weight of a path decays exponentially with its length.
Katz(u, v) =

∑∞
l=1 β

l · |pathlu,v|, where pathlu,v is the set
of all paths with length l from u to v. We set β = 0.05 as
suggested by [15].

• Adamic-Adar (AA) [13] is the best performing social feature
suggested by [3]. It is the weighted sum of the com-
mon neighbors between two users. The weight for each
common neighbor is the inverse logarithm of its degree.
AA(u, v) =

∑
z∈Γ(u)∩Γ(v)

1
log |Γ(z)| , where Γ(u) is the set

of neighbors (friends) of user u.
• Spatial Cosine Similarity (SCos) is the best performing

mobility feature suggested by [15]. It is defined as the
cosine similarity between two users’ check-in vectors Cu

Fig. 7. Location prediction performance comparison with other graph
embedding methods on all test check-ins.

and Cv , i.e., cos(Cu, Cv), where each element Cu(i) is u’s
check-in count on POI i.

• Minimum place entropy (Min ent) is the best performing
mobility feature suggested by [3]. It is defined as the
minimum POI entropy (i.e., the entropy of the empirical
distribution of check-ins at that POI over users) that two
users share.

As combining social and mobility features is suggested
by both [15] and [3], we consider all the combinations of the
above social and mobility features, including Katz+SCos,
Katz+Min ent, AA+Min ent and AA+SCos. Specifically, as
these features have different value ranges, we first generate
one ranking list of predicted friendships using each feature,
and then merge two ranking lists using reciprocal rank
fusion [58], which is a popular rank fusion method widely
used in information retrieval research. Figure 6 shows the
results. We clearly observe that LBSN2Vec/LBSN2Vec++
outperforms the hand-crafted feature based methods in gen-
eral, and we find an average improvement of 70.14% on pre-
cision@10 over the best baselines across different datasets.
Moreover, We observe that none of the four combinations
can consistently outperform others over all datasets, which
shows the generalization limitations of the hand crafted
features across different datasets.

4.3 Location Prediction

Location prediction tries to predict the POI a user will be
located in at a given time slot. To implement this task, we
chronologically split our check-in data into two parts, i.e.,
the first 80% for training and the last 20% for testing. We
then learn node embeddings from the old social network
and the training check-in data. Based on the learnt node
embeddings, for each test check-in (u, c, t, ltrue), we rank
all POIs l ∈ L according to the cosine similarity between
the transformed user node embeddings ~u∗ = MU

t ~u and the
transformed POI node embedding ~l∗ = ML

t
~l. Subsequently,

we evaluate the obtained POI ranking list against the actual
POI in the test check-in. We report the average accuracy@10
over all test check-ins.

4.3.1 Comparison with other graph embedding methods

Figure 7 shows the results. Note that only settings involving
check-in data (setting M and S&M) are eligible for this
task. First, we observe that our LBSN2Vec++ consistently
and significantly outperforms all baselines. In particular,
LBSN2Vec++ shows an average improvement of 68% on
accuracy@10 over the best-performing baseline LBSN2Vec
(our previous work without considering the embedding

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 8. Location prediction performance comparison with other graph
embedding methods on new POIs.

space transformation when learning from check-in hyper-
edges) across different datasets. Second, we see that using
setting M, hypergraph embedding techniques (HEBE and
DHNE) achieve better performance than other baselines
in general, as the irreversible process of transforming a
hypergraph into a classical graph causes a certain informa-
tion loss, leading to degraded performance for the location
prediction task. Finally, similar to friendship prediction, we
also find that for all baselines considering both the social
network and mobility (setting S&M) results in worse per-
formance than considering mobility (M) only in general, as
the baseline methods fail to balance the impact of the social
network and user mobility on the learnt node embeddings.
However, the performance drop is relatively smaller than
that of the friendship prediction task, as the S&M graph is
actually dominated by the edges from the check-ins.

In addition, we also investigate the prediction perfor-
mance on new POIs only, i.e., the POIs appearing in the
test check-ins but not in the training check-ins. As historical
(training) check-ins of a user are represented as hyperedges
in the LBSN heterogeneous hypergraph, check-ins with new
POIs actually refer to the non-observed hyperedges that
will be established in the future. Therefore, this task is
more difficult as it requires to explore the the hypergraph
structure for predicting potential hyperedges, rather than
preserving the observed hypergraph structure. Figure 8
shows the accuracy@10 for only new POIs. We observe that
our LBSN2Vec++ consistently and significantly outperforms
all baselines with an average improvement of 52.6% on
accuracy@10 over the best-performing baseline LBSN2Vec
across different datasets.

4.3.2 Comparison with hand-crafted features
We also compare our method with the following hand-
crafted features suggested specifically for the location pre-
diction task by previous work:
• Most Frequent POI (MFP) is the best performing mobility

feature suggested by [10]. For each user, it ranks a POI
according to the number of the user’s check-ins at that
POI in the training dataset.

• Most Frequent Time (MFT) is suggested by [59]. For each
user and each time slot, it ranks a POI according to the
number of user’s check-ins at that POI and at that time
slot in the training dataset.

• Social Filtering (SF) is suggested by [10]. For a user u and
his friends Γ(u), it ranks a POI according to the total
number of check-ins that any friend v (v ∈ Γ(u)) of the
user has performed at the POI.

• Weighted Social Filtering (WSF) is suggested by [11]. It
is a weighted version of SF, where each friend’s check-

Fig. 9. Location prediction performance comparison with hand-craft
features on new POIs.

Fig. 10. Activity prediction performance comparison with other graph
embedding methods.

in count is weighed by the mobility similarity between
the user and that friend. It ranks a POI according to the
weighted sum of the number of check-ins that any her
friend v, v ∈ Γ(u), has performed at that POI.

Similar to the friendship prediction task, we combine
the results from mobility and social features using re-
ciprocal rank fusion [58], resulting in four combinations
(i.e., MFP+SF, MFP+WSF, MFT+SF, MFT+WSF). Figure
9 shows the results on new POIs. We observe that our
method consistently outperforms the hand-crafted feature.
In addition, similar to the case of friendship prediction,
none of the four combinations consistently achieve higher
accuracy than others, showing the generalization limitations
of hand-crafted features.

4.4 Activity Prediction

Activity prediction tries to predict activities a user is inter-
ested in at a given time slot [59]. Similar to the location
prediction task, we learn node embeddings from the old
social network and the training check-in data. Based on the
learnt node embeddings, for each test check-in (u, ctrue, t, l),
we rank all activities c ∈ C according to the cosine similarity
between the transformed user node embeddings ~u∗ = MU

t ~u
and the activity node embedding ~c. We report the average
accuracy@10 over all test check-ins. Figure 10 shows the
results. We observe that our LBSN2Vec++ consistently out-
performs all baselines, showing an average improvement of
7.63% and 12.85% on accuracy@10 over LBSN2Vec and other
best-performing baselines, respectively. In addition, we also
find that in general the performance on activity prediction
is higher than locations prediction, as the number of activity
categories is indeed much smaller than the number of POIs.

4.5 Balance the trade-off between social and mobility

We investigate the trade-off between the social network
and mobility patterns on both the friendship and location
prediction tasks by varying α within [0, 1] with a step of
0.1. A small value of α gives more importance on the social
network and less on check-in data when learning node
embeddings, and vice versa.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 11. Impact of α on friendship and location prediction tasks

Figure 11 shows the results for both LBSN2Vec and
LBSN2Vec++. Note that we report the friendship prediction
results for LBSN2Vec/LBSN2Vec++ together, since there is
no visible difference between their performance. In general,
we see a clear trade-off between the social network and
mobility on all datasets. On one hand, when increasing
α from 0, the friendship prediction performance slightly
increases and reaches its peak around α = 0.2, as con-
sidering mobility factors indeed helps the friendship pre-
diction task. When further increasing α, the performance
start to decrease, and we observe a sharp drop around
α = 0.5. On the other hand, when decreasing α from 1,
the location prediction performance slightly increases and
reaches its peak around α = 0.6 for LBSN2Vec (α = 0.8 for
LBSN2Vec++) in most cases, meaning that considering social
factors can also help the location prediction task. When
further decreasing α, the performance start to decrease, but
we observe a sharp drop around α = 0.2 for LBSN2Vec
(α = 0.4 for LBSN2Vec++). In the extreme case where
α = 0, LBSN2Vec++ is equivalent to LBSN2Vec, showing
the same location prediction performance, because both
techniques learn only from homogeneous friendship edges
(in the same way by optimizing the same objective function)
while completely ignoring check-in hyperedges.

We also find the asymmetric impact of social and mobil-
ity factor on each other, which seems to be universal across
different datasets for both LBSN2Vec and LBSN2Vec++.
More precisely, combining 80% social with 20% mobility
data results in the best performance for friendship pre-
diction, while combining 60% mobility with 40% social
data gives the best performance for location prediction
using LBSN2Vec. For LBSN2Vec++, the best performance
for location prediction is achieved with more mobility data
(i.e., 80% mobility with 60% social data). This implies that
LBSN2Vec++ considering the heterogeneous nature of the
LBSN hypergraph is able to learn more than LBSN2Vec from
check-in hyperedges, and thus models user mobility better.

4.6 Runtime Performance

We investigate the efficiency of both node embedding learn-
ing and link/location/activity prediction tasks using the
learnt node embeddings. All the experiments are conducted
on a commodity PC (Intel Core i7-6820HQ@2.70GHz, 16GB
RAM, Mac OS X) on NYC dataset.

First, Table 2 shows the node embedding learning time.
Compared to classical graph embedding techniques for
homogeneous graphs (DeepWalk, Node2Vec, LINE, VERSE

TABLE 2
Node embedding learning time (in seconds) with different dataset

configuration settings if applicable. *We run DHNE without using GPUs,
for a fair comparison with all other techniques (which use CPUs only).

Methods (S) (M) (S&M)
DeepWalk 1313 2658 2660
Node2Vec 419 845 844
LINE 2199 2159 2234
VERSE 427 863 873
NetMF 191 584 984
Metapath2Vec - 3269 3254
Hin2Vec - 9708 9698
HEBE - 3426 -
DHNE* - 5623 -
LBSN2Vec - - 762
LBSN2Vec++ - - 2254

and NetMF), LBSN2Vec++ requires more learning time than
these techniques in general, as it requires additional compu-
tation to capture heterogeneous hyper-relations in the LBSN
hypergraph. We note that as the runtime complexity of LINE
depends mostly on the number of sampled node pairs for
learning (set to 1 billion), we observe a similar learning time
over different settings. Compared to heterogeneous (hy-
pergraph) embedding techniques (Metapath2Vec, Hin2Vec,
HEBE and DHNE), LBSN2Vec++ is faster in embedding
learning in general, as it is specifically designed to efficiently
learn node embeddings from the LBSN hypergraph using
embedding space transformation and n-wise node prox-
imity preservation. Finally, compared to LBSN2Vec, incor-
porating embedding space transformations in LBSN2Vec++
indeed incurs a certain amount of learning time, but it sig-
nificantly improves the performance on location prediction
by 68%.

Second, all evaluation tasks can be conducted very ef-
ficiently using the learnt node embeddings, as they mostly
involve basic vector operations and sorting. Specifically, for
1000 predictions, the link, location and activity prediction
tasks take about 2ms, 460ms and 370ms, respectively, for all
embedding techniques.

5 CONCLUSION

In this paper, we introduce LBSN2Vec++, a heterogeneous
hypergraph embedding approach designed specifically for
LBSN data. It performs random-walk-with-stay to jointly
sample user mobility patterns and social relationships from
the LBSN heterogeneous hypergraph, and then learns node
embeddings from the sampled hyperedges by not only pre-
serving the n-wise node proximity captured by hyperedges,
but also considering the embedding space transformation
between node domains to fully grasp the complex structural
characteristics of the LBSN heterogeneous hypergraph. Us-
ing real-world LBSN datasets collected in six cities all over
the world, our extensive evaluation shows that LBSN2Vec++
significantly and consistently outperforms not only state-of-
the-art graph embedding techniques by up to 68%, but also
the best-performing hand-crafted features in the literature
by up to 70.14%, on friendship and location prediction tasks.
Moreover, using LBSN2Vec++, we discover the asymmetric
impact of user mobility and social networks on predicting

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

each other, which can serve as guidelines for future research
on friendship and location prediction in LBSNs.

In the future, we plan to explore the idea of graph
embedding on analyzing other types of user mobility data
such as transportation trajectories and fine-grained mobile
phone traces, etc.

ACKNOWLEDGEMENTSS

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
683253/GraphInt).

REFERENCES

[1] Y. Zheng, “Location-based social networks: Users,” in Computing
with spatial trajectories. Springer, 2011, pp. 243–276.

[2] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobil-
ity: user movement in location-based social networks,” in KDD.
ACM, 2011, pp. 1082–1090.

[3] S. Scellato, A. Noulas, and C. Mascolo, “Exploiting place features
in link prediction on location-based social networks,” in KDD.
ACM, 2011, pp. 1046–1054.

[4] S. Scellato, C. Mascolo, M. Musolesi, and V. Latora, “Distance
matters: Geo-social metrics for online social networks.” in WOSN,
2010.

[5] S. Scellato, A. Noulas, R. Lambiotte, and C. Mascolo, “Socio-spatial
properties of online location-based social networks.” ICWSM,
vol. 11, pp. 329–336, 2011.

[6] Y. Zhang and J. Pang, “Distance and friendship: A distance-based
model for link prediction in social networks,” in APWeb. Springer,
2015, pp. 55–66.

[7] A. Sadilek, H. Kautz, and J. P. Bigham, “Finding your friends and
following them to where you are,” in WSDM. ACM, 2012, pp.
723–732.

[8] J. Valverde-Rebaza, M. Roche, P. Poncelet, and A. de An-
drade Lopes, “Exploiting social and mobility patterns for friend-
ship prediction in location-based social networks,” in ICPR. IEEE,
2016, pp. 2526–2531.

[9] R. Cheng, J. Pang, and Y. Zhang, “Inferring friendship from check-
in data of location-based social networks,” in ASONAM. ACM,
2015, pp. 1284–1291.

[10] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo, “Mining user
mobility features for next place prediction in location-based ser-
vices,” in ICDM. IEEE, 2012, pp. 1038–1043.

[11] H. Gao, J. Tang, and H. Liu, “Exploring social-historical ties on
location-based social networks.” in ICWSM, 2012.

[12] D. Lian, X. Xie, V. W. Zheng, N. J. Yuan, F. Zhang, and E. Chen,
“Cepr: A collaborative exploration and periodically returning
model for location prediction,” TIST, vol. 6, no. 1, p. 8, 2015.

[13] L. A. Adamic and E. Adar, “Friends and neighbors on the web,”
Social networks, vol. 25, no. 3, pp. 211–230, 2003.

[14] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, no. 1, pp. 39–43, 1953.

[15] D. Wang, D. Pedreschi, C. Song, F. Giannotti, and A.-L. Barabasi,
“Human mobility, social ties, and link prediction,” in KDD. Acm,
2011, pp. 1100–1108.

[16] D. Yang, B. Qu, J. Yang, and P. Cudre-Mauroux, “Revisiting user
mobility and social relationships in lbsns: A hypergraph embed-
ding approach,” in WWW. ACM, 2019, pp. 2147–2157.

[17] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE transactions on pattern
analysis and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[18] H. Cai, V. W. Zheng, and K. Chang, “A comprehensive survey of
graph embedding: problems, techniques and applications,” IEEE
Transactions on Knowledge and Data Engineering, 2018.

[19] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations
with global structural information,” in CIKM. ACM, 2015, pp.
891–900.

[20] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric tran-
sitivity preserving graph embedding,” in KDD. ACM, 2016, pp.
1105–1114.

[21] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network
embedding as matrix factorization: Unifying deepwalk, line, pte,
and node2vec,” in WSDM. ACM, 2018, pp. 459–467.

[22] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in KDD. ACM, 2014, pp. 701–710.

[23] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in WWW. ACM,
2015, pp. 1067–1077.

[24] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in KDD. ACM, 2016, pp. 855–864.

[25] A. Tsitsulin, D. Mottin, P. Karras, and E. Müller, “Verse: Versatile
graph embeddings from similarity measures,” in WWW. Inter-
national World Wide Web Conferences Steering Committee, 2018,
pp. 539–548.

[26] Y. Zhu, Z. Guan, S. Tan, H. Liu, D. Cai, and X. He, “Heteroge-
neous hypergraph embedding for document recommendation,”
Neurocomputing, vol. 216, pp. 150–162, 2016.

[27] A. Bahmanian and M. Newman, “Embedding factorizations for 3-
uniform hypergraphs ii: r-factorizations into s-factorizations,” The
Electronic Journal of Combinatorics, vol. 23, no. 2, pp. 2–42, 2016.

[28] K. Tu, P. Cui, X. Wang, F. Wang, and W. Zhu, “Structural deep
embedding for hyper-networks,” in AAAI, 2017.

[29] H. Gui, J. Liu, F. Tao, M. Jiang, B. Norick, and J. Han, “Large-scale
embedding learning in heterogeneous event data,” in Data Mining
(ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016,
pp. 907–912.

[30] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in KDD.
ACM, 2017, pp. 135–144.

[31] T.-y. Fu, W.-C. Lee, and Z. Lei, “Hin2vec: Explore meta-paths in
heterogeneous information networks for representation learning,”
in CIKM. ACM, 2017, pp. 1797–1806.

[32] R. Hussein, D. Yang, and P. Cudré-Mauroux, “Are meta-paths nec-
essary?: Revisiting heterogeneous graph embeddings,” in CIKM.
ACM, 2018, pp. 437–446.

[33] J. Ang, T. Fu, J. Paul, S. Zhang, B. He, T. S. D. Wenceslao, and
S. Y. Tan, “Trav: An interactive exploration system for massive
trajectory data,” in BigMM 2019. IEEE, 2019, pp. 309–313.

[34] P. Wang, Y. Fu, G. Liu, W. Hu, and C. Aggarwal, “Human mo-
bility synchronization and trip purpose detection with mixture of
hawkes processes,” in KDD 2017, 2017, pp. 495–503.

[35] D. Yang, D. Zhang, L. Chen, and B. Qu, “Nationtelescope: Mon-
itoring and visualizing large-scale collective behavior in lbsns,”
Journal of Network and Computer Applications, vol. 55, pp. 170–180,
2015.

[36] D. Yang, D. Zhang, and B. Qu, “Participatory cultural mapping
based on collective behavior data in location-based social net-
works,” TIST, vol. 7, no. 3, p. 30, 2016.

[37] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem
for social networks,” journal of the Association for Information Science
and Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[38] D. Yang, D. Zhang, Z. Yu, and Z. Wang, “A sentiment-enhanced
personalized location recommendation system,” in HT. ACM,
2013, pp. 119–128.

[39] W. Mathew, R. Raposo, and B. Martins, “Predicting future loca-
tions with hidden markov models,” in UbiComp. ACM, 2012, pp.
911–918.

[40] T. Kurashima, T. Iwata, T. Hoshide, N. Takaya, and K. Fujimura,
“Geo topic model: joint modeling of user’s activity area and
interests for location recommendation,” in WSDM. ACM, 2013,
pp. 375–384.

[41] H. Yin, Y. Sun, B. Cui, Z. Hu, and L. Chen, “Lcars: a location-
content-aware recommender system,” in Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2013, pp. 221–229.

[42] Y. Wang, N. J. Yuan, D. Lian, L. Xu, X. Xie, E. Chen, and Y. Rui,
“Regularity and conformity: Location prediction using heteroge-
neous mobility data,” in KDD. ACM, 2015, pp. 1275–1284.

[43] J. Ye, Z. Zhu, and H. Cheng, “What’s your next move: User activity
prediction in location-based social networks,” in SDM. SIAM,
2013, pp. 171–179.

[44] M. Brand, “Fast online svd revisions for lightweight recommender
systems,” in SDM. SIAM, 2003, pp. 37–46.

[45] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural
networks,” AAAI 2019, 2018.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[46] I. M. Baytas, C. Xiao, F. Wang, A. K. Jain, and J. Zhou, “Hetero-
geneous hyper-network embedding,” in ICDM. IEEE, 2018, pp.
875–880.

[47] X. Chu, X. Fan, D. Yao, C.-L. Zhang, J. Huang, and J. Bi, “Noise-
aware network embedding for multiplex network,” in IJCNN 2019.
IEEE, 2019, pp. 1–8.

[48] Y. Wang, Z. Qin, J. Pang, Y. Zhang, and J. Xin, “Semantic anno-
tation for places in lbsn through graph embedding,” in CIKM.
ACM, 2017, pp. 2343–2346.

[49] M. Xie, H. Yin, H. Wang, F. Xu, W. Chen, and S. Wang, “Learning
graph-based poi embedding for location-based recommendation,”
in CIKM. ACM, 2016, pp. 15–24.

[50] R. Ding and Z. Chen, “Recnet: a deep neural network for per-
sonalized poi recommendation in location-based social networks,”
International Journal of Geographical Information Science, pp. 1–18,
2018.

[51] T. Qian, B. Liu, Q. V. H. Nguyen, and H. Yin, “Spatiotemporal rep-
resentation learning for translation-based poi recommendation,”
ACM Transactions on Information Systems (TOIS), vol. 37, no. 2,
p. 18, 2019.

[52] S. Feng, G. Cong, B. An, and Y. M. Chee, “Poi2vec: Geographical
latent representation for predicting future visitors.” in AAAI, 2017,
pp. 102–108.

[53] P. Wang, Y. Fu, H. Xiong, and X. Li, “Adversarial substructured
representation learning for mobile user profiling,” in KDD 2019,
2019, pp. 130–138.

[54] P. Wang, Y. Fu, J. Zhang, X. Li, and D. Lin, “Learning urban
community structures: A collective embedding perspective with
periodic spatial-temporal mobility graphs,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 9, no. 6, pp. 1–28,
2018.

[55] W. X. Zhao, F. Fan, J.-R. Wen, and E. Y. Chang, “Joint repre-
sentation learning for location-based social networks with multi-
grained sequential contexts,” ACM Transactions on Knowledge Dis-
covery from Data, vol. 12, no. 2, p. 22, 2018.

[56] J. Hopcroft and R. Kannan, Foundations of data science, 2014.
[57] L. Lü and T. Zhou, “Link prediction in complex networks: A

survey,” Physica A: statistical mechanics and its applications, vol. 390,
no. 6, pp. 1150–1170, 2011.

[58] G. V. Cormack, C. L. Clarke, and S. Buettcher, “Reciprocal rank
fusion outperforms condorcet and individual rank learning meth-
ods,” in SIGIR. ACM, 2009, pp. 758–759.

[59] D. Yang, D. Zhang, V. W. Zheng, and Z. Yu, “Modeling user activ-
ity preference by leveraging user spatial temporal characteristics
in lbsns,” TSMC, vol. 45, no. 1, pp. 129–142, 2015.

Dingqi Yang is a senior researcher at the Uni-
versity of Fribourg in Switzerland. He received
the Ph.D. degree in computer science from
Pierre and Marie Curie University and Institut
Mines-TELECOM/TELECOM SudParis, where
he won both the CNRS SAMOVAR Doctorate
Award and the Institut Mines-TELECOM Press
Mention in 2015. His research interests include
big social media data analytics, ubiquitous com-
puting, and smart city applications.

Bingqing Qu is a researcher at the University of
Fribourg in Switzerland. She received her Ph.D.
in Computer Science in University of Rennes 1
in 2016. Her research interests include historical
document analysis, multimedia content analysis,
social media data mining and computer vision.

Jie Yang is an Assistant Professor at the Web
Information Systems Group of the Faculty of En-
gineering, Mathematics and Computer Science
(EEMCS/EWI), Delft University of Technology
(TU Delft). Before joining TU Delft, he was a ma-
chine learning scientist at Amazon and a senior
researcher at the eXascale Infolab, University
of Fribourg. His research focuses on human-
centered machine learning for Web-scale infor-
mation systems, aiming at leveraging the joint
power of human and machine intelligence for un-

derstanding and making use of data in large-scale information systems.

Philippe Cudre-Mauroux is a Full Professor
and the director of the eXascale Infolab at the
University of Fribourg in Switzerland. He re-
ceived his Ph.D. from the Swiss Federal Insti-
tute of Technology EPFL, where he won both
the Doctorate Award and the EPFL Press Men-
tion. Before joining the University of Fribourg
he worked on information management infras-
tructures for IBM Watson Research, Microsoft
Research Asia, and MIT. His research interests
are in next-generation, Big Data management

infrastructures for non-relational data. Webpage: http://exascale.info/phil

