MARTA: Leveraging Human Rationales for Explainable Text Classification

Inès Arous, Ljiljana Dolamic, Jie Yang, Akansha Bhardwaj
Giuseppe Cuccu, Philippe Cudré-Mauroux

February 2021, AAAI
Contents

1. Introduction
2. MARTA
3. Experiments
 • Datasets
 • Baselines
 • Results
4. Conclusion
Introduction
Neural Networks for Text Classification

• State of the art methods for text classification rely on neural networks.
• These methods are often considered as black boxes by end users as their output is hard to interpret.
Introduction

Explainable Text Classification Methods

• The goal is to present end-users with human-readable description of the classification result: “a rationale”.

• Among these methods, a popular approach consists of using attention mechanisms.

• An attention mechanism assigns an attention weight to each sentence of the text.

• Does the attention weight provide a rationale?
Introduction

Example using Attention Mechanisms

<table>
<thead>
<tr>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the Atom Station, Halldor Laxness demonstrates the skill and complexity that led to his being awarded the Nobel Prize in Literature. The novel tells the story of a simple lass from the north of Iceland [...] She also comes to some realizations about herself and the importance of social class and knowledge and how these interact in today's modern world. [...]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Rationale for the classification of the review as a book</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal</td>
<td>The novel tells the story of a simple lass from the north of Iceland.</td>
</tr>
<tr>
<td>Attention Mechanism</td>
<td>She also comes to some realizations about herself and the importance of social class and knowledge and how these interact in today’s modern world.</td>
</tr>
</tbody>
</table>

ktör The rationale given by the attention mechanism is not accurate.
Introduction

Attention Vs Explanation

• Recent studies have shown that:

 • the attention distribution is inconsistent with the input units [1]

 • two different attention distributions can yield the same result [2].

• Solution: Enhance the explainability of attention based models by integrating human rationales.

Introduction

Integrating Worker Rationales for Attention Learning

• Rationale provided by crowd workers can guide the learning of the attention distribution.

In the Atom Station, Halldor Laxness demonstrates the skill and complexity that led to his being awarded the Nobel Prize in Literature. The novel tells the story of a simple lass from the north of Iceland [...] She also comes to some realizations about herself and the importance of social class and knowledge and how these interact in today's modern world. [...]
Introduction

Integrating Worker Rationales for Attention Learning

In the Atom Station, Halldor Laxness demonstrates the skill and complexity that led to his being awarded the Nobel Prize in Literature. The novel tells the story of a simple lass from the north of Iceland [...] She also comes to some realizations about herself and the importance of social class and knowledge and how these interact in today's modern world. [...]

In the Atom Station, Halldor Laxness demonstrates the skill and complexity that led to his being awarded the Nobel Prize in Literature. The novel tells the story of a simple lass from the north of Iceland [...] She also comes to some realizations about herself and the importance of social class and knowledge and how these interact in today's modern world. [...]

In the Atom Station, Halldor Laxness demonstrates the skill and complexity that led to his being awarded the Nobel Prize in Literature. The novel tells the story of a simple lass from the north of Iceland [...] She also comes to some realizations about herself and the importance of social class and knowledge and how these interact in today's modern world. [...]

'Rationales provided by workers are not all the same and highly depend on workers reliability.'
Introduction

Challenges

The rationale given by the attention mechanism is not accurate.

• How can we make the attention distribution reflect a higher quality explanation for text classification?

Impact of worker’s reliability on rationale’s quality:

• How can we quantify the reliability of workers when they provide us with rationales and labels?
Introduction

Contributions

☑ We propose **MARTA**, a Bayesian framework for **MA**pping human **R**ationales **T**o **A**ttention.

☑ We derive an efficient learning algorithm based on **variational inference** with incremental updating rules for **MARTA** parameter estimation.

☑ We conduct an extensive evaluation on two real-world datasets and show that **MARTA** outperforms state-of-the-art methods.
Contents

1. Introduction

2. MARTA

3. Experiments
 - Datasets
 - Baselines
 - Results

4. Conclusion
The Crowdsourcing Task

- Predicate: Is the review about a book?
MARTA
Problem Formulation

• Given:
 • A set of textual documents \mathcal{I}.
 • Labels and rationales provided from workers of some documents ($\mathcal{I}_w \in \mathcal{I}$).
 • Ground truth labels of some documents ($\mathcal{I}_l \in \mathcal{I}_w$).

• Our goal is to:
 • Infer the true label z_i of each document $i \in \mathcal{I}$.
 • Estimate the importance α_s of each sentence in a document $i \in \mathcal{I}$.
MARTA

In a nutshell

Worker	Review	Rationale	Label	Ground Truth	Worker’s reliability	Annotation Quality	Rationale Quality
👩💻 | ![Review](image1.png) | ![Rationale](image2.png) | ![Label](image3.png) | ![Ground Truth](image4.png) | ✔️ | ✔️ | ✔️
👨💻 | ![Review](image5.png) | ![Rationale](image6.png) | ![Label](image7.png) | ![Ground Truth](image8.png) | ✔️ | ✔️ | ✔️
👨💻 | ![Review](image9.png) | ![Rationale](image10.png) | ![Label](image11.png) | ![Ground Truth](image12.png) | ✗ | ✗ | ✗

Attention model

Documents → Attention model → Classified Documents
MARTA

Rationale-Aware Attention Model

• We use worker’s rationale to guide the learning of the attention distribution.
• Worker’s annotation of rationale are not fully reliable.
MARTA

Modeling Worker Reliability

• The worker reliability $r_j \in [0,1]$: If $r_j = 1$, the worker is fully reliable and $r_j = 0$ otherwise.

• The support of a Beta distribution is in $[0,1]$

\Rightarrow We model the worker reliability with a Beta distribution: $r_j \sim Beta(m, n)$

• The likelihood of worker’s rationale being correct depends on her reliability.
MARTA

Updating the Worker Reliability

The worker reliability can be incrementally computed using:

- her annotation quality θ_i
- her rational quality a_s

such that the more correct answers she provides, the more reliable she is.

$$q(r_j) = \text{Beta}(m_j + \sum_{i \in I_j} \theta_i + \sum_{s \in S_j} a_s, n_j + \sum_{i \in I_j} (1 - \theta_i) + \sum_{s \in S_j} (1 - a_s))$$
MARTA

Modeling the Document Classification

• The true label of a document is a binary variable.

• We model the true label of a document with a Bernoulli distribution: $z_i \sim Ber(\theta_i)$

The document classification can be incrementally computed using:

★ The predicted label θ_i

★ The reliability parameters m_j and n_j.

$$q(z_i) = \theta_i \prod \exp\{\Psi(m_j) - \Psi(m_j + n_j)\}$$

Predicted label Geo. Mean of the reliability
MARTA
Modeling the Sentence Importance

• The importance of a sentence is a binary variable.

• We model if a sentence is a rationale with a Bernoulli distribution: \(\alpha_s \sim Ber(a_s) \)

The sentence importance can be incrementally computed using:

★ The predicted importance \(a_s \)

★ The reliability parameters \(m_j \) and \(n_j \).

\[
q(\alpha_s) = a_s \prod \exp\{\Psi(n_j) - \Psi(m_j + n_j)\}
\]

Predicted importance Geo. Mean of the reliability
MARTA

Variational Inference Algorithm

Input: Worker’s labels, Worker’s Rationales, Textual documents

Output: Worker reliability, Document classification, Sentences importance

Repeat

#E step:
- Incrementally compute the worker reliability
- Incrementally compute the document classification
- Incrementally compute the sentence importance

#M step:
- Update the rationale-aware model

Until convergence
Contents

1. Introduction
2. MARTA
3. Experiments
 - Datasets
 - Baselines
 - Results
4. Conclusion
Experiments

Datasets

• Task: We ask workers to specify the relevance of documents to a certain topic and extract the part of text justifying their answer.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>%Positive</th>
<th>#Judgments</th>
<th>#Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiki-Tech</td>
<td>17.26%</td>
<td>4488</td>
<td>58</td>
</tr>
<tr>
<td>Amazon</td>
<td>50%</td>
<td>6744</td>
<td>449</td>
</tr>
</tbody>
</table>

• Metrics: We use Accuracy, Precision, Recall and F1-score.
Experiments
Baselines (1/2)

• Text classification methods:

 • MILNET (TACL’18): a Multiple Instance Learning neural network.

 • fastText (EACL’17): Linear model on top of bags of n-grams.

 • SciBERT (EMNLP’19) and ALBERT (ICLR’19): pre-trained language models with a linear classifier.
Experiments

Comparison with Text Classification Methods

- **MARTA** improves text classification methods by **0.97% accuracy** and **5.76% F1-score**.
- The rationale highlighted by workers help guiding our rationale-aware model.

![Accuracy Diagram](chart1.png)

![F1-score Diagram](chart2.png)
Experiments
Baselines (2/2)

• Rationale-aware model:

 • LSTM-ortho, LSTM-diversity (ACL’20): An extension of LSTM with diversity constraints on hidden states.

 • InvRAT (NeurIPS’19): A game theoretic approach aiming at identifying features correlating with the output.

 • RA-CNN (EMNLP’16): A sentence-level convolutional model that estimates if a sentence is a rationale.
Experiments
Comparison with Rationale-aware Methods

- **MARTA** improves rationale-aware methods by **18.68% accuracy** and **17.61% F1-score**.
- **MARTA** is better at leveraging rationale by weighing workers reliability.
Experiments

Explainability

• The overlap between the rationales chosen by workers and those highlighted by MARTA is 66%.

In the Atom Station, Halldor Laxness demonstrates the skill and complexity that led to his being awarded the Nobel Prize in Literature. The novel tells the story of a simple lass from the north of Iceland [...] She also comes to some realizations about herself and the importance of social class and knowledge and how these interact in today's modern world. [...]
Contents

1. Introduction
2. MARTA
3. Experiments
 • Datasets
 • Baselines
 • Results
4. Conclusion
Conclusion

• We introduced MARTA for explainable text classification that integrates human rationales into an attention-based model.

• MARTA substantially outperforms state of the art by 5.76% F1-score.

• MARTA offers a human understandable explanation for text classification.

• Future work includes: token level explainability and leveraging workers justification expressed in a syntax different from the original text.
Thanks for your attention!
Any questions?

https://github.com/eXascaleInfolab/MARTA

https://exascale.info