
TRISTAN: Real-Time Analytics on Massive Time
Series Using Sparse Dictionary Compression

Alice Marascu, Pascal Pompey, Eric Bouillet,
Michael Wurst, Olivier Verscheure

IBM Research

Martin Grund, Philippe Cudre-Mauroux
eXascale Infolab

University of Fribourg—Switzerland

Abstract—Large-scale critical infrastructures such as trans-
portation, energy, or water distribution networks are increasingly
equipped with smart sensor technologies. Low-latency analytics
on the resulting times series would open the door to many exciting
opportunities to improve our grasp on complex urban systems.
However, sensor-generated time series often turn out to be noisy,
non-uniformly sampled, and misaligned in practice, making
them ill-suited for traditional data processing. In this paper, we
introduce TRISTAN (massive TRIckletS Time series ANalysis), a
new data management system for efficient storage and real-time
processing of fine-grained time series data. TRISTAN relies on
a dedicated, compressed sparse representation of the time series
using a dictionary. In contrast to previous approaches, TRISTAN
is able to execute most analytics queries on the compressed data
directly, and supports efficient and approximate query answering
based on the most significant atoms of the dictionary only.
We present the overall architecture of our system and discuss
its performance on several smarter city datasets, showing that
TRISTAN can achieve up to 20:1 compression ratios and 250x
speedup compared to a state-of-the-art system.

Keywords-tricklets; dictionary compression; matching pursuit;

I. INTRODUCTION

Providers of large-scale critical infrastructure such as intel-
ligent transportation networks, building monitoring systems,
energy grids, and water distribution networks are setting
increasingly high expectations in terms of continuous, low-
latency data analysis (i.e., answer given within a few seconds)
and monitoring of their infrastructures. Many providers have
adopted smart sensor technologies to assist them in their
operations. In the energy domain, for instance, the widespread
installation of smart meters and aggressive policies for renew-
able energy production and energy conservation call for the
monitoring and management of millions of sensor-generated
time series to correctly analyze the energy load at various
granularities throughout the electrical grid.

Sensor-instrumented infrastructures are offering an afford-
able and scalable way of collecting Big Data, resulting in a
treasure trove of fine-grained information. The finer granu-
larity of the node deployment does not necessarily imply a
continuous spatiotemporal space in terms of resulting infor-
mation, however, but rather a large population of sensors that
produce many redundant and misaligned time series. We refer
to such time series as tricklets and focus our attention on this
type of data in this paper. Monitoring tricklets opens the door

to new opportunities in data mining and analytics, but also to
new challenges in terms of data storage and processing.

The vast majority of existing tricklets processing methods
use some sort of smoothing to remove some of the irregu-
larities of the underlying sensor data. Many approaches for
instance expect the time series to be uniformly sampled,
temporally aligned, with no or only a few data points missing.
Applying analytics on such data automatically leads to dis-
torted results. In reality, the sensor may experience a failure
or may deliberately not transmit measurements in order to
preserve its battery life, resulting in non-uniform sampling
rates. Temporal misalignment between several time series
may occur due to a variety of causes (e.g., unsynchronized
sensor clocks, hardware faults, or network delays). Such data
misalignments introduce additional errors in the latter stages of
data analysis, since domain information must be considered in
order to decide on the correct alignment. In addition, as sensors
streams are typically sent in discrete form, analytics tools
might in turn transform the samples back into a continuous
domain, thereby introducing additional discretization errors.

Real-word sensor data are also in our experience surpris-
ingly noisy. Learning how to distinguish good data samples
from noise is a process that is hard to generalize to sev-
eral contexts, and that requires a complex analysis of both
application-specific factors and external factors. For instance,
a data point may be considered as an outlier in one domain
of application but not in another because of subtle differences
in the domain’s respective physical properties. In a similar
fashion, background domain knowledge can often be used to
infer missing data. Hence, it is important to apply analytics on
a faithful representation of the time series that is as close as
possible to the raw data. Data sampling rate plays an important
role in that context; Obviously, a higher sampling rate avoids
temporal aliasing, improves resolution and reduces noise,
which leads to less uncertainty in the latter processing steps
and to the extraction of more domain information. However,
a higher sampling rate also demands higher processing and
storage capabilities.

Querying large amounts of time series is a popular research
topic and several systems have been proposed in the past few
years to tackle this problem (see for instance [22], [1], [30]).
However, such systems typically do not offer a specialized
storage solution for compactly and faithfully storing the entire
stream history, and for efficiently running interactive queries

on top of it; They rather focus on executing queries on recent
sample windows, or on optimizing specific types of queries
such as similarity queries.

Running interactive analytics on top of very large sets of
tricklets data is a challenging task. As the amount of time
series data increases, however, it becomes more effective to
store compressed versions of tricklets. At query execution
time, two options are then available: decompressing the data
first or processing the compressed data directly. The second
option typically provides far better execution times, but also
requires new operators and query plans. Several systems exist
that perform computation on compressed time series (see
our related work section below) by using Fourier transforms
or polynomial approximations. However, these systems only
provide a very limited support for spikes analyses or for cor-
relation queries on the noisy, misaligned, and non-uniformly
sampled tricklets described above.

Motivated by the above observations and by our own real-
world experience analyzing many large-scale Smarter Cities
datasets, we decided to design and implement a system spe-
cialized in the long-term archival and interactive querying
of massive amounts of tricklets. In this paper, we introduce
TRISTAN (massive TRIckletS Time series ANalysis), a new
database system compactly storing very large amounts of
tricklets and supporting real-time analytics on the compressed
data directly. Our system includes a sparse dictionary-based
time series representation that encodes domain information
effectively using matching-pursuit techniques, and implements
specialized operators to support efficient analytics queries on
top of it. We show that our dictionary-based representation is
particularly well-suited to smart cities sensor data and achieves
up to 20:1 compression ratios and 250x speedup for query
execution compared to state-of-the-art techniques.

The rest of the paper is organized as follows: Section II
introduces a few definitions that will be used throughout the
paper. The detailed description of our system and some of its
extensions are presented in Sections III and IV respectively.
Experimental results on two real data sets are presented in
Section V. We give an overview of related work in Section VI,
and discuss their advantages and drawbacks with respect to
TRISTAN. Finally, we conclude our paper in Section VII.

II. PROBLEM DEFINITION AND NOTATIONS

In this section, we introduce our problem as well as the
terms we use throughout the rest of this paper.
Definition: A time series is an ordered sequence of n pairs
of real value numbers T = {(t1, v1), ..., (tn, vn)}, where
ti is the time when value vi 2 R was registered, with
1 i n. Timestamp t1 corresponds to the oldest registered
value, and timestamp tn corresponds to the most recently
registered value. When ignoring the timestamps (e.g., for
uniformly sampled time series), we can write a time series as
T = {v1, ..., vn}, with vi 2 R, 1 i n, or, in a simplified
way, T 2 Rn.
Definition: A tricklet is a time series which exhibits some
irregularities, i.e., a time series that is non-uniformly sampled,

noisy, and/or misaligned. Example of tricklets are time series
generated by sensors that monitor a continuous activity. Sensor
data are directly impacted by human’s seasonal (e.g., daily)
behavior, and the tricklets inherit from this trait and present
recurring patterns, but that are hard to be noticed under the
raw and apparently irregular format of the time series.
Definition: We call a tricklet segment the part of the tricklet
contained within a fixed-length time interval aligned along the
tricklet’s seasonality (e.g., daily tricklet segment). A tricklet
consists of a (potentially infinite) sequence of tricklet segments
of equal time intervals. A tricklet segment is identified by the
beginning of its time interval. Because tricklets can be non-
uniformly sampled, it is possible that two tricklet segments
contain a different number of values.
Definition: A dictionary is a collection of fixed-length ele-
mentary time series called atoms. The atoms are chosen such
that most or all information of any tricklet segment can be
represented with a linear combination of a small number of
atoms from the dictionary.
Definition: A sparse representation (reps. sparse approxi-
mation) is a linear combination of atoms from a dictionary
that accounts for all (reps. most) information from a tricklet
segment.
Definition: Q is a workload defined as a (weighted) list of
analytics queries, including correlations, sum, and average
queries.
Problem definition: Given W , a very large stream
warehouse[11] of many tricklets, our problem is to design
a system able to: 1) effectively segment and compresses W
data by integrating domain information, 2) compactly store
compressed data as well as other, third-party data in a database,
3) efficiently execute analytics queries, whenever possible on
the compressed representation directly, and 4) trade accuracy
levels (with bounded errors) for storage and query execution
efficiency.

III. SYSTEM DESCRIPTION

This section contains the description of TRISTAN, our pro-
posed solution for the problem introduced above. TRISTAN
applies sparse dictionary compression without any restriction
on the time series at hand, but is especially efficient on
tricklets, which is the focus of this paper. We originally
presented the vision behind TRISTAN in [19]. Below, we
describe the implementation of this vision. We start by giving
an overview of our system below, before delving into query
execution and the system’s extensions.

A. Overview of TRISTAN

The main intuition behind our system is to explicitly store
and track only the most relevant (i.e., informative) parts of
the tricklets in a new optimized representation, and to perform
queries directly on top of this optimized representation without
the need to decompress the signal.

Figures 1 and 2 give an illustration of our technique, starting
with the very first step when the tricklets are cut into batches of
tricklet segments of a specific time interval (Tricklet segments

in Figure 1). In the case of streaming tricklets, a tricklet
segment is considered complete and ready to be compressed
when the next timestamp falls outside the time-interval of that
tricklet segment. Figure 2 illustrates the processing of a tricklet
segment. This process is executed whenever a new tricklet
segment is ready for compression, which depends on the
seasonality of the tricklet (e.g., daily). Before the first trickle
segment can be compressed, a dictionary must be acquired
in a preprocessing step (top of Figure 2: Dictionary). This
operation must be conducted as an initial configuration step
of TRISTAN, and more rarely when new patterns emerge in
the tricklets that cannot be approximated using the existing
dictionary. In the encoding step (from left to right in Figure 2),
dictionary-based sparse representations are determined from
the tricklet segments and stored in a database. As a last
step, analytics queries are run directly on the dictionary-based
sparse representations from the database. We describe the
above steps in further details in the next sections.

Fig. 1. TRISTAN: Batch processing

Fig. 2. TRISTAN: overview

B. Sparse Dictionary Encoding

The tricklet segments are encoded by projecting them on a
few atoms of the dictionary, hence obtaining a representation
of the segments as a weighted sum of several of the dictionary
atoms. For this purpose, two subproblems need to be tackled:
1) project the tricklet segment on the atoms of this dictionary,
along with 2) finding the dictionary.

Let TB = {v1, . . . , vn} be a tricklet segment of size n,
n 2 N⇤(we initially consider uniform time sampling, and for
the sake of simplicity ignore the temporal stamp associated
to each value). Let D =

⇥
↵1, . . . , ↵k

⇤
be a dictionary

with k atoms of q values each. We do not impose any
restriction on the dictionary. In particular, the dictionary can be
overcomplete, i.e., the size of the dictionary might exceed the
dimension of the tricklet space such that any tricklet segment
can be represented by more than one combination of atoms.

A sparse representation S on D with a sparsity sp k is:

S =
kX

i=1

wi↵i (1)

where only sp of the k coefficients wi are non-zero. In vector
notation, this becomes S = wD, with w = [w1 . . . wk]

T .
Solving point 1) translates into solving Equation 1 for w

with TB = S. Given a dictionary, computing the best sparse
representation of a tricklet segment is an NP-hard problem
(as is the problem of encoding a signal given a dictionary)
with a reduction to NP-complete problems of subsets selection.
One way of computing an approximation of its solution is by
using matching pursuit methods. Encoding the tricklet segment
TB over the dictionary D leads to solving the following
optimization problem:

'sp = argmin
w

kwD � TBk2
under constraint k'spk0 sp (2)

where k.k2 is the L2 norm (sum of squared coefficients) and
k.k0 is the L0 norm (numbers of non zero coefficients).

One valuable characteristic of this representation is that the
decreasing order of the coefficients is also the decreasing order
of their weights in the representation, i.e., the first coefficient
has a higher participation in the representation than the second
one, the second one than the third one, etc. (see subsection
III-D for more detail).

Concerning step 2), the dictionary computation, TRISTAN
can use any dictionary that can be provided either as external
knowledge (e.g., by domain experts who know the typical
patterns occurring in the time series or who are of partic-
ular interest), or learnt, or even a combination of external
knowledge and learning. Learning the dictionary is done by
using a training set of numerous signals {TB1 , . . . , TBM } and
searching for a dictionary minimizing

D⇤ = argmin
D

MX

i=1

k'iD � TBik2 (3)

under constraint k'ik0 sp

Clearly, the more trained the dictionary and the more signals
get involved in the training process, the better the quality of
the obtained dictionary. Solving Equation (3) is NP-hard, but
this problem was extensively studied in the literature due to
its multiple applications, and there exist several algorithms
yielding reasonable performance in practice (among them:
[17], [29], [23], [15], [27], [6], [4]).

Fig. 3. Schema of TRISTAN database implementation

C. Database Implementation

Once the dictionary and the compressed representation are
created as described above, we can start querying the data.
Since the original raw data can contain millions of data
points, the goal must be to efficiently store the data and
to perform query execution directly on the compressed data
without decompressing the complete dataset each time.

We customized the storage layer of the HYRISE hybrid
database system [12] in order to realize the full potential of
our approach, which is discussed below. We are also currently
working on extending DB2 with the required functionality to
take full advantage of the sparse representation. Modifying a
given database system to integrate the present approach is rel-
atively straightforward, though it requires the implementation
of a new operator as we discuss below. However, the resulting
performance may vary depending on the system chosen (in
that sense, HYRISE is a sensible choice, since it is efficient
both for transactional operations and for analytics.)

The dictionary that is used to encode the data is basi-
cally a dense matrix containing as many columns as distinct
atoms and as many rows as data points per encoded tricklet
segment—see Figure 3. We illustrate our approach with the
ICDM 2010 challenge dataset [28], which is also used in
our experiments below. In a preprocessing step, we train a
dictionary and obtain 131 distinct atoms. We use 30 atoms
for encoding each tricklet segment. We set the size of the
atoms to 1440 time points at 1 minute interval, which is
equivalent to one day of data. The dictionary associated matrix
has thus 131 ⇥ 1440 = 188640 cells. Figure 3 illustrates
this process. Incrementally, our system takes as input one
batch of tricklet segments (Raw Tricklet Segments in Figure
3). This table keeps only the timestamp and its corresponding
value. We represent the first and last segments from the batch
using colored rectangular areas. The dictionary that we use
stores the atoms per column (Dictionary in Figure 3). For the
sparse representation computed via a matching pursuit method
(Sparse Representations on Figure 3), we store the tricklet
segment timestamp, the ID of the atom used by the matching
pursuit, the atom rank among the dictionary atoms, and the
corresponding coefficient (i.e., the coefficient wi in Equation
1). As described in equation (1), the signal at a point t is

reconstructed as follows:

S =
kX

i=1

wi↵i =
X

j2SP

wj↵ij

where wi is the coefficient value for atom ij at rank j and
ij represents the index in the dictionary of the jth atom
with a non-zero coefficient. Only sp non zero coefficients
need to be stored in the database corresponding to the set:
SP = {j1, ..., jsp}, where jk 2 {j1, ..., jk} for jk1 6=
jk2 ; k1 6= k2; k1, k2 2 {1..k}. The upper bound sp defines
how many atoms are needed to reconstruct the signal without
loss of precision.

There are two parameters that can be tuned during the
dictionary learning phase and that are important for the quality
of the stored results: the sparsity factor sp, and the number
of dictionary atoms k. Many factors can impact what is
right in terms of choice of these two parameters (accepted
approximation degree in the signal reconstruction, time con-
straints, characteristics of datasets used in the training phase,
domain of application, etc.). In this paper, our main focus
is rather on the design of a system enabling efficient and
effective analytics on massive amounts of tricklets, including
the overall architecture of our system, its processing pipeline,
its compression and storage layers as well as its dedicated
query execution strategies.

To perform analytics on uncompressed data, all values are
aggregated and grouped according to the desired dimension
in time (e.g., hourly, daily, monthly, etc). The drawback of
executing queries on uncompressed data is that the table
contents must be scanned until finding the right time region
(in the worst case, the complete table must be scanned). One
improvement in terms of time can be done by using range
queries; However, this solution would not perform well once
the selectivity of the queries is high (see our experimental
results in Section V). Misaligned and missing values aspects
are easily captured by the possibility of usage of any elastic
comparison methods (LCSS, DTW, to mention a few) in the
matching pursuit process in the comparison step between the
query and an atom.

When executing analytics on compressed data, there are
two key steps to be considered: first, all relevant compressed
entries are identified, all coefficients based on the desired
accuracy are aggregated and grouped by atom id, and second,
the result table is combined with the dictionary matrix. As
each atom in the sparse representation table corresponds to
a specific column in the dictionary matrix, this operation is
typically carried out on the application server. Thanks to the
hybrid nature of HYRISE, we can however directly store the
dictionary matrix next to the relational table. This allows us to
implement an indirect scalar multiplication as a plan operation.
Compared to traditional database execution schemes, such an
approach is closer in spirit to late-materialization strategies[2]
known from column-oriented DBMSs. Figure 4 highlights the
principles of the compressed query execution. In the first step,
the relevant atoms are identified (action marked by 1 in Figure

Fig. 4. Overview of query execution

4), and then retrieved from the dictionary (action marked by 2
in Figure 4). Then, depending on the aggregation level, the
corresponding coefficients from the Sparse Representations
table are multiplied by the corresponding atoms from the
dictionary (action 3 in Figure 4).

The key idea for executing queries directly on the com-
pressed representations is to take advantage of the linearity
feature of the sparse representations. For instance, given a
large number of tricklet segments TB1 , . . . , TBL with their
sparse representations TBl = wl ⇤ D, querying for the sum
of all these tricklet segments can be done as follows:

LX

l=1

TBl(t) =
LX

l=1

kX

i=1

wj,l↵i(t) =
kX

i=1

↵i(t)
LX

l=1

wi,l.

Using this switch, the materialization for a given time point
is deferred until the last phase of query execution, which
is a major improvement over querying uncompressed data.
However, not only is the decompression deferred until the
last phase, but also the aggregation based on the atom ID
is basically replacing a series of several additions with simple
multiplications. Instead of accounting for all distinct values in
the uncompressed data, e.g., (a+ a+ a+ b+ a+ a+ b), we
rewrite this based on the dictionary to (5a+2b) which is more
efficient to execute.

D. TRISTAN’s Merits

Modern database systems do not typically consider sparse
dictionary compression techniques. However, we believe that

sparse representations have a number of particularly attractive
properties for database systems, and that our system exhibits
a number of key features that make it very attractive for many
tricklets and Smarter Cities applications. We summarize some
of its merits below.

Universality: First, our approach is very general and can be
applied to a very large number of scenarios and problems;
second, as the dictionary atoms are not constrained in shape
or number, it is possible to learn a dictionary to fit any
set of signals. Fourier and wavelets transforms are particular
cases of dictionary-based sparse representations; consequently,
TRISTAN provides a time series representation that is also a
generalization of the Fourier and wavelets transforms.

Insightful Compression: The time series representation pro-
vided by TRISTAN is especially suited for signals present-
ing very repetitive, noisy or missing values, that are non-
uniformly sampled, or misaligned. Due to the repetitiveness
of human behaviors, most of the city sensor data inherit such
repetitiveness. The other features mentioned here are also very
characteristic either to the human behavior or to our current
measurement devices. Therefore, a dictionary offers excellent
support for processing these behaviors by allowing them to be
accurately represented using a handful of bits only. Moreover,
as the atoms provenance is not constrained, the dictionary
can be dynamically enhanced to include additional atoms one
may consider interesting (e.g., anomalies detection, failure
detection, fraud detection, etc.) without the need to re-encode
the previous representations; this translates into an adaptive
and extensible compression.

Insightful Segmentation: Tricklets are often analyzed with
respect to a given time interval implied by human or natural
patterns (e.g., hourly, daily, or weekly patterns.) It thus makes
sense to split the time series into subsequences that are
processed individually, and then aggregated. This feature is
directly supported by the dictionary representation, since the
dictionary atoms can be matched to such patterns.

Linearity: Our representation being linear, it is possible to
answer many queries on the sparse representation directly
(as described in Section III-C), without needing the costly
operation of reconstructing the original signals. This leads to
significant performance advantages for queries that can exploit
this linearity (see Section V for some concrete examples.)

Exponential Decay: A key feature of our sparse representation
is the exponential decay of the reconstruction error. The
matching pursuit methods have the big advantage that the
approximation error decreases monotonically and its decay is
exponential. This feature is extremely helpful as it allows to
dynamically adapt the sparsity level to match new accuracy
degrees or compression constraints. Theoretical proof and
studies on this phenomenon can be found in [18].

Approximate Query Results: Last but not least, the ex-
ponential decay property described above keeps the energy
concentrated in the first atoms. This means that the first
elements of a sparse representation contain most of the signal’s

information and that, depending on the query being issued
and of the application, the remaining atoms of the sparse
representation can be dynamically dropped at query-time to
yield a reconstruction that is slightly less accurate but much
more compact. We give a few examples of such approximate
query results in Section V.

All these features make TRISTAN an excellent system
for signal denoising and recovery, aggregation, classification,
outlier detection, forecasting, and related complex analytics
queries. The dictionary representation presents however one
drawback related to the difficulty of updating its entire con-
tents efficiently and in an online manner to reflect totally new
patterns, thus making it unsuitable to storing and processing
highly variable data.

IV. TRISTAN’S EXTENSIONS

In this section, we briefly discuss how we have extended
TRISTAN to address the problems of misaligned data and
missing values. Both extensions are achieved through an inter-
polation of the dictionary instead of the time series themselves.
Modifying the dictionary to offer support to continuous-time
signal representation is made possible by using spline interpo-
lation, e.g., by using cubic splines on each of the dictionary
atoms. Using this interpolation, any sparse approximation
algorithm can then be applied in its original form on an
arbitrarily sampled time series using the interpolated version
of the dictionary.

In many applications, sensors can dynamically adapt their
sampling rate to minimize their I/O and optimize their battery
life, and the database system would need the capacity to cope
with arbitrarily sampled tricklets. Dictionary-based sparse rep-
resentations offer an elegant solution to handle such problems
and to allow inserting sensor-generated data directly into the
database.

Reciprocally, given a time-discrete sparse representation
of a tricklet segment, it is possible to use continuous-time
representations of the atoms (i.e., interpolated version of the
dictionary atoms) to retrieve an interpolated value from the
tricklet segment (this also offers a way of approximating
values in the tricklet segment). As cubic splines (and more
generally speaking all kernel-based interpolations) are linear, it
is easy to show that interpolating the dictionary atoms and then
reconstructing the tricklet segment based on these interpolated
atoms yields the exact same result as if the time series
were reconstructed first and then interpolated. This means
that computationally costly methods (e.g., the cubic spline
interpolations have a complexity of O(n2)) can be applied
at once to an entire tricklet segment by just transforming the
dictionary.

This feature presents a high application potential as it allows
querying for the value of the tricklet at any timestamp with
low costs. The entire database that stores the dictionary atoms
can be interpolated in constant time—independently of the
database size; in other words, TRISTAN allows interpolating
a tricklet segments database with a O(1) complexity.

V. EXPERIMENTAL EVALUATION

In this section we present our experimental evaluation of
TRISTAN. Our test system is a 4-way Intel Xeon 7560 with
440 GB of main memory running Linux with a 3.5 kernel.
As persistence layer, we used HYRISE [12], [13], which is a
freely available open-source database system1.

The main dataset we used for our experiments is based on
the ICDM challenge [28] and consists of a stream of energy
consumption samples. In addition, we also used a publicly
available dataset from RTE France2 consisting of electrical
power consumption data from 1996 to 2012. The temporal
resolution of the ICDM data set is one sample per minute,
while the resolution of the data from RTE is 1 event per 30
minutes. We considered daily behaviors and thus split the data
into daily segments (tricklet segments). Thus, each atom of the
ICDM dictionary contains 1440 points, while the atoms from
the RTE dictionary contain 48 data points each.

We structured our experimental evaluation presentation into
three parts. In the first part, we evaluate the quality of the
dictionary and of the resulting compressed representation.
The second part presents an analysis of the properties of the
compressed data using sparse dictionary encoding, while, in
the third part, we evaluate the query execution performance
with varying parameters.

A. Dictionary Training

The time needed for learning the dictionary atoms given
a set of tricklet segments depends on several parameters that
are dictionary or application dependent (e.g., residual error
threshold, number of atoms, etc.). A dictionary can be learnt
while coding several billion data points in a matter of hours
in a Map-Reduce environment [26]. As our focus is not on
the dictionary learning part (that we consider belonging to an
offline preprocessing step), but on the analytics that run on top
of the sparse dictionary representations, we focus on evaluat-
ing the quality of the dictionary from a compression/querying
point of view, the quality of the storage of the compressed
representations, and the effectiveness and the efficiency of
query execution.

Figure 5 gives the Root Mean Square Error (RMSE) of
both the RTE and ICDM datasets compressed using our sparse
dictionary technique. The figure also gives the error using a
Fourier-based representation, which yields much higher error
rates than TRISTAN’s compression technique.

B. Compression Ratio

In this subsection, we discuss the storage requirements
and the compression ratio achieved by TRISTAN compared
to storing a non-compressed version of the data. For this
purpose, we compute the storage requirements for the
dictionary, for the compressed, and for the non-compressed
tricklet segments in a number of batches. For simplicity, we
ignore the space needed for temporary computations. The

1http://github.com/hyrise/hyrise
2http://clients.rte-france.com/lang/fr/clients consommateurs/vie/

vie stats conso inst.jsp

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20

RM
SE

Sparsity Level (Number of Atoms)

Fourier RTE
Sparse Dictionary RTE

Fourier ICDM
Sparse Dictionary ICDM

Fig. 5. RMSE comparison for different dictionary representations.

compression ratio of our sparse compressed representation
is mainly dependent on the number of atoms that are used
to represent the original data. The dictionary needs to store
the atoms (there are k atoms), where each atom stores: the
value (n̄ values - a tricklet segments may have a variable
number of elements that we represent by n̄; each value is
stored in one cell whose size depends on the data type,
OS, programming language, etc), the rank (atom position
among the atoms in the dictionary) and the id of the atom.
Therefore, the dictionary size corresponds to: s(D) =
n̄ ⇤k ⇤ sizeOf(value)+k ⇤ sizeOf(rank)+k ⇤ sizeOf(id).
For storing m compressed tricklet segments (i.e., m sparse
representations of the tricklet segments) over b batches and
using k0 k atoms, we store for each batch and each
tricklet segment: the k0 coefficients and their corresponding
atom id and rank, plus one value for storing the id of
the tricklet segment, summing up to a storage need of:
s(C) = m ⇤ b ⇤ (k0 ⇤ sizeOf(coeff) + k0 ⇤ sizeOf(rank) +
k0 ⇤ sizeOf(id) + sizeOf(id)).
The compression ratio is estimated by making the ratio
between the compressed and non-compressed version storage
requirements: m⇤b⇤(n̄+sizeOf(id))

s(D)+s(C) .

We use two different dictionaries for our experiments: one
with 16 atoms (RTE) and one with 131 atoms (ICDM). The
dictionaries are used to compress a single day of the original
data sampled every minute. Hence, our system stores 1440
coefficient values for every dictionary atom. Due to the high
oversampling rate of the ICDM data, the compression ratio is
much higher compared to the RTE dataset. The compression
ratio is 20 : 1 for the ICDM dataset, while it is 2 : 1 for the
RTE data (which represents the worst-case scenario for our
approach).

C. Query Performance

We now focus on query performance and compare the
performance of queries executed on the uncompressed and
on the compressed data. To evaluate the performance of our
system, we define the following workload:

Q1 Select all values for a given day

 10

 100

 1000

 10000

 100000

Q1 Q1 w/ Index

Q2 Q2 w/ Index

Q3 Q4
Q5

 0

 5

 10

 15

 20

 25

 30

 35

Re
sp

on
se

 T
im

e
in

 m
s

Sp
ee

du
p

Compressed
Compressed Low Accuracy

Uncompressed
Speedup

Fig. 6. Comparing compressed and uncompressed query execution times
with low and high accuracy dictionaries on the ICDM data

Q2 Aggregate the energy consumption for a specific day
Q3 Aggregate the energy consumption for a period of 6

months and group by day
Q4 Average yearly energy consumption over all recorded

years.
Q5 Variance of the energy consumption per month over

all recorded years
We report the query execution times for the above workload

running on our two data sets in Figure 6. On average, the
speedup of TRISTAN over the uncompressed case is 12x
for the high-accuracy reconstruction and 105x for the low-
accuracy reconstruction. The results can be explained as
follows: for low-selectivity queries (e.g., Q1 or Q2, which only
retrieve data from a single day), little work has to be performed
on the uncompressed data. In case no index is available for the
timestamp values, the response time for the uncompressed case
is dominated by the cost of scanning the input table to apply
the predicate. If an index can be used to directly select the
right set of records (see Figure 6 “Q1/Q2 w/ index”) the cost
drops drastically. As for the compressed case, the cost of low-
selectivity queries is dominated by the multiplication between
the atoms and their corresponding coefficients. In such cases,
all 1440 values have to be extracted from the dictionary for
each atom appearing in the compressed signal, hence slowing
down the reconstruction process.

The situation drastically changes for higher-selectivities
(Q3-Q5). In such cases, the query execution benefits from
pre-aggregating the selected atoms based on their atom ID
and materializing their values from the dictionary as the last
step of the execution plan. This processing strategy allows to
achieve much higher speedups (e.g., 25x for the high-accuracy
case, and 250x for the low-accuracy case on Q4)

The speedup is less impressive for the RTE data (see
Figure 7), since the compression ratio is not as high in that
case. However, for the large analytics queries we still observe
a performance gain of almost 5x for the high-accuracy recon-
struction, and of almost 25x for the low-quality reconstruction.
Also, we observe that the difference between the low and
the high-accuracy times is smaller in this case. This can
be explained since we only use 6 atoms for the complete
reconstruction of the RTE high-accuracy signal, compared to

 1

 10

 100

 1000

 10000

Q1 Q1 w/ Index

Q2 Q2 w/ Index

Q3 Q4 Q5
 0

 2

 4

 6

 8

 10

Re
sp

on
se

 T
im

e
in

 m
s

Sp
ee

du
p

Compressed
Compressed Low Accuracy

Uncompressed
Speedup

Fig. 7. Comparing compressed and uncompressed query execution times
with low and high accuracy dictionaries on the RTE data set

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 2

 4

 6

 8

 10

 12

 14

Re
sp

on
se

 T
im

e
in

 m
s

Sp
ee

du
p

Selectivity]0..1]

Compressed
Compressed MV

Uncompressed
Uncompressed / Compressed

 15

 18

 0 0.05 0.1 0.15 0.2

Fig. 8. Impact of selectivity on query execution with a dictionary of 130
atoms - ICDM

31 for the ICDM data
To further investigate the impact of selectivity on query per-

formance, we modified query Q3 to select a varying timespan
in order to gradually increase the selectivity of the query from
0 to 1. In addition to the standard dictionary, we created a
materialized view of the aggregated dictionary values to avoid
the frequent pre-aggregation rounds on all dictionary values.
We think that such a materialization approach is realistic given
that the dictionary is read-only during query execution. In the
uncommon cases where the dictionary needs to be updated
during query execution, the materialized view can be dropped
and refreshed once the dictionary stabilizes. The results of this
experiment are shown in Figure 8.

As described above in Section III-D, our dictionary com-
pression techniques allow for approximate calculations of the
results based on the exponential decay property. In order to
analyze the impact of the number of atoms on query execution,
we modified Q3 to vary the number of atoms. In addition,
we modify the query in order to select a varying timespan
in order to gradually increase the selectivity of the query
from 0 to 1. As expected, the query runtime increases for a
complete reconstruction of the signal as seen in Figure 9 and
Figure 10. Since the exponential decay is known in advance,
TRISTAN can return approximate query results with a specific
error. Compared to uncompressed query execution, this allows

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Re
sp

on
se

 T
im

e
in

 m
s

Selectivity]0..1]

~77% Accuracy (1 Atom)
~91% Accuracy (5 Atoms)

~93% Accuracy (10 Atoms)
~95.1% Accuracy (20 Atoms)
~95.8% Accuracy (30 Atoms)

Fig. 9. Query execution with decreased accuracy and increasing selectivity
– ICDM

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Re
sp

on
se

 T
im

e
in

 m
s

Selectivity]0..1]

~92% Accuracy (1 Atom)
~98.4% Accuracy (2 Atoms)
~98.7% Accuracy (3 Atoms)

~99.05% Accuracy (4 Atoms)
~99.12% Accuracy (5 Atoms)

Fig. 10. Query execution with decreased accuracy and increasing selectivity
– RTE

to interactively explore large data sets, and to increase the
accuracy of the results once the desired patterns are identified.

To evaluate the scalability of our system, we increase the
size of the RTE dataset by multiplying the input data volume
by a factor of 100. The original time series data is increased
to about 300M records and the compressed time series data
volume is increased to 44M records by this procedure.

 20

 40

 60

 80

 100

 120

 140

Q1 Q2 Q3 Q4 Q5

Sc
al

e
Fa

ct
or

 D
ep

en
de

nc
y

Compressed
Compressed Low Accuracy

Uncompressed

Fig. 11. Scalability experiment, comparing the query execution times on a
100x bigger RTE dataset.

We rerun the benchmark for this scaled dataset. We can
observe on Figure 11 that the query execution times scale
linearly with the scale factor. For the low-selectivity queries,
the results are sub-linear since the amount of processed data
does not increase linearly with the scale factor in such cases.

In summary, TRISTAN achieves high compression ratios
on time series data and allows for very flexible query exe-
cution strategies, where one can trade accuracy for increased
performance (e.g., for interactive exploration of Big Data.)
Queries in our system are up to 250x faster on the sparse
and compressed representation than on the uncompressed data,
with an error rate known a priori thanks to the exponential
decay property of our encoding technique.

VI. RELATED WORK

A number of approaches have already been proposed to
efficiently process time series data, some tackling this problem
from a pure data mining angle, others from a signal-processing
angle. We give below a short review of related work focusing
on time series representation and dictionary encoding.

A. Times Series Encoding & Representation

Obtaining a new representation of a time series presents sev-
eral advantages; a different representation space may be more
compact, or may offer improved comparison or knowledge
extraction capabilities. The most important techniques in that
context are: Singular Value Decomposition, Fourier transforms
and their relatives (FFTs, DCTs, Chebyshev, or Karhunded-
Loeve transforms), polynomial approximations (Piecewise
Linear Approximation, Adaptable Piecewise Constant Approx-
imation), symbolic representation [7], [24], feature extraction
(Kernel Piecewise Constant Approximation), wavelet trans-
forms, probability distribution functions, and dictionary-based
representations. We briefly discuss such representations below.

The first transformation often applied on the signal is due
to the sampling rate, since the rate at which the values get
registered by the sensors may not correspond to the sampling
rate needed for the application. Techniques like downsampling,
up-sampling interpolation, or decimation are often applied in
that context. All those techniques do not preserve the peaks
of the signal as they typically smooth it.

Wavelets transforms are among the most frequently used
transformations for signal compression. Unlike Fourier Trans-
forms, they provide both time and frequency information,
yield good compression rates, and are good at representing
signals exhibiting discontinuities or sharp peaks. They support
both stationary and non-stationary signals and offer good
support for trends, discontinuities in higher derivatives, and
self-similarity [25] analyses. The Discrete Wavelet Transform
(DWT) is a very popular wavelet transform, though it is not
without its own limitations: The DWT is not shift invariant,
has poor directionality, and lacks phase information [10].

Symbolic representation transforms the original signal into
another signal whose elements are mapped onto symbols from
a dictionary. One such technique is proposed in [7], [24]
where, in a first step, the signal is cut into segments of

equal sizes, followed by vertical segmentation of the area
corresponding to each segment and finally mapping onto
dictionary symbols.

A promising approach that combines several of the above
techniques was presented in Reeves et al. [22]. Their ap-
proach decomposes the time series into low frequency parts,
spikes (which are assumed to be sparse), and high frequency
residuals. The low-frequency parts are captured using a low
pass filter and downsampling, the spikes are stored explicitly,
while the residual signals are compressed using random pro-
jections. This approach relies on the assumptions that spikes
are relatively sparse and that most of the relevant aspects
of the signal are in the low frequencies. In many real-world
applications, however, this is not the case; Spikes can occur
frequently and the high frequency parts of the signal carry
important information that both Fourier decomposition and
random projections cannot account for. We propose instead
an unbiased approach that can represent the spikes, the low
frequency and the high frequency components of a signal
in a single formalism that still allows very efficient query
processing on the compressed data.

B. Dictionary Compression of Time Series

A method for executing similarity queries on compressed
time series is proposed in [20]. In this work, a multi-resolution
symbolic representation is computed for each time series. All
time series are divided into segments of equal size, which are
encoded in a dictionary. The new compressed representation
of the time series is then a sequence containing only the
frequencies of apparitions of the segments. The time series
symbolic representation is thus unaware of any domain infor-
mation. Also, the method does not propose optimized database
storage solutions for the compressed time series and focuses
on similarity queries only.

A Limpel-Ziv dictionary-based compression method for
long-running time series is proposed in [16]. Time series
classification based on dictionary-compressed time series is
proposed in [5]; In this work, the dictionary contains a
minimally redundant set of patterns to classify the time series,
and is built by ranking patterns with respect to their utility for
data classification. Both methods focus on similarity queries
only do not offer analytics features.

Tricklets often contain a large amount of redundant infor-
mation. Discarding the redundant information and keeping
a representation that encodes with as few bits as possible
the relevant elements presents many advantages (e.g., faster
comparisons and less storage overhead). The signal-processing
community has pioneered sparse dictionary representations
focusing on compressing a signal using a linear combination
of a few elements of a base dictionary only. There exists a vast
body of literature [3], [23], [15], [17], [14] explaining how to
determine a suitable dictionary for a given class of signals.

Optimally encoding a signal given a dictionary is a discrete
optimization problem that is known to be NP�hard and that
was extensively studied [9], [21]. There exist two schools of

methods for solving this optimization problem: i) relaxation-
based methods that transform the discrete optimization prob-
lem into a continuous one, and ii) matching pursuit-based
methods [8] that use a greedy heuristic to quickly find a nearly
optimal solution. TRISTAN uses the latter method.

VII. CONCLUSIONS

In this paper, we proposed TRISTAN, a new system special-
ized in efficient storage and management of very large time
series data. Our system exploits sparse dictionary representa-
tions for effective compression, compact storage, and efficient
query execution over the compressed data. We believe that
sparse representations have a number of particularly attractive
properties for database systems handling time series. First, the
approach is general and can be applied to a large number
of scenarios and problems; the dictionary elements being not
constrained in shape or number, it is possible to learn a
dictionary to fit any set of signals. Second, the representation
being linear, it is possible to answer a number of queries on
the sparse representation directly without needing the costly
operation of reconstructing the original signals. This leads
to significant speed ups for queries that can take advantage
of linearity as we showed in our experimental evaluation.
Third, sparse representations have a reconstruction error that
decreases exponentially with the number of elements used in
the representation, meaning that the first elements of a sparse
representation contain most of the signal’s information and
that, depending on the situation, the remaining atoms of the
sparse representation can be ignored to yield a representation
that is slightly less accurate but much more compact. We
evaluated TRISTAN’s efficiency and effectiveness experimen-
tally on two real-world datasets and showed that TRISTAN
can achieve up to 20:1 compression ratios and 250x speedups
for query execution compared to traditional physical storage
schemas. As future work, we plan to investigate how to
extend TRISTAN to handle further data types and to provide
a workload-driven, holistic compression technique to further
reduce query execution times while maintaining low error
rates.

REFERENCES

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang,
W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik. The design of the borealis stream processing engine. In
In CIDR, pages 277–289, 2005.

[2] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. Madden. Materialization
Strategies in a Column-Oriented DBMS. In ICDE, pages 466–475.
IEEE, 2007.

[3] M. Aharon, M. Elad, and A. Bruckstein. K -svd: An algorithm for
designing overcomplete dictionaries for sparse representation. Signal
Processing, IEEE Transactions on, 54(11):4311 –4322, nov. 2006.

[4] L. Bar and G. Sapiro. Hierarchical dictionary learning for invariant
classification. In Acoustics Speech and Signal Processing (ICASSP),
2010 IEEE International Conference on, pages 3578–3581, March.

[5] Y. C. Bing Hu and E. Keogh. Time series classification under more
realistic assumptions. SIAM Conference on Data Mining, 2013.

[6] T. Blumensath and M. Davies. A fast importance sampling algorithm
for unsupervised learning of over-complete dictionaries. In Acoustics,
Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE
International Conference on, volume 5, pages v/213 – v/216 Vol. 5,
march 2005.

[7] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh. isax 2.0: Indexing
and mining one billion time series. In Proceedings of the 2010 IEEE
International Conference on Data Mining, ICDM ’10, pages 58–67,
Washington, DC, USA, 2010. IEEE Computer Society.

[8] M. E. Davies and T. Blumensath. Faster and greedier: algorithms
for sparse reconstruction of large datasets. In in Proceedings of the
third International Symposium on Communications, Control and Signal
Processing (ISCCSP, 2008.

[9] G. Davis and M. Avellaneda. Adaptive greedy approximations.
[10] F. Fernandes, R. van Spaendonck, and C. Burrus. Multidimensional,

mapping-based complex wavelet transforms. Image Processing, IEEE
Transactions on, 14(1):110–124, Jan.

[11] L. Golab and T. Johnson. Consistency in a stream warehouse. In CIDR,
pages 114–122. www.cidrdb.org, 2011.

[12] M. Grund, P. Cudré-Mauroux, J. Krüger, S. Madden, and H. Plattner.
An overview of HYRISE - a Main Memory Hybrid Storage Engine.
IEEE Data Eng. Bull., 35(1):52–57, 2012.

[13] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudré-Mauroux, and
S. Madden. HYRISE - A Main Memory Hybrid Storage Engine.
PVLDB, 4(2):105–116, 2010.

[14] Z. Jiang, Z. Lin, and L. Davis. Learning a discriminative dictionary
for sparse coding via label consistent k-svd. In Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1697
–1704, june 2011.

[15] Z. Jiang, Z. Lin, and L. S. Davis. Learning a Discriminative Dictionary
for Sparse Coding via Label Consistent K-SVD. In CVPR, 2011.

[16] W. Lang, M. Morse, and J. Patel. Dictionary-based compression for
long time-series similarity. Knowledge and Data Engineering, IEEE
Transactions on, 22(11):1609 –1622, nov. 2010.

[17] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix
factorization and sparse coding. J. Mach. Learn. Res., 11:19–60, Mar.
2010.

[18] S. Mallat and Z. Zhang. Matching pursuits with time-frequency
dictionaries. Signal Processing, IEEE Transactions on, 41(12):3397–
3415, Dec.

[19] A. Marascu, P. Pompey, E. Bouillet, O. Verscheure, M. Wurst, M. Grund,
and P. Cudré-Mauroux. Mistral: An architecture for low-latency analyt-
ics on massive time series. In Big Data and Smarter Cities, pages 15–21,
2013.

[20] V. Megalooikonomou, Q. Wang, G. Li, and C. Faloutsos. A multiresolu-
tion symbolic representation of time series. In Data Engineering, 2005.
ICDE 2005. Proceedings. 21st International Conference on, pages 668
– 679, april 2005.

[21] B. Natarajan. Sparse approximate solutions to linear systems. SIAM
Journal on Computing, 24(2):227–234, 1995.

[22] G. Reeves, J. Liu, S. Nath, and F. Zhao. Managing massive time series
streams with multi-scale compressed trickles. Proc. VLDB Endow.,
2(1):97–108, Aug. 2009.

[23] R. Rubinstein, M. Zibulevsky, and M. Elad. Efficient Implementation
of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit.
Technical report, CS Technion, Apr. 2008.

[24] J. Shieh and E. Keogh. isax: Indexing and mining terabyte sized time
series, sigkdd. pp, 2008.

[25] M. Sifuzzaman, M. Islam, and M. Ali. Sparse and shift-invariant
representations of music. Journal of Physical Sciences, 13:121–134,
2009.

[26] V. Sindhwani and A. Ghoting. Large-scale distributed non-negative
sparse coding and sparse dictionary learning. In Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD ’12, pages 489–497, New York, NY, USA, 2012.
ACM.

[27] K. Skretting and K. Engan. Recursive least squares dictionary learning
algorithm. IEEE Transactions on Signal Processing, pages 2121–2130,
2010.

[28] M. Wojnarski, P. Góra, M. S. Szczuka, H. S. Nguyen, J. Swietlicka,
and D. Zeinalipour-Yazti. IEEE ICDM 2010 Contest: TomTom Traffic
Prediction for Intelligent GPS Navigation. In ICDM Workshops, pages
1372–1376. IEEE Computer Society, 2010.

[29] Q. Zhang and B. Li. Discriminative k-svd for dictionary learning in
face recognition. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 2691–2698, June.

[30] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands
of data streams in real time. In In VLDB, pages 358–369, 2002.

