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Abstract

The increasingly growing data traffic has posed great challenges for mobile operators to increase their data processing capacity, which incurs a
significant energy consumption and deployment cost. With the emergence of the Cloud Radio Access Network (C-RAN) architecture, the data
processing units can now be centralized in data centers and shared among base stations. By mapping a cluster of base stations with complementary
traffic patterns to a data processing unit, the processing unit can be fully utilized in different periods of time, and the required capacity to be
deployed is expected to be smaller than the sum of capacities of single base stations. However, since the traffic patterns of base stations are
highly dynamic in different time and locations, it is challenging to foresee and characterize the traffic patterns in advance to make optimal
clustering schemes. In this paper, we address these issues by proposing a deep-learning-based C-RAN optimization framework. First, we exploit
a Multivariate Long Short-Term Memory (MuLSTM) model to learn the temporal dependency and spatial correlation among base station traffic
patterns, and make accurate traffic forecast for a future period of time. Afterwards, we build a weighted graph to model the complementarity of
base stations according to their traffic patterns, and propose a Distance-Constrained Complementarity-Aware (DCCA) algorithm to find optimal
base station clustering schemes with the objectives of optimizing capacity utility and deployment cost. We evaluate the performance of our
framework using data in two months from real-world mobile networks in Milan and Trentino, Italy. Results show that our method effectively
increases the average capacity utility to 83.4% and 76.7%, and reduces the overall deployment cost to 48.4% and 51.7% of the traditional RAN
architecture in the two datasets, respectively, which consistently outperforms the state-of-the-art baseline methods.
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1. Introduction

Today, mobile network data traffic is growing explosively as
Internet-enabled smartphones and tablets become increasingly
popular [1]. According to Cisco [2], global mobile network
data traffic has grown 18-fold over the past five years, and the
next-generation cellular systems (e.g., 5G) are expected to ex-
perience tremendous data traffic growth [? ]. In order to accom-
modate the fast growing data traffic demand, mobile network
operators need to increase their data processing capacity, such
as deploying more base stations, and adding more data process-
ing units to base stations. Consequently, the capital expendi-
tures of deploying these network infrastructures are becoming
increasingly high, and may harm operator’s revenue as network
scale grows [3]. Moreover, the operating expenses of mobile
network infrastructures, such as energy consumption and main-
tenance spending, are substantially increasing [4]. Therefore,

optimizing the capital expenditures and operating expenses has
become a necessity for mobile network operators [5, 6].

Even though the overall data traffic demand of the mobile
network is growing, the demand in different areas and during
different periods of time is not evenly distributed [7]. For exam-
ple, as shown in Figure 1a, the traffic in a business district (de-
noted as a blue solid line) observes peaks during working hours,
while the traffic in a residential area (denoted as a red dashed
line) is relatively higher during evening hours than in working
hours. Such a spatial-temporal non-uniform property of traffic
demand poses great challenges for operators to optimize the
capital expenditures and operating expenses of their network
infrastructures. On one hand, the data processing capacity of
each base station needs to cover its peak traffic volume, leading
to high deployment cost. On the other hand, the capacity in in-
dividual base station is wasted during off-peak hours, resulting
in low capacity utility.
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Figure 1. (a) Data traffic patterns in different areas of Milan during a typical
weekday. The blue solid line denotes the data traffic in a business district
(Centro Direzionale), while the red dashed line corresponds to the data traffic in
a residential area (Quintosolo District). (b) The aggregated data traffic pattern
of the two areas. Triangles indicate the peak traffic hour and volume.

Fortunately, with the rapid evolution of mobile network ar-
chitectures, the emergence of Cloud Radio Access Network (C-
RAN) [8] has presented new opportunities to address the above
challenges. In C-RAN, a traditional base station is split into two
components: a Remote Radio Head (RRH) for radio communi-
cation, and a Baseband Unit (BBU) for mobile data processing.
The BBUs are further detached from the RRHs and hosted in
centralized BBU pools [5]. The RRHs and BBU pools are usu-
ally connected via high speed optical fiber [5]. By clustering
RRHs with complementary traffic patterns to a BBU, the data
processing capacity in the BBU can be shared among RRHs in
different time periods, and thus increasing the capacity utility of
the BBU [9]. Furthermore, the required capacity of the BBU is
expected to be smaller than the sum of capacities of single base
stations, leading to a decrease in deployment cost. For example,
in Figure 1, if we cluster the RRHs in the business district (blue)
and in the residential area (red) to a BBU, the aggregated traffic
pattern will become relatively stable and the BBU will have a
higher capacity utility (Figure 1b). Meanwhile, the capacity
required for the BBU can be reduced from the sum of the two
peaks (1.50 = 0.65+0.85) to a lower aggregated value (1.10).
In summary, by pooling BBUs from multiple base stations into
a centralized BBU pool, the statistical multiplexing gain [5] can
be achieved in the C-RAN architecture [8].

In order to unlock the power of the C-RAN architecture,
it is of great importance to characterize the traffic patterns of
RRHs, and to cluster complementary RRHs to a set of BBUs
[9, 10], so as to maximize the capacity utility and minimize the
deployment cost. However, since the data traffic generated in
the RRHs are highly dynamic over different time and locations,
accurately foreseeing and characterizing the RRH traffic pat-
terns in advance is quite challenging, hindering the optimization
of RRH clustering and BBU mapping. More specifically, given
a set of RRHs in a city, we need to accurately foresee their
data traffic patterns in a future period of time (e.g., one day),
and find optimal schemes to cluster RRHs with complementary
traffic patterns, and map them to a set of BBUs for that period
of time. In order to achieve these goals, we need to address the
following issues:

1. How to foresee the RRH traffic for a future period
of time? The data traffic in each RRH can vary sig-
nificantly, depending on the impacts of temporal con-
texts (e.g., weekdays or weekends), human mobility, and
social events, etc. Moreover, the data traffic of RRHs
located in similar functional areas may demonstrate po-
tential correlations. For example, during weekdays, the
RRHs located in business districts usually observe data
traffic peaks during working hours, and low data traf-
fic volumes at nights. Capturing the hidden temporal
dependency and spatial correlation among RRH traffic
patterns is not trivial using state-of-the-art time series
models, such as ARIMA [11] or neural networks [12].
Therefore, we need to foster more effective techniques
for accurate RRH traffic pattern forecasting.

2. How to measure the complementarity among RRHs?
In order effectively to share and reuse the capacity of a
BBU mapped to a cluster of RRHs, the traffic peaks of the
RRHs in the cluster should be scattered temporally (i.e.,
occur at different hours). Meanwhile, to make full use of
the BBU mapped to a cluster and avoid BBU overload-
ing, the aggregated cluster traffic should be close to the
BBU capacity to a maximal extent, while not exceed the
BBU capacity too much. Therefore, we need to take into
account both aspects, i.e., the peak distribution and the
capacity utility, to design an effective metric to measure
the complementarity of RRHs.

3. How to optimally cluster complementary RRHs into
BBUs? Given the traffic forecast and the complementar-
ity measurements of RRHs, there are potentially enor-
mous numbers of schemes to cluster these RRHs and
map them to BBUs in a pool. The optimal scheme not
only needs to maximize the average BBU capacity utility,
but also needs to minimize the overall deployment cost.
Moreover, in order to support fast handover and content
offloading between neighboring RRHs [5, 13], the dis-
tances among a cluster of RRHs should be constrained
within a reasonable range. Therefore, we need to design
an effective algorithm to find the optimal RRH clustering
scheme under the distance constraint.

With the above-mentioned research objectives and issues,
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the main contributions of this paper are:

• We propose a deep-learning-based approach to
accurately foresee RRH traffic patterns for a future
period of time. The proposed approach is capable of
modeling the temporal dependency and spatial
correlation among the RRH data traffic, and accurately
forecasting the future traffic pattern based on the
historical observations.

• We propose a two-phase framework to dynamically find
optimal RRH clustering and BBU mapping schemes
under different contexts. In the first phase, we forecast
the traffic patterns of RRHs leveraging the proposed
MuLSTM model, and propose an entropy-based metric
to characterize the complementarity of RRHs, taking
into account both the peak distribution and capacity
utility. In the second phase, we build a weighted graph
to model the complementarity of RRHs, and propose a
distance-constrained clustering algorithm to find
optimal RRH clustering schemes with the objectives of
both capacity utility and deployment cost.

• We evaluate the performance of our method using
datasets in two months from real-world mobile networks
in Milan and Trentino, Italy. Results show that our
method effectively increases the average capacity utility
to 83.4% and 76.7%, and reduces the overall
deployment cost to 48.4% and 51.7% of the traditional
RAN architecture in the two datasets, respectively,
which consistently outperforms the state-of-the-art
baseline methods.

The rest of this paper is organized as follows. We first
present a literal review in Section 2, and then introduce the
preliminaries and the proposed framework in Section 3. In
Section 4 we propose the deep-learning-based dynamic RRH
profiling method, and in Section 5 we propose the graph-based
complementary RRH clustering algorithm. We report the eval-
uation results and present case studies with real-world datasets
in Section 6. Finally, we conclude our work in Section 7.

2. Related Work

2.1. Cloud Radio Access Network

Cloud Radio Access Network (C-RAN) is a novel mobile
network architecture to address the challenges faced by opera-
tor while trying to meet the fast-growing traffic demand. The
details of the C-RAN concept can be found [8]. The basic idea
of C-RAN is to pool the data processing units from multiple
RRHs into centralized BBU pools, so that the pool capacity can
be shared among these RRHs. Since fewer BBUs are needed
and higher BBU capacity utility can be achieved, the C-RAN
architecture can reduce the network deployment cost and en-
ergy consumption [5]. Therefore, C-RAN is seen as a typical
architecture of the fifth generation (5G) network in the year
2020 horizon [14].

One of the key problem in the C-RAN architecture is to
an design optimal RRH clustering scheme and connect them to
the BBU pool. An optimal scheme should facilitate the BBU
capacity utility in the pool, reduce the deployment cost, and
also prevent the propagation delay between RRHs and BBU
pool [5]. To this end, Bhaumik et al. [9] proposed CloudIQ,
a framework for partitioning a set of RRHs into groups and
process the signals in a shared data center. Since the distance
between data centers and the RRHs may lead to potential delay
between distant RRHs and the data center [5]. Lee et al. [15]
proposed a RRH cooperation scheme with dynamic clustering
in C-RAN, however the objective of the cooperation is to derive
the signal-to-interference for RRH evaluation. One of the very
relevant ideas to our work was illustrated in [1], which ex-
plored approaches to integrate big data analytics with network
optimization in 5G, especially by exploiting historical data to
optimize resource allocation in centralized BBUs in C-RAN.

2.2. Time Series Forecasting Models
During the past decades, time series modeling and forecast-

ing have been extensively studied in the literature [11, 16, 12].
In this section, we survey two of the state-of-the-art approaches
in time series analytics, and discuss their disadvantages in ad-
dressing our problem.

Autoregressive Integrated Moving Average (ARIMA)
models: In time series analysis, ARIMA models are
commonly used to fit a time series data and to forecast future
variations in the series. ARIMA models explicitly extract from
a time series three intuitive features, i.e., auto-regression,
moving average, and integration. The auto-regression (AR)
part indicates that the evolving variable of a time series is
regressed on its own lagged values. The moving average (MA)
part indicates that the regression error can be represented as a
linear combination of error terms dependent on the values in
the past. The integration (I) part is applied to the regression
model to represent non-stationary time series (i.e., the variable
in the time series shows a trend of increasing or decreasing).
ARIMA models are capable of rapidly adjusting for sudden
changes in trend, and it has been proved successful in many
short-term forecasting problems [17]. However, for long-term
forecasting problems which involve predicting multiple future
steps, the error of ARIMA models accumulate significantly
and the forecasting confidence decrease rapidly as the
forecasting step grows [18]. In our problem, we need to
accurately forecast the RRH traffic for several hours to foresee
the traffic patterns in the future for RRH clustering, which
poses great challenges for the ARIMA models.

Artificial Neural Network (ANN) models: Recently,
ANN models are widely employed to understand time series
and forecast the future trend by leveraging a
sliding-window-based technique [16], which can be named
windowed-ANN, or WANN. More specifically, this technique
first slices a time series into several equal-length windows, and
then feeds these windows into an ANN model as features. The
output of the model is the forecast of the future values of the
time series, which can either be short-term or long-term
results, depending on the application scenario. The WANN
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models have been applied in various domains, such as financial
market [19] and operation research [20]. However, one of the
biggest problem of the WANN model is its incapability to
model the temporal dependency between the elements in each
time series window. In fact, the elements in a window is
treated equally as input features and thus the sequential order
of the elements is ignored. As a result, the WANN model can
make fluctuating and inconsistent forecasts which are not
desired in our problem.

In this work, we propose a deep-learning [21] architecture
to model the temporal dependency of RRH traffic and the
spatial correlations among RRHs in a unified framework. Such
kind of spatial-temporal deep-learning framework has been
widely used in IP and transportation network traffic prediction
[22, 23], electronic health records understanding [24], and
social network behavior analytics [25].

2.3. Mobile Data Analytics

With the emergence of ubiquitous sensing and computing
diagrams [26], a massive number of mobile data can now be
collected either by mobile crowdsensing paradigms [27, 28, 29]
or from operators’ infrastructures. These heterogeneous mobile
big data are being extensively analyzed in the literature to re-
trieve interesting and informative information [30, 31, 32, 33].
For example, Barlacchi et al. [34] released a large-scale Call
Detail Records (CDR) dataset from Telecom Italia, containing
two-months of calls, SMSs and network traffic data from the
city of Milan and Trentino, Italy. Based on the dataset, Furno et
al. [35] proposed a data analytics framework to builds profiles
of the city-wide traffic demand, and identifies unusual situations
in network usages, aiming at facilitating the design and imple-
mentation of cellular cognitive networking. Cici et al. [36]
studied the decomposition of cell phone activity series, and con-
nect the decomposed series to socio-economic activities, such
as regular working patterns and opportunistic events [37].

However, applying real-world mobile network data to C-
RAN optimization has not yet been extensively studied in the
literature, since previous works mainly focus on simulation-
based approaches to model network traffic [38, 23]. In this
work, we exploit large-scale open datasets from real-world mo-
bile network operators to understand the traffic patterns in real
networks, and then conduct C-RAN optimization studies based
on the knowledge discovered from these mobile datasets.

3. Preliminaries and Framework

3.1. Preliminaries

In mobile network architectures, a set of base stations are
deployed over geographical areas called cells [39]. Each base
station provides the cell with the network coverage which can
be used for transmission of voice and data. With the recent
emergence of smartphones and tablets, the data traffic generated
from users connected to the RRHs is increasing rapidly [2, 3].

In order to benchmark the data processing capacity of base
stations, many operators have collected large scales of RRH
traffic statistics data and make them publicly available [1]. In

this paper, we exploit the dataset released by Telecom Italia for
the Big Data Challenge initiative [34]. We extract two months
of network traffic data from 11/01/2013 to 12/31/2013 in the
city of Milan, Italy and the province of Trentino, Italy. We also
collect the locations of active base stations in Milan and
Trentino during the two months from CellMapper.net1, and
derive the traffic volume of each base station during the two
months on an hourly basis. The traffic data pre-processing
steps will be detailed in the evaluation section.

In this work, we consider a C-RAN architecture with one
BBU pool for the city-wide mobile network. The benefits of
adopting such a centralized pool are two-fold. First, the deploy-
ment cost and energy consumption can be greatly reduced by
employing data center virtualization technologies [40]. Second,
the handover handing and contents offloading among RRHs can
be processed internally in the pool, which significantly reduces
delays and increases throughput [5]. BBUs in the pool are
implemented as virtual machines with specific predefined ca-
pacities. In this work, for fair of comparison and simplicity, we
assume the BBU capacity to be fixed and equal to the on-site
BBUs in the traditional architecture. We discuss the implement
details in the evaluation section.

3.2. Framework Overview

We propose a two-phase framework to dynamically cluster
complementary RRHs to a set of BBUs, so that the BBU capac-
ity utility and the deployment cost of the entire network can be
optimized. As shown in Figure 2, in the dynamic RRH profiling
phase, given a set of RRHs at a time point, we first propose
a deep-learning-based approach to forecast the traffic patterns
of RRHs in a future period of time based on their historical
traffic data, and then calculate the complementarity of RRHs
using a proposed entropy-based metric. In the dynamic RRH
clustering phase, we first build a graph model to represent the
complementarity among RRHs, and then propose a distance-
constrained clustering algorithm to cluster RRHs with comple-
mentary traffic patterns. We elaborate on the details of this
framework in the following sections.

4. Dynamic RRH Profiling

In order to cluster RRHs with complementary traffic pat-
terns to a BBU, we need to be able to forecast the traffic pattern
of each RRH for a future period of time. Since the traffic of
RRHs vary significantly and exhibit spatial correlations, we
propose a deep-learning-based approach to model the spatial-
temporal dynamics and to forecast the future traffic pattern ac-
curately. Based on the traffic forecast, we dynamically char-
acterize the complementarity of RRHs, focusing on the peak
distribution and capacity utility of a cluster of RRHs, and design
an entropy-based metric to characterize their complementarity.

1https://www.cellmapper.net/map
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Figure 2. Framework overview.

4.1. RRH Traffic Forecasting
Based on the historical traffic data, we observe that the traf-

fic patterns of RRHs are highly dynamic under different tempo-
ral contexts. For example, Figure 3 shows the traffic patterns of
two RRHs located in two business districts in Milan during one
week, respectively. We observe significant traffic peaks during
the working hours of weekdays, and low capacity utility during
off-work hours. Moreover, we observe that the traffic patterns
of RRHs located in similar functional areas usually demonstrate
similar trends. For example, in Figure 3, the traffic patterns
in the two business districts of Milan show similar weekday-
weekend patterns.

4.1.1. Basic Idea
In order to accurately forecast the traffic patterns of the

RRHs in a future period of time, we need to be able to ef-
fectively capture their temporal dependency and spatial cor-
relation. However, this is not trivial using the state-of-the-art
techniques. In this work, we propose a deep-learning-based
approach for our problem. More specifically, we exploit the
Recurrent Neural Network (RNN) to automatically capture the
intrinsic temporal dependency in our traffic data. An RNN is
a special type of neural network designed for sequential pat-
tern mining problems [41]. Built upon the windowed-ANN
architecture, an RNN features additional loops to the neurons
in the layers of the neural network. Each neuron may pass
its signal laterally in addition to forward to the next layer, and
consequently, the output of the network for a window may feed-
back as an input to the network for the next window. Such
recurrent connections add state or memory to the windowed-
ANN architecture and allow it to learn and harness the intrinsic
temporal dependency in the time series.

Unfortunately, training an RNN effectively is technically
challenging due to the vanishing or exploding gradient prob-
lem, i.e., the weights in the training procedure quickly became
so small as to have no effect (vanishing gradients) or so large
as to result in very large changes (exploding gradients). To
overcome this problem, researchers proposed the Long Short-
Term Memory Network (LSTM) model [42], which introduces
the concepts of memory cells and forget gates to generate con-
sistent data flow between the layers of the network and keep the

weights stable [43]. In this work, we exploit the LSTM model
to effectively learn the temporal dependency of our traffic data.

The other challenge is to model the spatial correlation
between RRHs in the network. The above-mentioned
approaches typically model the traffic of each RRH as a
separate time series, making it difficult to capture the
correlation between RRHs. In this work, we propose a
multivariate-Long Short-Term Memory Network (MuLSTM)
approach to model the RRH traffic in a city in a unified model,
putting each RRH traffic as a sequence for training and
forecasting, and consequently learn the spatial correlation
between RRHs.

4.1.2. The MuLSTM Model
Before introducing the MuLSTM model, we define several

important terminologies as follows:

Definition 1. Remote Radio Head (RRH): The RRHs in a city-
wide mobile network can be described as a set of points denoted
by the following 3-tuple:

{r|r = (rid, lat, lng)}

where rid, lat, lng are the unique ID, latitude, and longitude of
the RRH.

Definition 2. RRH Traffic: The mobile data traffic collected
from each RRH can be denoted by a set of fixed-length se-
quences:

{ f | fi = [ui(1), . . . ,ui(t), . . . ,ui(Nt)]}

where ui(t) is the traffic volume of RRH i in time span t(1≤ t ≤
Nt). In this work, we use an one hour time span.

With the collected traffic data, we first organize the col-
lected RRH traffic into a matrix FRNt×RNr , where Nt is the num-
ber of time spans, and Nr denotes the number of RRHs in the
network. We denote the traffic of RRHs we have observed until
time t as F([0, t], :), and the traffic of RRHs we would like to
forecast in a future period of time ∆t as F([t, t +∆t], :). In this
work, to simplify the implementation, we use one hour time
span, and ∆t = 24 hours with t mod 24 = 0, i.e., we forecast
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Figure 3. The locations of base stations in Milan and two of the illustrative examples of traffic patterns observed in two business districts from 11/25/2013 to
12/01/2013. Red color denotes high average traffic volume and green color corresponds to low average traffic volume.

the hourly traffic of RRHs for the next day at the end of each
day, and dynamically update the RRH clustering scheme based
on the forecast. Based upon this, we generate a set of traffic
snapshots from the traffic matrix, which is defined as follows.

Definition 3. RRH Traffic Snapshot: A traffic snapshot is de-
fined as a matrix Fi, which corresponds to the traffic of all the
RRHs during a given period of time ∆t, i.e.,

F = {Fi|Fi = F([(i−1)∗∆t, i∗∆t], :), i = 1,2, . . .}
In order to make traffic forecast, we train a sequence to

sequence model [41] leveraging a unified multivariate LSTM
model. During each forecasting, the model accepts Fi as input
and outputs Fi+1. Note that such a model is called a many-
to-many sequential model because both the input and output
contain ∆t time spans, and the order of the time spans play an
important role in shaping the model’s inner structure. More-
over, the traffic of RRHs are input to the model as multivariate
features simultaneously, which enables the model to learn the
spatial correlation between RRHs.

Finally, we elaborate on the design of the MuLSTM
network structure. In general, the MuLSTM model follows the
encoder-decoder structure by stacking two LSTM layers L1
and L2. The encoder L1 accepts a snapshot of size [∆t,Nr],
learns the temporal and spatial structures in the snapshot, and
passes the encoded sequences to the decoder. The decoder then
makes forecast for a future snapshot of size [∆t,Nr] based on
the learned structures. The model is trained using the popular
Backpropagation Through Time (BPTT) algorithm for
multiple iterations. We elaborate the details of the model
parameters in the evaluation section.

4.2. RRH Complementarity Measurement
Once we have the traffic snapshot forecast for the next day,

we are able to evaluate the complementarity of RRHs in that
context, and cluster complementary RRHs to a BBU. We con-
sider the following two aspects to design an effective comple-
mentarity metric of RRHs.

4.2.1. Peak Distribution
The peak traffic volume of a set of RRHs clustered to the

same BBU should be scattered in different temporal contexts, so
that the capacity of the BBU can be shared among these RRHs.
To this end, we design an entropy-based metric to measure the
peak distribution of a set of RRH. Specifically, given a set of
clustered RRHs C = {r1, . . . ,rn} , we first find the peak hours
in their traffic profiles, respectively, i.e.,

T (ri) = {ti1 , ti2 , . . . , tim}, 1≤ im ≤ 24 (1)

where tim denotes the mth peak time of ri. Then, we calculate the
Shannon entropy [44] of the peak hours of the set of clustered
RRHs T (C) = ∪T (ri) as follows:

H(C) =−
K

∑
k=1

pk log pk (2)

where K = |T (C)| corresponds to the total quantity of peaks in
C, and pk is the probability of observing the corresponding peak
hour in the set T (C). A larger entropy value of a RRH cluster
indicates that the RRHs are more complementary in the cluster
w.r.t. traffic patterns.

4.2.2. Capacity Utility
To make full use of the BBU mapped to a cluster C, the

aggregated cluster traffic should be close to the BBU capacity in
different hours of the day. Meanwhile, to prevent the BBU from
overload, the aggregated cluster traffic should not exceed the
BBU capacity too much. To this end, we design the following
metric to quantitatively measure the capacity utility of a BBU
B mapped to a cluster C:

U(C) = (
mean f(C)

|B|
)
−ln mean f(C)

|B| (3)

where f(C) = ∑
n
i=1 f(ri) denotes the aggregated traffic profile of

the RRH cluster, and |B| is the fixed BBU capacity measured
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Figure 4. The curve of the designed capacity utility function, which reaches its
maximal when the cluster traffic volume equals the BBU capacity.

in traffic volume. Figure 4 shows the curve of the capacity
utility function, which achieves its maximal when the mean
aggregated traffic volume is equal to the BBU capacity.

Finally, we calculate the complementarity of the RRH clus-
ter C as follows:

M(C) =U(C)∗H(C) (4)

=−(mean f(C)

|B|
)
−ln mean f(C)

|B|
K

∑
k=1

pk log pk (5)

5. Complementary RRH Clustering

In this phase, our objective is to cluster RRHs with comple-
mentary traffic patterns to a set of BBUs in a pool. One intuitive
method is to exhaustively search for RRHs with complementary
traffic patterns and iteratively cluster them. However, since
there are a tremendous number of clustering schemes, such a
method can be computationally intractable as the network scale
increases. Moreover, the distance between RRHs and BBU
pool should also be constrained within a range, since the propa-
gation delay between RRHs and BBU pool may exceed quality-
of-service requirements as distance increases, and we also need
to enable machine to machine communications between RRHs
such as handover [45] in the mobile network.

Therefore, we propose a graph-model-based algorithm to
effectively cluster neighboring RRHs to the same BBU under
distance-constraints. First, we construct a weighted graph
model to represent the relationship of RRHs, exploiting graph
links to express the RRH distance constraints, and link weights
to characterize the RRH complementarity measurement. Then,
we propose a community-detection-based algorithm to
iteratively cluster RRHs into clusters, so that the
complementarity of RRHs is maximized within each cluster
and minimized across different clusters.

5.1. Weighted-Graph-Based RRH Modeling

We model the complementarity among RRHs as an undi-
rected, weighted graph G = (V,E), where V = {r1, . . . ,rN} de-
notes the set of N RRHs, and E denotes the set of links between
two RRHs.

We then define the adjacency matrix A of graph G, which is
an N×N symmetric matrix with entries ai, j = 1 when there is a
link between RRH ri and RRH r j, and ai, j = 0 otherwise (i, j =
1, . . . ,N). We use the geographic distance of two RRHs to
determine whether they are adjacent or not. More specifically,
for RRH ri and RRH r j, we define:

ai, j =

{
1, if dist(ri,r j)≤ τ

0, otherwise
(6)

where dist(ri,r j) is the geographic distance between the two
RRHs, and τ is a neighborhood threshold controlling the geo-
graphic distance of neighboring RRHs.

Given two neighboring RRHs, we use their complementar-
ity measurement to determine their link weight, i.e.,

w(ri,r j) = M({ri,r j})∗ai, j (7)

We consider the case of normalized symmetric positive
weights (w(ri,r j) ∈ [0,1]) with no loops (w(ri,ri) = 0). We
note that w(ri,r j) = 0 when there is no link between ri and r j
(ai, j = 0).

5.2. Distance-Constrained RRH Clustering

In this step, we need to cluster RRHs to a BBU, so that
each cluster consists of neighboring RRHs with complementary
traffic patterns. As the link weight of graph G encodes the
complementary of RRHs, we need to cluster RRHs with high
link weights together, which can be identified as a community
detection problem [46].

Problem: Given graph G = (V,E), we first define a set of
clusters P= {C1, . . . ,CK}, where

∪∀Ck∈P =V and ∩∀Ck∈P = /0 (8)

Then, given a RRH v, we define the connectivity of v to a cluster
C as the sum of link weights between v and the RRHs in the
cluster C:

con(v,C) = ∑v′∈C wv,v′ (9)

Finally, we define the adjacent clusters C(v) of v as

C(v) = {C|con(v,C)> 0,C ∈ P} (10)

With the above definition, our objective is to find an optimal set
of clusters P, so that the internal connectivity within a cluster is
higher than the inter-cluster connectivity, i.e.,

∀v ∈Ck, con(v,Ck)≥ max{con(v,Cl),Cl ∈ P} (11)

We also need to bound the distance span of a cluster within the
neighborhood threshold, i.e.,

∀v,v′ ∈Ck, dist(v,v′)≤ τ (12)

Solution: Based on the label propagation concept [10, 47],
we propose a Distance-Constrained Complementarity-Aware
(DCCA) algorithm to cluster RRHs. The basic idea of DCCA
is iteratively assigning RRHs to the adjacent clusters, where

7
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the gain of assigning RRH v to cluster C is iteratively
evaluated by a value function as follows:

value(v,C) = con(v,C)× log
(

τ

max{dist(v,v′)}

)
(13)

The DCCA algorithm greedily assigns the RRHs to the adjacent
cluster with highest value2 until none of the RRHs are moved
among clusters [47]. As the convergence of such a greedy ap-
proach is difficult to prove, we set a maximum iteration number
max_iter to ensure the algorithm will stop.

Algorithm: The DCCA algorithm is initialized by assign-
ing each RRH in the graph to a unique cluster label. In each
iteration, we randomly populate a list of RRH L , and traverse
the list to update the cluster label of each RRH. The label up-
date process is as follows. First, we remove the RRH from
its current cluster, and find the set of adjacent clusters to the
current RRH. Then, we compute the value function for all the
adjacent clusters, and assign the RRH to the cluster with the
highest value. We mark the the RRH as moved among clusters
if its new cluster label is different from the old one. After
we finish iterating over the RRH list, we decide whether to
perform another iteration or finish the algorithm based on the
following stop criteria: (1) the specified maximum iteration
number max_iter is reached, or (2) none of the RRH are moved
among clusters.

6. Evaluation

In this section, based on a real-world mobile network traf-
fic dataset, we evaluate the performance of our framework by
assessing its ability to reduce deployment cost and energy con-
sumption. We first describe the experiment settings, and then
present the evaluation results and case studies.

6.1. Experiment Settings
Datasets: The Telecom Italia Big Data Challenge dataset

[34] contains two months of network traffic data from
11/01/2013 to 12/31/2013 in Milan and Trentino, Italy,
respectively. The city of Milan is partitioned into 100× 100
grids with grid size of about 235× 235 square meters, while
the province of Trentino is partitioned into 117×98 grids with
grid size of about 1,000× 1,000 square meters. In each grid,
the traffic volume is recorded on an hourly basis. We compile
a base station dataset from CellMapper.net, which consists of
the locations and coverage areas of active base stations
observed in the two months. Based on the location and
coverage of each base station, we find the corresponding
covered grids and calculate their traffic volume. Finally, we
normalize the traffic volumes of each base station to the [0,1]
range for the convenience of analytics. The details of these two
datasets are listed in Table 1.

BBU Capacity: We determine the BBU capacity based on
the normalized traffic volume. For the traditional architecture,
we assume that each RRH is equipped with a on-site BBU with

2If two clusters yield the same value, we randomly choose one.

Table 1. Dataset Description

Item Milan Trentino

# Grids 10,000 11,466
Grid size 55,225 m2 1000,000 m2

# RRH 182 522
# Covered grids 2,918 2,035
Average coverage 885,420 m2 3,932,950 m2

Average traffic volume 0.19 0.13

Data collection period 11/01/2013–12/31/2013

a capacity of one normalized traffic volume. In this way, the
traffic in each RRH can be covered by the BBU. We define
the capacity of the on-site as a capacity unit. For the C-RAN
architecture, we assume that the BBUs in the pool (pool BBU)
are of the same size, and the capacity is of Q ( Q = 1,2, . . .
) capacity unit, so that the traffic of a cluster of RRHs traffic
can be handled in a BBU without causing significant overload.
In this work, based on a series of empirical experiments, we
choose Q = 8 for the city of Milan, and Q = 10 for the province
of Trentino, respectively.

Evaluation Plan: Based on the collected datasets, we map
the grids to the coverage areas of RRHs, and aggregate the
traffic data to the corresponding RRHs on an hourly basis. We
then generate a set of 61 daily traffic snapshots F , each con-
taining the 24 hours’ traffic for all the 182 RRHs. We use the
snapshots of the first 70% as the training set Ftrain, and the
snapshots of the remaining 30% as the test set Ftest . For the
test set, we calculate the complementarity of RRHs based on
the traffic forecast, and construct a graph of 182 nodes with
the corresponding link structure based on the complementarity
metrics. Finally, we perform the DCCA algorithm to cluster the
complementary RRHs to a set of BBUs in a centralized pool.

Model Specification: We construct a MuLSTM model
with two stacked LSTM layers. The encoder layer L1 contains
Nencoder memory units, which accepts a traffic snapshot of
shape [24,182] as input, and outputs an encoded sequence for
the decoder. The decoder contains Ndecoder memory units,
which accepts the encoded sequence as input and outputs the
forecast of the traffic snapshot. We train the network with the
training set Ftrain for Niter iterations to ensure that the network
learns the potential temporal and spatial structures.

Model Training: We use the popular Tensorflow [? ] li-
brary for constructing our deep-learning model. Based on a se-
ries of empirical experiments, we choose the optimal Nencoder =
Ndecoder = 32, and Niter = 10,000. The model is trained on
a 64-bit server with an NIVIDA GeForce GTX 1080 graphic
card and 16GB of RAM. Each training iteration takes about 3
seconds and the whole process takes 8.3 hours.

Evaluation Metrics: We design the following evaluation
metrics to evaluate the RRH traffic forecasting phase and the
RRH clustering phase respectively.

(1) For the RRH traffic forecasting phase, we compare the
traffic snapshot forecast F̂i with the ground truth data Fi in the
test set, and calculate the Mean Absolute Error (MAE) for each
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snapshot:

MAE(Fi, F̂i) =
∑

Nt
t=1 ∑

Nr
r=1 |Fi(t,r)− F̂i(t,r)|

Nr×Nt

(2) For the RRH clustering phase, we quantitatively mea-
sure the statistical multiplexing gain from two aspects, i.e., the
increase of average capacity utility and the decrease of overall
deployment cost, compared with the on-site BBUs in traditional
architecture. In order to measure the capacity utility of a clus-
tering scheme P= {C1, . . . ,CK}, we derive the following metric
based on Equation 3, i.e.,

Utility(P) = meanCkU(Ck) (14)

based upon this, we calculate the average capacity utility of the
test set. In order to to measure the overall deployment cost, we
sum up the total BBU capacity units required in the pool for a
clustering scheme P, i.e.,

Cost(P) =
K

∑
k=1
|{Ck}| (15)

We use the maximal quantity of capacity units measured in the
test set as the overall deployment cost required in the pool.

Baseline Methods: We design the following baseline meth-
ods to compare with the proposed method.

• Traditional: In the traditional architecture, one RRH is
equipped with one on-site BBU with one capacity unit.
The traffic forecast and RRH clustering is not necessary
and thus not performed.

• ARIMA-DCCA: This baseline method uses the tradi-
tional ARIMA model for RRH traffic forecasting, one
RRH at a time, and then use the proposed GCLP algo-
rithm for RRH clustering.

• WANN-DCCA: This baseline method uses a windowed-
ANN model for RRH traffic forecasting, which inputs a
traffic snapshot for a day and outputs a traffic snapshot
for the next day. The RRH clustering algorithm is the
same as the proposed method.

• MuLSTM-DC: This baseline method uses the proposed
MuLSTM model for RRH traffic forecasting, and then
employs a distance-constrained (DC) clustering
algorithm that clusters neighboring RRHs without
considering their traffic complementarity. The clustering
steps are similar to the propose DCCA method.

6.2. Evaluation Results

Overall Results: Table 2 shows the overall evaluation re-
sults of the proposed method as well as the baseline methods.
For the RRH traffic forecast accuracy, we can see that the pro-
posed Mu-LSTM model achieves the lowest mean absolute er-
ror score (0.074 in Milan and 0.083 in Trentino) compared with

the two baselines (ARIMA and WANN), validating its capa-
bility of modeling the temporal dependency and spatial cor-
relation of RRH traffic and make accurate forecast. In con-
trast, the ARIMA method does not capture the spatial corre-
lation among RRHs, while the WANN method is not capable
of modeling the temporal dependency of RRH traffic patterns.
Consequently, the two baselines have higher forecast error rate
in both datasets.

For the RRH clustering results, the proposed method con-
sistently achieves the highest average capacity utility (83.4%
in Milan and 76.7% in Trentino), as well as the lowest over-
all deployment cost (88 capacity units in Milan and 270 ca-
pacity units in Trentino). Compared with the traditional ar-
chitecture with on-site BBUs, the clustering schemes increase
the average capacity utility rate from 38.8% to 83.4%, and re-
duce the overall deployment cost from 182 capacity units to
88 capacity units (48.4% of the original cost) in Milan, vali-
dating the possibility of achieving significant statistical multi-
plexing gain though C-RAN optimization. In comparison, the
distance-constrained (MuLSTM-DC) clustering baseline does
not consider RRH traffic complementarity in the optimization
process, and thus are not able to increase capacity utility and
decrease deployment cost as effective as the proposed method.
Due to inaccurate traffic forecast results, the ARIMA-DCCA
and WANN-DCCA baseline methods tend to produce subop-
timal clustering schemes and thus achieving lower statistical
multiple gain.

We also note that our method performs better in the city
of Milan than in the province of Trentino, which can be ex-
plained by the geographic characteristic of Trentino. Specif-
ically, Trentino is a mountainous region where cities and vil-
lages scatter among valleys. The RRHs are scattered distantly,
making it difficult to form complementary RRH clusters in their
neighborhoods. In contrast, the metropolitan areas of Milan are
larger, more concentrated and more populated, making it easier
to form complementary clusters for C-RAN optimization.

Case Studies: We conduct some case studies in Milan to
showcase the effectiveness of our method. For RRH traffic
forecasting, Figure 5 shows an illustrative example of the fore-
casting results using the proposed MuLSTM method as well as
the ARIMA and WANN baseline methods. We can see that our
method accurately forecasts the weekday and weekend traffic
patterns based on the temporal dependency and spatial correla-
tion it learns from the training set. Instead, the ARIMA method
fails to learn the hybrid temporal dependency patterns and out-
puts the averaged traffic forecast. The WANN method is able to
learn some hidden temporal dependency from the single RRH
data but is not stable (e.g., on Friday and Saturday).

Figure 6 shows the RRH clustering scheme with the pro-
posed method on 2013/11/25 (Monday) in Milan. In general,
we obtain 12 RRH clusters, each connected to a BBU in the
centralized pool. In Figure 6(a), we can see that many clusters
(e.g., Cluster A, B, and C) are composed of an urban part and a
suburban part, indicating that the traffic patterns in these areas
are potentially complementary during a typical weekday. We
also note that cluster D is concentrated in a relatively small area,
indicating the diverse traffic patterns within this area (Figure
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Table 2. Evaluation Results

Methods Traffic Forecast Error (MAE) Average Capacity Utility Overall Deployment Cost

Milan Trentino Milan Trentino Milan Trentino

Traditional - - 38.8% 29.4% 182 522
ARIMA-DCCA 0.202 0.237 65.3% 45.2% 112 160
WANN-DCCA 0.175 0.198 73.4% 58.8% 96 120
MuLSTM-DC 0.074 0.083 58.7% 39.2% 120 180
MuLSTM-DCCA (Proposed) 0.074 0.083 83.4% 76.7% 88 270

(a) MuLSTM forecast

(b) ARIMA forecast

(c) WANN forecast

Figure 5. RRH traffic forecast results for the base station located in a business
district (Centro Direzionale) from 12/25/2013 to 12/01/2013 (one week). The
first day traffic is used for input and thus there is not prediction.

6(b)). The reason is probably due to the hybrid functions of this
area, which consists of a large residential district (the Wash-
ington neighborhood), several national museums and theaters
(e.g., Museo Nazionale Scienza e Tecnologia Leonardo da Vinci
and Teatro Nazionale CheBanca), and a transportation hub con-
sisting of several train and metro stations (e.g., Milano Porta
Genova and Milano Cadorna). The algorithm is able to identify
the RRHs with complementary traffic patterns during the day

and effectively cluster them into a BBU to achieve statistical
multiplexing gain.

7. Conclusion

In this work, we focus two of the most important objectives
in C-RAN optimization to achieve statistical multiplexing gain,
i.e., increasing capacity utility and reducing deployment cost.
Accordingly, we proposed a deep-learning-based framework to
achieve these goals in C-RAN optimization. Specifically, we
forecast the traffic patterns of RRHs using a multivariate LSTM
model, and then cluster complementary base stations to BBUs
based on the traffic patterns. The proposed MuLSTM model
is capable of modeling the temporal dependency and spatial
correlation between RRHs in the network, and the proposed
DCCA clustering algorithm is effective in finding optimal clus-
tering schemes under certain distance constraints, with the ob-
jectives of both maximizing the capacity utility and minimizing
the deployment cost. Real-world evaluation results in Milan
and Trentino show that our framework effectively increases the
average capacity utility to 83.4% and 76.7%, and reduces the
overall deployment cost to 48.4% and 51.7% of the traditional
RAN architecture in the two datasets, respectively, which con-
sistently outperforms the state-of-the-art baseline methods.

In the future, we plan to improve this work in the following
directions. Firstly, we plan to explore the variations in the BBU
pool, such as considering different sizes of BBU capacity. Sec-
ondly, we plan to evaluate our framework in more datasets, and
to study the performance of the deep-learning based method
under different traffic patterns.
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Figure 6. (a) An illustrative example of RRH clustering scheme on 2013/11/25 (Monday) in Milan using the proposed method. Each colored area denotes a cluster
and its corresponding coverage area. (b) Cluster D in details: a hybrid area with diverse traffic patterns. Icons denote the featuring city functions in this area.
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