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Abstract

In recent years, machine learning has achieved results which were considered unthinkable

just a decade ago. From object recognition in images to beating humans at Go, new results

are introduced at a steady rate. Most come from a single, recent subfield of machine learning,

namely deep learning, which trains deep (i.e. many-layer) neural networks using variations of

the backpropagation algorithm. Backpropagation itself comes with a set of strict limitations

and requirements however, which are arguably not warranted in a majority of applications.

Alternative methods exist that sidestep such requirements entirely. One of these, considered

the state-of-the-art training technique until the advent of deep learning, is neuroevolution.

Neuroevolution trains neural networks using black-box optimization algorithms known as

evolutionary algorithms, able to directly search in the space of neural networks. Extending the

applicability of neuroevolution would enable taking on classes of problems for which deep

learning is not suited. This thesis studies and addresses some of the major issues currently

limiting the applicability of neuroevolution, such as improving results on smaller networks,

mitigating fitness stagnation, and scaling to large networks (i.e. higher dimensions). After an

introduction to the key ideas and fundamental concepts in Chapters 1 and 2, Chapter 3 makes

the case for smaller, shallow networks, which can achieve high performance in complex tasks if

the training data is carefully pre-processed. This has application in a wide variety of real-world

problems which produce too little data and/or of too low quality to meet the requirements of

deep learning methods. Chapter 4 considers the problem of fitness stagnation through a novel

restart strategy. Rather than terminating the run upon reaching convergence, the search is

restarted on the most promising area of the space as derived from the history of the search so

far. Chapters 5 and 6 take on increasingly complex tasks with high dimensional observations.

The feature extraction is separated from the decision making: with the former delegated to an

external component, smaller networks are devoted entirely to decision making, highlighting

their performance. Finally Chapter 7 presents an evolutionary algorithm specifically designed

for neuroevolution offering state-of-the-art performance. Its highly parallelizable implemen-

tation offers constant scaling over the size of the network, solely limited by the availability of

parallel computational resources.

Keywords: Neuroevolution, Neural Networks, Evolutionary Algorithms, Continuous Control,

Reinforcement Learning, Data-Driven Processes.
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Résumé

Au cours des dernières années, l’apprentissage automatique a donné des résultats qui étaient

considérés comme impensables il y a dix ans. De la reconnaissance d’objets en images jusqu’à

battre les humains au jeu de Go, de nouveaux résultats sont introduits à un rythme soutenu.

La plupart proviennent d’un seul sous-domaine récent de l’apprentissage automatique, à

savoir le deep learning, qui forme des réseaux neuronaux profonds en utilisant des variations

de l’algorithme de rétropropagration. La rétropagation elle-même est cependant accompa-

gnée d’un ensemble de limitations et de stricts pré-requis, qui ne sont pas garantis dans la

majorité des applications. Une méthode alternative, considérée comme l’état de l’art jusqu’à

l’avènement de l’apprentissage profond, est la neuroévolution. La neuroévolution entraine

des réseaux de neurones à l’aide d’algorithmes d’optimisation de boîtes noires connus sous le

nom d’algorithmes évolutifs qui explorent l’espace des réseaux de neurones. L’extension de

l’applicabilité de la neuroévolution permettrait de l’appliquer sur des classes de problèmes

pour lesquels l’apprentissage profond n’est pas adapté. Cette thèse étudie et propose des

solutions à certaines des principales questions qui limitent actuellement l’applicabilité de la

neuroévolution. Après une introduction aux idées clés et aux concepts fondamentaux dans le

Chapitres 1 et 2, le Chapitre 3 étudie les avantages de réseaux plus petits et peu profonds, qui

peuvent s’appliquer à une grande variété de problèmes du monde réel qui produisent trop

peu de données et/ou de qualité trop faible pour satisfaire les exigences des méthodes du

deep learning. Le Chapitre 4 aborde le problème de la stagnation du fitness avec une nouvelle

stratégie de redémarrage. Plutôt que terminer l’exécution après avoir atteint la convergence,

la recherche est redémarrée dans la région la plus prometteuse de l’espace, comme il ressort

de l’historique de la recherche jusqu’ici. Les Chapitres 5 et 6 proposent des solutions à des

tâches de plus en plus complexes basées sur des données de grande dimension. L’extraction

des descripteurs est déléguée à une composante externe, tandis qu’un plus petit réseau est

entièrement dévolu à la prise de décision, qui met en évidence sa performance. Enfin, le

Chapitre 7 présente un algorithme évolutif spécifiquement conçu pour la neuroévolution,

offrant des performances de pointe. Son implémentation hautement parallélisable offre une

mise à l’échelle constante de la taille du réseau, uniquement limitée par la disponibilité des

ressources de calcul.

Mots clefs : Neuroévolution, réseaux neuronaux, algorithmes évolutifs, contrôle continu,

apprentissage par renforcement, processus pilotés par les données.
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1 Introduction

Machine Learning is the art of adapting generic solvers to address specific problems. In recent

years neural networks [Rosenblatt, 1958] have taken the spotlight as flexible, broadly applicable

solvers, typically trained by using variants of the backpropagation algorithm [Werbos, 1982,

LeCun, 1985], as e.g. in deep learning [LeCun et al., 2015]. Backpropagation works by tuning

the network weights for a fixed structure: given a target output, the weights are iteratively

updated as to minimize the error between this and the network’s actual outputs, refining the

network from a random initialization to addressing a precise task.

The applicability of backpropagation-based methods however is limited by strict requirements.

For example, an error needs to be available and differentiable on a per-input basis, as the

algorithm is designed to learn over a large collection of labeled data (supervised learning).

An alternative training method can be found in neuroevolution [Yao, 1993, Floreano et al.,

2008], which was considered the state of the art for many applications right until the advent of

deep learning. Neuroevolution uses evolutionary algorithms [Fogel et al., 1966, Fraser et al.,

1970, Fogel, 1998, Rechenberg, 1973] to search in the space of neural networks, a much more

generic approach than backpropagation, unrestricted by the latter’s requirements. Direction

for improvement is provided by a fitness function, defined over networks rather than single

data points, thus directly applicable in the absence of labeled data (reinforcement learning).

Moreover the evolutionary algorithms’ internal processes are inherently exploratory, making

neuroevolution results resilient to variations of initialization conditions and hyperparameters.

So why was backpropagation selected for training networks in deep learning rather than

neuroevolution? Two major reasons are: (i) the performance of state-of-the-art evolutionary

algorithms scales superlinearly in the number of parameters (i.e. weights), with deep networks

often having millions; and (ii) when successful, backpropagation typically performs better.

Many problems do indeed satisfy the requirements for backpropagation to be applicable.

The first results in deep learning for example focused on object detection and image classi-

fication [Krizhevsky et al., 2012], where large collections of labeled images provide an ideal
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Chapter 1. Introduction

training environment for backpropagation. When all conditions are satisfied, backpropagation

is a simple and fast algorithm with great optimization performance.

A large majority of problems though does not accommodate such requirements. For example

continuous control problems require an agent to dynamically interact with an environment by

answering to stimuli (i.e. observations) with appropriate actions. This is usually done under a

reinforcement learning paradigm, where information about correct actions for each sensor

reading is typically unavailable, replaced by a reward signal often available only at the end

of the run. Moreover, planning ahead usually requires memory components in the network,

which can break the differentiability of the error.

This is typically addressed in deep learning by introducing network-based variations of clas-

sical reinforcement learning methods [Sutton and Barto, 1998]: though computationally

expensive, these methods can achieve impressive performance on hard problems, provided

their own requirements are satisfied (e.g. typically discrete observation space and action

space) [Mnih et al., 2015, Silver et al., 2016]. Recent work though begins to question how much

of that effort is actually a band-aid to the inherent limitations of the methods of choice, and

how much is actually addressing task complexity instead [Cuccu et al., 2018].

The main value of neuroevolution is arguably not in trying to replace backpropagation and

deep learning, but to provide an option to address tasks beyond its application. The overarch-

ing goal of my research is thereby defined as to extend the applicability of neuroevolution to a

broader array of applications, by addressing the main limitations of neuroevolution itself as

described in the following core research questions.

1.1 Research Questions

My research addresses the following questions:

1. What types of application are beyond the applicability of deep learning and what are

competitive alternatives?

2. How can evolutionary algorithms overcome the problem of fitness stagnation, where all

individuals become indistinguishable based on performance alone, which deprives the

search for a direction of improvement?

3. How can neuroevolution tackle problems that require parsing of high-dimensional data,

such as visual data?

4. Can neuroevolution scale to high-complexity problems using smaller, shallow networks,

such as providing sophisticated control based on high-dimensional observations?

5. The complexity of the function approximated by the neural network is ultimately still

bound by its size, which means that eventually large networks will still be the only option

2



1.2. Finding Answers

left. Can neuroevolution scale to evolve networks of arbitrary size?

These questions will be addressed in the following chapters.

1.2 Finding Answers

The next chapters will follow my work over some of the main issues currently restricting the

adoption of neuroevolution:

• Chapter 2 proposes an eagle’s eye perspective on learning paradigms, neural networks,

backpropagation, neuroevolution, and a few techniques recurring in the following

chapters.

• Chapter 3 begins with a practical application where the data is of insufficient quality

and quantity for deep learning; a careful pre-processing step however enables shallow

networks to address the problem with state-of-the-art results (Question 1).

• Chapter 4 tackles one of the most troublesome issues in evolutionary algorithms, namely

fitness stagnation (Question 2). It opens the discussion towards explicit exploration

techniques and intrinsic motivation.

• Chapter 5 addresses the problem of extracting meaningful information from high-

dimensional data (Question 3), via a two-step process that separates feature extraction

from the (smaller) decision making network.

• Chapter 6 takes the work in Chapter 5 one step further, by addressing a common deep

learning testbed with a new observation encoder plus a very tiny network, two orders of

magnitudes smaller than commonly found in the deep learning literature (Question 4).

• Chapter 7 finally addresses the scalability issue of evolutionary algorithms with a new al-

gorithm with linear performance scaling over networks size (Question 5). Together with

its high parallelizability, it unlocks the potential to evolve networks of unprecedented

size.

• Chapter 8 concludes with a summary of the work, and provides an overlook on its future

implications.

1.3 Published Papers

The work presented in this thesis has been published in the following papers:

• Chapter 3: A Data-Driven Approach to Predict NOx-Emissions of Gas Turbines [Cuccu

et al., 2017]

• Chapter 4: Novelty-Based Restarts for Evolution Strategies [Cuccu et al., 2011a]

3



Chapter 1. Introduction

• Chapter 5: Intrinsically Motivated Neuroevolution for Vision-Based Reinforcement Learn-

ing [Cuccu et al., 2011b]

• Chapter 6: Playing Atari with Six Neurons [Cuccu et al., 2018]

• Chapter 7: Block Diagonal Natural Evolution Strategies [Cuccu and Gomez, 2012]

1.4 What this Thesis is Not About

All the work presented in this thesis uses smaller, shallow networks; the lack of results using

deep networks, considered almost a given nowadays, makes for a notable absence. On one

side, much of the reason can be reduced to neuroevolution being particularly apt at training

smaller networks to the best of their abilities (see Chapter 2.4). On the other hand, the

innovations presented in this thesis greatly boost both training and solution performance,

to a point where shallow networks produce surprisingly good results. Chapter 6 for example

presents competitive results on an application typically addressed with networks of hundreds

of neurons, by using only six.

In order to comprehend the scope of the results proposed in the following chapters though,

the first step is to lay a solid, clear foundations of what machine learning and deep learning

can and cannot do.

4



2 Fundamentals and state of the art

Over the course of just a few years, Machine Learning (ML) has become ubiquitous. Public

media hypes over new findings, the largest companies have dedicated teams, and even smaller

businesses are starting to adopt increasingly advanced techniques. As always however such

buildup should be taken with a grain of salt: the applicability of most ML techniques is

restricted to precisely distinct sets of problems, and scaling to generic behavior or intelligence

is a goal still firmly set in the future. Extending the applicability of ML techniques to new

classes of problems is a step in this direction, but it first requires a firm understanding of how

ML algorithms work and their restriction.

This chapter offers a high-level overview of the current state of (a small part of) machine

learning, building the foundations to understand what works and why, and what challenges

still lie ahead. Sections 2.5 and 2.6 will then delve deeper in the technical details of Natural

Evolution Strategies and Novelty Search, two recurrent topics in the chapters to follow.

2.1 Machine Learning as Model Adaptation

Modern ML routinely addresses problems of high complexity, considered unthinkable just a

few years past. Often this is treated as an upper bound, as if any task perceived as comparable

or lower difficulty should now be considered as solved. Problem complexity however is highly

variegated and difficult to grasp, where applications perceived as simple can be deceptively

hard for a given ML technique. Consider for example how deep learning leverages methods

which are fundamentally over 30 years old, but could not express their full potential until

recent innovations in big data (e.g. large labeled datasets) and hardware performance (e.g.

graphics processing units).

Machine learning works by adapting generic solvers to specific problems. This is true through-

out the spectrum, from humble linear regression to the latest deep learning results [Friedman

et al., 2001, Pearl, 2014, Ho, 1995, LeCun et al., 2015]. The common requirement is the availabil-

ity of an objective function of sort, i.e. a mathematical insight pointing towards the behavior

5



Chapter 2. Fundamentals and state of the art

of an ideal solution. Depending on the available objective function, three main learning

paradigms are derived.

• Supervised learning: the objective is implicitly specified by a set of labeled examples of

correct interactions (pairs of input plus expected output).

• Unsupervised learning: a similarity measure partitions the data into areas, which are

associated to different interpretations (i.e. clustering).

• Reinforcement learning: candidate solutions are tested, and ranked based on their

performance. This imposes a gradient of improving performance over the solutions’

space.

A solution in this context is a specific and plausible way to address a problem, and can refer

either to an ideal behavior, or an approximation of it from an instance of a solver. A solver is a

generic, adaptable mathematical form which can represent (based on its parameterization)

any number of solutions. Machine learning incrementally tailors generic solvers toward

approximating the ideal solution, by following the objective function.

To understand what a mathematical representation of a solver/solution might be, consider the

problem of correctly distinguishing whether or not a cat is present in a picture; or controlling

a robot in a maze, alternating reading from range-finder sensors and sending voltage controls

to its wheel engines (i.e. continuous control). Mathematical functions can be used to describe

either interaction:

solcat :Images 7→ {true, false},Images ∈ [0,255]size ⊂Nsize

solbot :Sensors 7→ EnginesVolts,

Sensors ∈R# sensors,

EnginesVolts ∈ [minvolt,maxvolt]# motors ⊂R# motors .

Such equations describe the form of plausible solutions. The corresponding objective func-

tions would then lead towards the ideal solutions, based on the problem and learning paradigm:

objcat : argmin
θ

[
error between fθ(Image) and correct classification

]
,

objbot : argmin
θ

[
time taken by a robot controlled by fθ(Sensors) to escape the maze

]
,

where fθ is a candidate solution, defined by solver f and parameters θ.

The next step is to choose a parametrized solver, which can be adapted or trained following
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N3

w1X1

X2

N1

N2

Y 
w3

w2
w4

w5

w6

(a) Graph

Y =YN3 =σ[w5YN1 +w6YN2 ]

YN1 =σ(w1X1 +w2X2)

YN2 =σ(w3X1 +w4X2)

Y =σ[w5σ(w1X1 +w2X2) +
w6σ(w3X1 +w4X2)]

(b) Equations

Figure 2.1 – Neural network representations. (a) The graph on the left depicts a three-
neurons feed-forward neural network with two inputs on the inputs layer, two neurons in a
single hidden layer, and one neuron in the output layer. The output of the network corresponds
to the output of the latter. Neurons are drawn round, while squares represent numerical
variables. (b) The underlying equations derived from the graph. This form exposes its nature
of parametrized function approximator, reminiscent of Taylor series and Fourier transforms.
Each neuron takes inputs based on its connections, scaling them based on the connection’s
weight. These are aggregated with a sum, then passed to an activation functionσ(·). The neural
network is a function uniquely identified by its parameters (here structure, activations and
weights w = {w1, w2, . . . , w6}). The output of the network is uniquely defined by the equation(s)
of the neuron(s) in the output layer, computed on the network’s inputs.

the objective function to approximate the desired solution. A common choice nowadays are

neural networks, which are easy to reason about and scale in complexity.

2.2 Neural Networks

Neural Networks (NN; Rosenblatt [1958]) are generic function approximators [Hornik et al.,

1989]. This means that their mathematical formulation is capable in principle to approximate

any function to arbitrary precision. Particularly, the function complexity and/or precision of a

network is only bound by its parameters (mostly structure and activation).

A neural network is typically depicted as a directed weighted graph, where the nodes have

computational capability, while the links describe the direction of the computation (inputs

and outputs). The nodes are most commonly perceptrons [Rosenblatt, 1958], also called

neurons because originally inspired by the biological cells that carry electric signals in the

animal nervous system.

From a functional perspective, neurons have a set of input connections and a single output.

The output is computed by weighing the inputs based on the correspondent connection (link),

summing up the results, then passing the total to an activation function. The latter could

be a simple identity function (i.e. return the sum of weighted inputs itself [Mikolov et al.,

2013]), a complex nonlinear equation [LeCun et al., 1998], or a modern version with optimized

performance [Nair and Hinton, 2010]. A detailed description of the transition from graph to

7
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N3

X1

X2

N1

N2

Y 

X

W1 W2

Yhid Yout

w1

w3

w2
w4

w5

w6

(a) Graph

Y =Yout = map[σ,W2Yhid]

Yhid = map[σ,W1X ]

Y =map[σ,W2 map[σ,W1X ]]

(b) Equations

Figure 2.2 – Neural network and linear algebra. (a) The same network seen in Figure 2.1(a),
this time highlighting the layers and weight matrices. Notice how the input layer X has no
computational capacity, and the Y is just the output the output layer. (b) Linear algebra form
of the neural network. This form simplifies the implementation, particularly with the goal of
leveraging acceleration from specialized hardware (e.g. GPUs). The map operator highlights
how the activation function σ needs to be called independently on each sum of weighted
inputs. Layers have common inputs and present a common output: the output of the hidden
layer can be seen as a system of two equations in X . The output layer could in principle have
arbitrary size, representing a system of equations in Yhid. By leveraging function composition,
the output equation Y raises in complexity quickly with the number of layers.

mathematical representation can be found in Figure 2.1.

Neurons are typically arranged in layers, i.e. groups of neurons that share common inputs and

present their outputs together (similarly to a system of equations in the same variables). The

output of each neuron in a layer can be computed independently (and possibly in parallel)

from the others. Neurons on the next layer however will depend on the availability of all

the outputs of the previous layer, making the network activation inherently sequential. This

simple architecture is called feed-forward. Figure 2.2 extends the correspondence between

graph and equations with the introduction of a linear algebra notation, which leverages this

layered construction.

Larger networks can in principle approximate more complex functions, as more terms are

added to the corresponding equation. In practice though this only raises the complexity

upper bound, as a large network can still have minimal complexity: setting all weights to

zeros for example will always yield a constant function. Training large networks corresponds

to updating more parameters, and hence requires proportionally larger amounts of data.

This can sometimes limit the applicability of large networks to task generating a sufficiently

large dataset. Data quantity requirements can be mitigated by raising the data quality, e.g. by

reducing artifacts such as noise, missing values and redundancy. Processing techniques such

as cleaning, feature extraction and compression often enable addressing complex problems

through simpler networks, as will be further discussed in the next chapters.

8



2.3. Backpropagation and Deep Learning

Distributing the neurons over multiple layers typically increases the network’s functional

complexity faster than expanding a flatter structure, by means of leveraging function composi-

tion [LeCun et al., 2015]. More complex networks can approximate more complex functions,

hence the common choice of deep networks (i.e. with many layers) to address sophisticated

applications. Other ways to raise complexity include the use of different input patterns (i.e.

convolutional networks [Hubel and Wiesel, 1968, LeCun et al., 2015]), more complex connec-

tive patterns (e.g. recurrent networks [Hopfield, 1982]), or nodes with advanced computational

capability (e.g. LSTM [Hochreiter, 1991]). Out of these, recurrent neural networks will see the

most application in the next chapters, as they are particularly apt in tasks requiring simple

memory capabilities, such as stream processing and continuous control. The reason for their

name is that its neurons (or more typically, whole layers) have feedback loop connections:

upon subsequent activations, the previous output of the network is fed back into the neuron

as an input to decide the next activation.

2.3 Backpropagation and Deep Learning

Training a neural network is the process of iteratively adapting the network’s parameters to

improve its approximation of an ideal solution, through optimization of the objective function.

For neural networks, this role traditionally belongs to the backpropagation algorithm [Werbos,

1982, LeCun, 1985, Parker, 1985], a single-agent gradient descent technique which works based

on error assignment. This means that only a single network instance (i.e. parametrization) is

considered and updated at any point in time.

The network is activated on an input, producing an output (forward pass); this is compared

with the corresponding expected target, their difference constituting an error which needs

to be minimized. This is done by computing the derivative of the error over the network’s

parameters (i.e. weights) to produce a gradient. The weights of the last layer of the network are

then updated based on how much they contributed to such an error (i.e. based on their current

value). The algorithm proceeds then backwards through the network’s layers (hence the name

of the algorithm), distributing the error proportionally through each layer and updating each

parameter in turn. This process is repeated (possibly multiple times) for each training point

available, until a termination criterion is met (e.g. arbitrary precision). A full derivation is

beyond the scope of this thesis but can be found in LeCun et al. [2015].

The backpropagation algorithm thus poses a tight set of requirements for its applicability:

• Availability of per-input expected targets. The algorithm needs to compute an error on a

single activation: this requires the availability of examples of correct outputs (labeled

data), restricting its application to supervised learning.

• The error function should be differentiable over the network’s parameters. Single-agent

approaches take an irreversible step in the dark with each update: if they were to cross

over e.g. a discontinuity in the error function, they could be unable to get back on track

9



Chapter 2. Fundamentals and state of the art

or otherwise recover.

• Large quantities of data. As an error is propagated through a network with many layers,

the contribution of each parameter is increasingly smaller, which brings to correspond-

ingly fading updates (vanishing gradient). This needs to be balanced by increasing the

number of training iterations, which in turn requires additional data.

• Precise initialization and setup. Single-agent algorithms are limited in their exploratory

capabilities: the quality of the final solution depends significantly on network initializa-

tion and hyperparameters.

• Sequential processing power. The last years have seen the flattening of Moore’s law,

with increasing hardware performance being linked to parallel processing rather than

ramping speeds. Since each layer cannot be updated until the error has been propagated

to it through all the precedent layers, backpropagation is inherently sequential, and

thus less suited to gain advantage from increases in parallel capabilities.

Its success in deep learning is of course well deserved: on problems meeting these conditions,

backpropagation delivers complex, highly refined solutions. The previous cat image classifier

example can be addressed with a large feed-forward convolutional network, trained using

backpropagation with supervised learning, thanks to the modern availability of large collec-

tions of (labeled) cat images. The quality of results in computer vision and object recognition

is but increasing year over year [Krizhevsky et al., 2012]. Other applications however may not

be so accommodating. In the example of the maze navigator, building a dataset of sensor

readings with corresponding correct motor voltages is less than obvious. And there is no direct

correspondence between a sensory observation and a correct motor-voltage action: planning

and memory play a fundamental role, possibly breaking the differentiability of the error signal.

As a result, the standard approach is to apply variants of classical reinforcement learning

algorithms (learning the value function) rather than directly learning neural network agents

(policies).

Researchers have since explored alternative training options than backpropagation. In partic-

ular neuroevolution has been considered the state of the art in many applications in the years

directly prior to the advent of deep learning, as it is capable of direct search in the space of

neural network controllers.

2.4 Neuroevolution

Neuroevolution (NE; Floreano et al. [2008], Yao [1999], Igel [2003], Risi and Togelius [2017])

trains neural networks by searching in the space of network parameters using Evolutionary

Algorithms (EAs; Fogel et al. [1966], Fraser et al. [1970], Fogel [1998], Rechenberg [1973]). EAs

are multi-agent algorithms: rather than updating a single solution, they maintain a population

of candidate solutions over the space of network parameters (individuals). This is traditionally
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fixed in size, though work has been done towards varying the number of individuals through-

out the run [Vanneschi and Cuccu, 2009a,b, 2011]. Each individual corresponds to a genotype,

a vector of parameters which in turn uniquely represents a phenotype such as e.g. a neural

network.

The genotype to phenotype (G2P) function builds the phenotype from the genotype’s pa-

rameters. In direct encoding neuroevolution, each parameter is used as a network’s weight.

Alternatively, in indirect encoding the genotype values are interpreted using G2P functions

of arbitrary complexity. For example [Koutník et al., 2013a,b] evolves genotypes which are

interpreted as coefficients of a compressed representation, which is in turn de-compressed

into a much larger phenotype network. Notably [Stanley et al., 2009] uses the genotype to

build a (smaller) intermediate network, which in turn is used to generate the parameters for

the larger phenotype network.

The phenotype thus represents a plausible solution, which is scored using the fitness function.

This maps networks to scores based on performance on the task, such as e.g. the proportion of

correctly classified cat pictures in a dataset. At the same time, the fitness can also be derived

from the time it takes the maze navigator to reach the exit, making neuroevolution suited to

different learning paradigms. Scoring the population builds a Monte Carlo estimate [Eckhardt,

1987] of the fitness function over the (network) parameters space, providing the search with a

direction (gradient) for improvement.

The population is then iteratively improved by replacing low-performance individuals with

new ones (offspring) which are created from high-performance individuals (parents). Genetic

Algorithms (GA; Fraser et al. [1970], Koza [1992]) for example partition the genotypes of

two parents at a random position, then swap halves between the two (crossover). Values in

the genotype are also stochastically altered based on a minor chance (mutation). A large

number of variations for either operator are available in the literature. Evolution Strategies

(ES; Rechenberg [1973]) on the other hand constructs the offspring based only an adaptive

mutation on a selected parent. This can be interpreted as generating a statistical sample on

the random variable represented by the parent, with the variance determined by the mutation

parameter. Some state-of-the-art ES expand on such an idea by keep the population implicit

and maintain instead a probability distribution over the parameters space.

2.5 Natural Evolution Strategies

Natural Evolution Strategies (NES; Wierstra et al. [2014a, 2008], Yi et al. [2009], Sun et al.

[2009], Glasmachers et al. [2010], Schaul et al. [2011]) is a state-of-the-art family of ES with fast

adaptation, invariant to local properties of the search space. Their applicability as randomized

black-box continuous algorithms enable them to target unconstrained continuous problems,

making them well suited for the optimization of the weights of a neural network. Algorithms

in the NES family maintain a probability distribution over the space of parameters, which is

adapted following the natural gradient as obtained by rescaling the vanilla gradient by the
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Fischer Information Matrix [Amari and Douglas, 1998].

The next sections will derive the update functions for the distribution parameters, both in

their generic forms and with regard to algorithms based on Gaussian distributions.

2.5.1 NES update functions

Algorithms of the Natural Evolution Strategies family maintain a distribution D over the search

space parameterized by θ, and iteratively update it to maximize the expected fitness f :Rd →
R of its samples. The fitness gradient is approximated through Monte Carlo estimation by

sampling λ ∈N individuals zk ∼D, k ∈ {1, . . . ,λ} from the distribution.

Given the distribution density p(z |θ), the expected fitness under the search distribution is:

J (θ) = Eθ[ f (z)] =
∫

f (z) p(z |θ) dz .

The fitness gradient over θ thus becomes:

∇θ J (θ) = ∇θ
∫

f (z) p(z |θ) dz = Eθ

[
f (z) ∇θ log

(
p(z |θ)

)]

(see [Wierstra et al., 2008] for the full derivation), which is approximated through Monte Carlo

estimate as:

∇θ J (θ) ≈ 1

λ

λ∑
k=1

f (zk ) ∇θ log
(
p(zk |θ)

)
. (2.1)

The distinctive trait of NES is to rescale this vanilla gradient by the Fischer Information Matrix

F = E
[
∇θ log

(
p (z|θ)

)∇θ log
(
p (z|θ)

)>]
, a measure of the search confidence, to obtain the

natural gradient [Amari and Douglas, 1998]:

∇̃θ J = F−1∇θ J (θ) ,

leading to the following NES update equation (with η learning rate):
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θ ← θ−η∇̃θ J = θ−ηF−1∇θ J (θ) .

A generation of NES is thus constituted of:

1. Sampling a population of individuals from the search distribution

2. Evaluate them all based on the fitness function

3. Compute the approximated fitness gradient through Monte Carlo estimation

4. Rescale this vanilla gradient into the natural gradient

5. Update the search distributions parameters in the direction of expected fitness improve-

ment

For the iterative loop see Algorithm 1.

Algorithm 1 Basic NES loop

Initialize:
θ← (µ,Σ)

while not solved do
for i ← 1. . .λ do

zi ← {zi ∼N (µ,Σ)} . Individual from distribution samples
fiti ← f (zi ) . Compute the fitness of the individuals

θ← NESUPDATE(θ, fit, z)

In addition fitness shaping [Wierstra et al., 2008] makes the algorithm invariant under mono-

tonic (i.e. rank-preserving) transformations, including scaling. This enables the algorithm to

automatically adapt to the scale of the problem, albeit unknown. The individuals are sorted

by fitness, and their contribution to the update is scaled based on their rank using coefficients

called utilities uk ∈R, k ∈ {1, . . . ,λ}, typically:

∇θ J =
λ∑

k=1
uk ·∇(θ) log

(
p(zk:λ |θ)

)
. (2.2)

Utilities for a given population size most commonly sum to one and have zero mean, thus

providing a normalized step independent from the magnitude of the actual elements of the

individuals or their fitness. Typically the few best performing individuals are individually used

as attractors, with utilities higher in value and with positive sign, with the least performing

ones generating a generic repulsor, with many negative utilities with small absolute value.
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2.5.2 Gaussian distributions

The main variants of NES use multivariate Gaussian search distributions D =N (z |θ), parametrized

by θ = 〈µ,Σ〉, with the method adapting the full covariance matrix (XNES; Glasmachers et al.

[2010]) behaving somewhat similarly to the widely adopted Covariance Matrix Adaptation Evo-

lution Strategy (CMA-ES; Hansen and Ostermeier [2001]). Other versions trade convergence

speed and computational requirements by restricting the form of the covariance matrix.

Separable NES (SNES; Schaul et al. [2011]) expects independent parameters and thus restricts

the covariance to a diagonal matrix. This offers a trade-off between convergence speed and

execution speed: the computational cost per-generation is O (k3) for XNES in the number of

parameters k – but only O (k) for SNES. A rule of thumb is to apply XNES if at all possible, while

higher-dimensional problems beyond the applicability of XNES can still be tackled by SNES.

Chapter 7 will present Block Diagonal NES [Cuccu and Gomez, 2012], which generalizes both

XNES and SNES allowing for a finer control over this trade-off.

At each generation, the current distribution is sampled to produce a population of λ ∈N
individuals

zi ∼ π(z|θ), i ∈ {1, . . . ,λ} .

To derive the update equations for µ and Σ [Wierstra et al., 2008], the latter needs first to be

decomposed in two factors Σ= A>A to leverage local exponential coordinates [Glasmachers

et al., 2010]. This is done through Cholesky decomposition in XNES, while SNES simplifies

this greatly with Σ being a diagonal matrix.

The gradient components based on standard normal samples si ∼ N (0,I) moved to the

distribution as zi =µ+ΣA>sk become then:

∇̃µ J =
λ∑

i=1
f (zi ) ·si

∇̃M J =
λ∑

i=1
f (zi ) · (si s>i −I)

∇̃Σ J = tr(∇̃M J )/k

∇̃A J = ∇̃M J −∇̃Σ J ·I .

The final update equations for the distribution’s parameters (corresponding to NESUPDATE in

Algorithm 1) are:
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µ ← µ+ηµ ·ΣA · ∇̃µ J

Σ ← Σ ·exp(ηΣ/2 · ∇̃Σ J )

A ← A ·exp(ηA/2 · ∇̃A J ) ,

with ηµ, ηΣ and ηA learning rates (further details in [Glasmachers et al., 2010]).

A generation of SNES thus consists of building a population by sampling the current distri-

bution, approximate the fitness gradient through Monte Carlo estimation, convert it into

the natural gradient, and consequently update the distribution parameters. An open-source

implementation can be found at my GitHub repository1.

2.6 Novelty Search

Novelty Search (NS; Lehman and Stanley [2008, 2010]) proposes an alternative take on EAs and

particularly on NE: to discard the classic extrinsic fitness in favor of an intrinsic novelty signal.

Individuals are hence solely scored based on how “novel” they are with respect to individuals

generated during the search so far, regardless of their performance on the task.

Two components are key to this method: (i) a novelty distance, which computes an arbitrary

similarity between two individuals; and (ii) a novelty archive, a set of individuals which have

been found to be sufficiently novel (w.r.t a novelty threshold) in the search so far. Adding an

individual to the archive though immediately reduces the novelty of all similar ones: novelty is

thus a dynamic signal, which drives the search towards areas of the search space which are

known but least explored at any given moment.

The novelty of an individual (novelty score) is typically calculated as the average novelty dis-

tance over the k nearest neighbors, as taken from both the archive and the current population.

nov(xi ) = 1

k

k∑
j=1

dist(xi , xi : j ) , (2.3)

where xi : j is the j -th nearest neighbor of xi w.r.t. the novelty distance dist(·, ·).

In order to achieve a high novelty score an individual needs to be relatively unique with respect

to the features considered by the novelty distance. These could be as simple as its genotype

values, while applications such as continuous control obtaining improved performance by

using the individual’s behavior, defined as an history of their interaction with the task’s environ-

ment [Lehman and Stanley, 2010]. While previous work in EAs mostly focuses on genotypical

1https://github.com/giuse/machine_learning_workbench/
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diversity [Glover and Laguna, 1998, Mahfoud, 1995], with its focus on behavioral diversity

Novelty Search does not distinguish between different networks with similar performance,

aiming at novel behaviors to emerge instead. To build on the previous example of the robotic

maze navigator, a behavior could be defined as an individual’s entire observation-action

sequence in a run, with the novelty distance being the edit distance [Navarro, 2001] between

two such sequences between two sequence. Another example could be represented by the

coordinates of the final resting position in the maze at the end of the run, with novelty distance

being derived from the Euclidean distance from a reference such as the start or goal.

The choice of a novelty distance greatly influences the outcome of the search. Let us expand

on the example using end-of-run positions in the maze exploration with Euclidean novelty:

during early generations, controllers exhibit simpler behaviors, and can all be expected to

terminate not far from their starting position. An individual capable of terminating a bit further

away will be considered novel: as such it will produce offspring, which could in principle be

expected of reaching roughly the same area. These solutions will be added to the archive,

saturation that area over time (dependent on the novelty threshold). At this point individuals

able to reach that same area will not be novel anymore: the search will be directed towards

exploring new directions.

This choice of behavior and novelty distance thus drives the search towards generating con-

trollers exploring the maze at increasing resolution, with the dynamic nature of the novelty

signal providing scale invariance. Initially the archive tends to saturate the space at a constant

resolution (depending on the novelty threshold). As the coverage becomes uniform though,

areas of the space in between archived individuals will become increasingly viable as relatively

novel, naturally increasing the resolution of the search over time. Eventually the exit of the

maze is going to become reachable by the increasingly specialized controllers, leading to

solving the task without ever consulting the fitness function.

This makes Novelty Search a strong method for intrinsic motivation, i.e. where the algorithm

poses an objective itself rather then relying on an extrinsic one being provided from the user.

Further applications will be explored in Chapters 4 and 5. But first, the next chapter arguments

whether methods other than deep learning should or should not be still considered viable at

all.
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3 Addressing Complex Problems with
Shallow Networks

As introduced in Chapter 1, deep learning can train neural networks to address highly complex

problems, as long as the training data satisfies its requirements. Particularly in regard to data

availability, these algorithms require relatively large data sets to correctly train the network.

Many real-world applications though do not offer the opportunity to collection sufficient data,

and the data collected is often riddled with noise, missing values and redundancy. An extreme

example can be found in gas turbine engines for large-scale power generation. (i) Operating

under limit conditions of temperature, pressure and vibration generates high quantity of

sensor noise. (ii) Being kept at optimal (constant) regimes for days at a time introduces

high redundancy in the data. (iii) While reading the sensors every 5 minutes is sufficient for

practical applications, this corresponds to generating a mere 100′000 data points per year,

insufficient for most deep learning applications.

This chapter addresses the task of predicting the state of modern heavy-duty gas turbines for

large-scale power generation, with the goal of enabling informed decisions on their operation

and maintenance. The emissions behavior however is coupled to a multitude of operating

parameters and to the state and aging of the engine, making the underlying mechanisms

very complex to model through physical, first-order approaches. Machine learning methods

requiring high quantity of data are equally inapplicable, as the data available is insufficient –

by several orders of magnitude. An alternative is presented in a custom data-cleaning pipeline,

which considerably reduces defects in the data, in turn enabling simpler machine learning

techniques to accurately model the engine’s emissions using the little data available.

3.1 Introduction

Many modern thermal power plants use gas turbines to generate electricity (Figure 3.1; Güthe

et al. [2008]). These (i) compress ambient air to elevated pressures, (ii) add the (gaseous)

fuel inside a combustion chamber, (iii) release the chemical energy of the mixture through

combustion, and (iv) expand the hot gas through a multi-stage turbine. Such a process

converts the heat of the combustion into mechanical energy, which is further converted into
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Figure 3.1 – Architecture and components of a GT24/GT26 gas turbine. The staged compressor
efficiently compresses inlet air into high pressure. The first combustor (EV) injects fuel and
ignites the mix for the first burn. A second combustor (SEV) injects more fuel and ignites
a second burn, which improves efficiency and lowers exhaust gas emissions such as NOx.
Finally, the exhaust pushes the turbine into rotation, producing power through an external
generator connected via a shaft.

electricity by the generator. In a combined-cycle arrangement, the residual heat of the exhaust

gas is also recovered by a steam cycle for further power generation.

Heavy-duty gas turbines are capable of running reliably for extended periods of time requiring

little to no maintenance. Over time however some engine parts may degrade due to the

exposure to thermo-mechanical stress, thus negatively affect the emission level. This enforces

maintenance if the emissions surpass the legal permits. Such maintenance shutdowns are

costly, both due to the operative effort and because of production losses during the interven-

tion, and as such are kept to a minimum. Advanced planning and effective decision support

may thereby help reducing the associated costs.

During maintenance, the engine operation set-points are adjusted to a configuration featuring

lower emissions without negatively affecting output and efficiency that respect the operative

envelope of the gas turbine. A model able to accurately predict engine emissions would enable

both to optimally plan maintenance timing, and to prescribe an appropriate adjustment of

operation set-points to minimize outage duration and frequency.

Compared to the traditional approaches discussed in Section 3.1.2, this chapter explores the

feasibility of accurately modeling gas turbine NOx emissions using machine learning, based on

historical data collected from long-term engine operation. Sections 3.1.3 and 3.1.4 highlights

the challenges encountered and scientific contributions. Section 3.2 introduces the proposed

system, with Section 3.3 detailing the most successful configurations. Section 3.3.2 presents

the best results, achieving a precision on par with sensor-level data. Finally, Section 3.4 offers

a final discussion.
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3.1. Introduction

(a) Predicted vs. observed values (b) Prediction residuals vs. predicted values

Figure 3.2 – Performance on raw (unprepared) data. Results from one of the best-performing
algorithms (ν-SVR) on unprepared (i.e. original, unfiltered) data. The training finds no gradient
for improvement: the resulting models have no success on emissions prediction. The predicted
vs. observed graph (a) was expected to show a dense, tight diagonal, as each prediction
corresponds to its observation. The scattered cloud of points corresponds to the algorithm
being incapable of narrowing down the correspondence. The residuals vs. predicted graph (b)
further highlights this by showing a broad scatter with distinct vertical patterns on its right
side.

3.1.1 Engine Description

Heavy-duty gas turbines are high-performance engines at the core of many modern combined-

cycle power plants. The gas turbine topping cycle consists in a thermodynamic Brayton cycle

where the working fluid (air) is compressed, heated by the combustion of a (usually gaseous)

fuel, and expanded in a turbine to convert the generated heat into mechanical power. The

high-temperature exhaust heat is further converted in a bottoming steam Rankine cycle to

provide additional power from the residual heat. A generator set transforms the mechanical

power at the turbine shaft into electricity, which is connected to the electricity grid.

The engines considered in this work belong to the General Electrics GT24 / GT26 family and

provide a rated output of above 400 MW in combined-cycle operation. Displayed in Figure 3.1,

their particularity consists in a sequential combustion architecture, where two subsequent

combustion chambers are separated by a high pressure turbine stage. The combustion cham-

bers are of annular design, and the lean premix technology ensures that high firing temper-

atures (leading to high cycle efficiency) can be reached at very low nitrogen oxide (NOx)

emission levels. A more detailed description of this engine type can be found in [Güthe et al.,

2008]. The work presented in this chapter specifically refers to NOx prediction.
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3.1.2 Related Work

Continuous Monitoring and Diagnostics (M&D) of engine performance and health is nowadays

standard practice to ensure proper and reliable operation of power plants. Most traditional

M&D relies on deterministic systems based on physical rules [Therkorn, 2005]. This com-

prises both understanding long-term performance trends and detecting anomalies in order to

prevent component failure and avoid costly downtime and repair.

Physical approaches are well suited for modeling degradation and failure mechanisms that

are known and can be identified through a limited number of measurements. However, they

are more difficult to apply to complex degradation modes and evolving engine characteristics

where no pattern is easily discernible at first glance.

The application of performance and emission degradation has been addressed in a series of

works based on physical modeling approaches. [Rudolf et al., 2015] have applied a thermo-

dynamic model of the engine for reconciliation of the commercial operation data to obtain

physically consistent information for a precise assessment of degradation. A semi-empirical

NOx emission model has then been identified from engine commissioning data and applied to

identify and track degradation at base load [Rudolf et al., 2016]. In later work, Lipperheide et al.

[2017] has consolidated the emission models and extended them to the entire commercial

operation range, whereas Weidner et al. [2017] proposes a similar semi-empirical approach

to model thermo-acoustic combustion dynamics. These models provide a detailed under-

standing of the underlying mechanisms that drive the long-term evolution of combustion

behavior. However, they are relatively cumbersome to set up and maintain. If a detailed

physical diagnosis of the behavior is not a primary objective, modern data-based analytics

thus bear promise as an alternative, efficient way to enhance combustion monitoring with

predictive and prescriptive information.

Such methods have been studied for long in the scientific community, but are still less com-

monly adopted in industrial practice. Vanderhaegen et al. [2010] contributes a Predictive

Emission Monitoring System (PEMS) based on a neural network, which shall serve as a back-

up to cover periods when the measurement-based Continuous Emission Monitoring System

(CEMS) is unavailable. Palmé et al. [2013] proposes kernel regression-based monitoring of

temperature distributions measured at the turbine exhaust, which has shown to be informative

on the health status and allows for an early detection of component failure. The data-driven

approach proposed in this work however is less common in predictive emission monitoring

applications, but superior to previous work as capable of reaching the precision of the CEMS

in accuracy.

3.1.3 Working with Historical Data

Working with heavy-duty gas turbines historical data poses a set of unique challenges:
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• Working with real historical data is challenging relating to data quality: sensor noise, sensor

biasing, partial observability, observation aliasing, missing values.

• Heavy-duty gas turbines are sophisticated machines working at extreme physical ranges:

high sensitivity to minimal changes, noise amplification, unfeasible (imputed) sensors.

◦ High sensitivity: heavy, thermally loaded parts on a fast-rotating machine are sensitive to

minimal changes, exacerbating the consequences of aging and degradation;

◦ High noise: the severe working conditions (temperature, pressure, rotational speed) tend

to amplify noise;

◦ Imputed readings: some parts of the engine are subject to such extreme physical con-

ditions that designing sufficiently resilient sensors becomes impractical or too costly:

values are instead imputed from surrounding readings, which accumulates errors;

• Local environment, working conditions and actual usage history make each engine unique:

uniqueness of build, uniqueness of state, local regulations.

◦ Unique build and state: minor tolerances in part manufacturing, engine assembly and

adjustment may sensibly influence combustor flow distribution and performance;

◦ Unique activity: engine operation depends on the local electrical production and usage,

with starts and shutdowns resulting in greater engine wear and tear than continuous

operation in a steady-state;

◦ Unique regulations: local laws define pollution limits, making engines installed in differ-

ent countries run at distinctive regimes;

◦ Data separation: each engine is strictly defined by its own distinctive history, making

quantitative model transfer between engines often inapplicable.

These challenges are addressed as follows:

• High noise, bias, imputed readings: filter outliers first, and use algorithms robust to noise

in the modeling;

• Observation aliasing, missing data: chose models with high generalization capability, and

efficient training methods requiring less training data;

• Data separation: select training algorithms with high performance and low training time,

making it feasible to train a different, independent model for each engine.

3.1.4 Contributions

This chapter introduces the following contributions:

• Data preparation (Section 3.2.1): a comprehensive data preparation process enables the

application of a broad range of ML algorithms; selecting only data describing normal
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Figure 3.3 – System pipeline. The raw data collected from the engine’s sensors over the years
undergoes a tight filtering process: (a) the data is made complete by dropping lines with
missing values, (b) noise is lowered by dropping lines with sensor readings outside physical
plausibility, and (c) only data pertinent to the task of choice (normal operation) is selected.
Only about 10% of the original data is accepted by the filter and finally used for modeling. The
34 columns mentioned include 33 inputs for the model and the target exhaust gas.

operation provides an additional performance boost. Counter-intuitively, better results are

achieved through smaller training sets, of carefully selected data.

• Comparative study (Section 3.2.2): a broad selection of machine learning algorithms is

tested. Comparison details the 12 best performing techniques tested.

• High-precision modeling (Section 3.3.2): The best results achieve a precision comparable

to the accuracy of the Continuous Emission Measurement System (CEMS) sensors used in

industrial long-term operation.

The next section describes the approach leading to the proposed solution.

3.2 System Overview

The framework proposed features a machine learning model predicting engine emissions

based on the engine configuration and current state (as from sensor readings).

The scope and approach is further detailed in the following sections; an overview is presented

in Figure 3.3.

3.2.1 Data Pre-Processing

The initially available data amounts to roughly 500000 rows per engine. Each row holds

readings from 180 sensors of various kinds scattered around the engine, such as air pressure

after compressor, fuel flow and temperature and engine vibrations, just to name a few.

Direct application of machine learning techniques to the raw data has proven unsuccessful

(Figure 3.2), highlighting the need for thorough data preparation. The following describes the

processing pipeline put forward in this chapter:
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(a) Engine A (b) Engine B

Figure 3.4 – PLS and PCR. Boxplots of Mean Squared Errors of methods based on Partial
Least Squares and Principal Component Regression. The two graphs (a) and (b) correspond
to results on two different engines for generalization. The next figures will present further
results on the same two engines. Notice the error bars are compacted into single lines. The
difference in reconstruction error is minimal as the scale of the graph is 10−4, but the methods’
performance remains consistent across engines.

(a) Engine A (b) Engine B

Figure 3.5 – RR, Lasso and SVR on scored data. Boxplots of Mean Squared Errors of methods
based on data normalized with z-score, namely Ridge Regression (and its Kernel variant),
Lasso and Support Vector Regression (in two variants). The two graphs (a) and (b) correspond
to results on two different engines for generalization. The difference in reconstruction error
is again minimal, but some methods perform consistently better than others across engines
although by a varying factor. For example, Lasso has the smallest variation in between runs
(tighter error bars) while KRR has the highest. The two SVR methods perform comparably and
consistently better than all others.

• Based on statistical analysis, a subset of the columns is selected to provide predictors with

the least redundancy. The dependency of the targets to predictors, and independence of

the predictors from each other, are assessed by means of HSIC [Gretton et al., 2005], which

takes all possible linear and nonlinear correlation into account.
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(a) Engine A (b) Engine B

Figure 3.6 – iRPROP, S-ε-SVR and S-ν-SVR on scaled data. Boxplots of Mean Squared Errors of
methods based on data normalized with feature scaling, namely Neural Networks (trained with
Improved Resilient Backpropagation, iRPROP) and Support Vector Regression (in two variants).
The fourth (last) error-bar corresponds to ν-SVR on scored data from the previous plot 3.5b
for comparison. Please also note that the scale in this graph is one order of magnitude larger.
The average sensor noise is orders of magnitude larger than the reconstruction error: higher
precision would correspond to overfitting, and is thus important to refer to the prediction vs.
observation plots in the next figures.

• Values corresponding to implausible sensor readings (i.e. negative quantities, temperatures

below or above real engine ranges, etc.) are discarded as if missing.

• Rows with missing values are simply removed. A viable alternative could have been data

imputation, but the remaining, complete data proved sufficient to fully train the models.

• Redundant lines (i.e. where all values exactly duplicate another row) are removed. This

reduces the training bias towards engine states which are constant over time.

• Since normal engine operation alone is of interest for this study, data recording other engine

processes (start up, shutdown, etc.) is carefully selected, and discarded as misleading.

The above mentioned process rejects roughly 90% of the original data, culling a mere ∼50000

lines for the modeling phase.

Considering an error margin of 5%, with 95% confidence level and 50% standard deviation

of responses, samples of size at least 382 rows are needed for a statistically significant repre-

sentation of the population (whole data) 1. Own empirical experimentation has confirmed a

sample size of 1000 as ideal for all methods to achieve their best performance, robust to 10%

variations.

The data is hence partitioned (no intersection) into 10 training sets of size 1000, with 1

(common) test set comprising of all the remaining data (∼40000 lines). Since the aim is to

build a static model (i.e. independent from time), the data constituting each training set is

1Sample size calculator by Raosoft, inc. Available online at: http://www.raosoft.com/samplesize.html
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selected randomly (with uniform distribution) across the whole dataset, and then shuffled.

The training sets and the test set are used across all configurations and algorithms without

any variation in size, data and order.

3.2.2 Algorithm Selection

Addressing the limitations found in physically rigorous models (Section 3.1.2), the proposed

approach is based on machine learning. In particular, regression analysis addresses predicting

a real-valued response Y = f (X ) for new values of predictors X = (X1, X2, .., Xp ) [Bishop, 2006,

Friedman et al., 2001].

In the context of this project, three main families of algorithms have been considered:

• Linear regression methods. Striving for simplicity, and with the goal of establishing a base-

line, the following linear regression (with respect to both input and regression coefficients)

methods were applied first:

◦ Linear regression [Friedman et al., 2001], the simplest regression method, provides hind-

sight on the linearity (or lack thereof) and complexity of the task.

◦ Ridge Regression (RR; Bell [1978]), introduces a regularization term to the linear regression

function, lessening overfitting to predictors.

◦ Lasso [Tibshirani, 1996], improves RR normalization by enforcing selection of sparser

predictors.

◦ Principal Component Regression (PCR; Hotelling [1957], Jeffers [1967]), uses Principal

Component Analysis (PCA; Person [1901]) to derive new predictors which are linearly

uncorrelated. Improves the performance of basic regression for cases where the original

predictors are linearly correlated.

◦ Partial Least Square Regression (PLS; Wold [1966], Abdi [2010]). improves on the results of

PCR by deriving principle components which maximize the covariance between regres-

sion predictors and output.

• Kernel-based approaches. Kernelized regression methods are characterized by the usage

of kernels. The nonlinear relationship between predictors and outputs is captured in the

kernel definition. The following methods were considered:

◦ Kernel Ridge Regression (KRR; Shawe-Taylor and Cristianini [2004]), which applies Ridge

Regression on data embedded in a Reproducing Kernel Hilbert Space (RKHS; Shawe-

Taylor and Cristianini [2004]),

◦ Support Vector Regression (SVR), which constructs using a sparse set of of predictors

(support vectors) in RKHS. Parameter ε in ε-SVR [Shawe-Taylor and Cristianini, 2004,

Smola and Schölkopf, 2004] and ν in ν-SVR [Schölkopf et al., 2000] control the smoothness

of the regression function and the number of support vectors respectively.

• Feed-forward Artificial Neural Networks [Bottou and Gallinari, 1990]. A parametrized
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generic function approximator is fitted to predict the current emissions based on the current

engine state. The complexity of the approximated function depends mainly on the network

structure, meaning that a smaller network will provide a simpler model, less prone to

overfitting. Generalization capabilities are then leveraged to predict the emissions relative

to states previously unseen. The use of non-linear activation functions and multilayer

structure allow for approximating complex nonlinear functions. The following choice of

backpropagation algorithms has been tested:

◦ Incremental Backpropagation [Rosenblatt, 1961], The original backpropagation algorithm,

where the weights of the network are updated for each point in the training set based on

its reconstruction error.

◦ Batch Backpropagation [Rumelhart et al., 1986], A standard backpropagation algorithm,

where the weights of the network are updated only once per epoch, based on mean square

error of all reconstructions. Slower than incremental backpropagation in execution, but

faster in convergence.

◦ Improved Resilient Backpropagation (iRPROP; Igel and Hüsken [2000]), An improved,

faster variation of the RPROP algorithm [Riedmiller and Braun, 1993], itself an adaptive

backpropagation algorithm. The learning step size is adapted to fit both large magnitudes

and high precision.

◦ QuickProp [Fahlman, 1988] Advanced batch backpropagation algorithm, optimized for

speed in execution as well as in convergence. Particularly effective when scaling to large

networks.

Results shown in 3.3.2 come from iRPROP, which in this study consistently achieved best per-

formance. The implementation was based on Fast Artificial Neural Networks (FANN; Nissen

[2003]). Training converged after 20000 iterations in average.

3.2.3 Parameter Cross-Validation

Method-specific parameters were selected based on 10-fold cross-validation. The following

are included for reproducibility:

• ‘λ’ (regularization parameter) in Lasso (10−4), RR (10−1), and KRR (10−4);

• ‘σ’ (Gaussian kernel standard deviation) in KRR (10), ε-SVR (1) and ν-SVR (1);

• ‘ε’ (margin) in ε-SVR (10−2); ‘ν’ (number of support vectors) in ν-SVR (0.5);

• NN: λ (learning rate) = 0.7, η− (decrease factor) = 0.5, η+ (increase factor) = 1.2, ∆0 = 0.1,

∆mi n = 0.0,∆max = 50.0, andµ (momentum) = 0, structure {i n = 33+b, hi d = [10], out = 1}

(feed-forward, fully-connected), and activation function σ(x) = 1
1+e−x .

The number of principal components in PCR-RE was selected by reconstruction error mini-

mization, and in PLS-VAR by variance maximization.

The next section details the proposed system pipeline.
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(a) iRPROP (pred. vs. obs.) (b) Lasso (pred. vs. obs.)

(c) iRPROP (res. vs. pred.) (d) Lasso (res. vs. pred.)

Figure 3.7 – Results for Lasso and iRPROP. Graphs (a) and (b) are scatterplots of predicted val-
ues (vertical axis) versus observed emissions (horizontal axis) respectively for neural networks
trained with iRPROP and for Lasso. The ideal result here is for all points to be on the diagonal,
meaning each observation corresponds to a correctly predicted value. Neural networks tend
to ignore outliers, producing instead a tighter band on the diagonal. The plots in (c) and (d)
show scatterplots of standardized residuals vs. predicted emissions, with bands corresponding
to the magnitude of sensor noise.

3.3 Experimental Setup

To predict the engine exhaust based on the engine state, each configuration of algorithm plus

parameter set is trained on each of the 10 training sets as described in section 3.2.1. The

resulting 10 models per configuration are always tested on the common test set, generating

40000 predictions. Aggregated configuration results correspond to averages over the ten runs.

All regression methods in this study are applied to standardized data (z-score), except iRPROP

which works with scaled data (feature scaling). To see the effect of data normalization, this

work investigates the result of SVR methods with both scaled and standardized data.
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(a) ν-SVR (pred. vs. obs.) (b) S-ν-SVR (pred. vs. obs.)

(c) ν-SVR (res. vs. pred.) (d) S-ν-SVR (res. vs. pred.)

Figure 3.8 – Results for ν-SVR and S-ν-SVR. Scatterplots of predicted vs. observed values
(a) and (b), and of standardized residuals vs. predicted emissions (c) and (d) for ν Support
Vector Regression on z-scored data (ν-SVR) and on feature scaled data (S-ν-SVR). The methods
perform comparably to the neural networks trained with iRPROP presented in Figure 3.7a
and 3.7c. A detailed discussion and interpretation can be found in the caption of Figure 3.7.

3.3.1 Performance Measures

Standard Mean Squared Error (MSE) of the residuals can become uninformative when the test

targets feature high noise. Overfitting the highest-magnitude outliers quickly improves the

score, endangering the model’s generalization capability. Section 3.1.3 discusses why noise of

high magnitude is to be expected in this application.

As a complementary measure of performance, scatterplots of predicted versus observed emis-

sions are proposed. This allows to intuitively expect clustering along a diagonal line (i.e.

y = x), with cluster thickness proportional to model precision (plus sensor noise). Partial

transparency of the dots proportionally reduces the visual impact of outliers. Please note

the different plotting scales in Figure 3.6b: results for ν-SVR from plot 3.5b are added for

comparison.

Scatterplots of standardized residuals versus predicted emissions are also presented: a thick

line around y = 0 corresponds to a uniform distribution of the predictions with normally dis-
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tributed residuals, as expected of unbiased noise. Any other clear pattern would be indicative

of yet-unlearned relations in the data.

For simplicity, results on only one of the available engines are shown unless clearly stated.

Performance across engines for the proposed methods remains comparable, as shown in

Figure 3.6.

3.3.2 Results

Among linear regression methods, Lasso and RR obtained better results than PCR and PLS

(respectively), implying that regularizing the regression function based on 1-norm `1 or 2-

norm `2 is better suited to the data rather than regularization using PCA. PLS has smaller

MSE compared to PCR because it uses the set of principle components that are best suited to

predict target variance.

Nonlinear regression methods obtained the best results, accentuating the importance of

nonlinear relationships between output and predictors. Methods that enforce sparsity worked

better than non-sparse methods: for instance, SVR is better than KRR, and Lasso is better than

RR. This also highlights the importance of variable selection for this task.

Figure 3.4 presents a boxplot comparing the MSE of different regression methods over 10

experiments. The MSE is consistently low across methods, in the order of 10−4 of scored

emissions. Figure 3.6 shows how comparable results are achieved on other engines.

Figure 3.7 presents predictions versus observations plots for ν-SVR on both scored (3.8a,

“ν-SVR”) and scaled data (3.8b, “S-ν-SVR”), and Lasso (3.7b, as the best performing linear

method) and neural networks (trained with iRPROP, 3.7a) on scaled data. Even though the MSE

of ν-SVR is best, the predictions better align with the observations in iRPROP and S-ν-SVR.

The scatterplot of standardized residuals versus predicted emissions in Figure 3.8 shows the

residuals having a narrow range of [−1,1] in iRPROP and S-ν-SVR, while ν-SVR residuals

mostly fall in the [−1.5,0.5] range. Comparing to ν-SVR, S-ν-SVR and iRPROP, Lasso shows

both worse range [−2,1.5] and worse MSE (Figure 3.5a).

The algorithms best performing are feed-forward neural networks trained with iRPROP on

scaled data (FFNN+iRPROP), and ν support vector regression on scored data (S-ν-SVR). Their

MSEs are both one order of magnitude larger than other methods (still minor, at 10−3), but

boasting a much tighter clustering around y = x on the predictions vs. observations plot

(fig. 3.7a and 3.8a). Moreover, the plot of residuals vs. predictions shows normally distributed

sensor noise, uniformly spread outliers, and no discernible unlearned patterns (fig. 3.7c

and 3.8c), implying that the pattern generating the data has been fully learned.

Prediction precision is on the same scale as the expected sensor noise, implying that no better

reconstruction can be made without overfitting. Such precision is also deemed sufficient for a
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live deployment of the application. Both methods train a new model in less than 10 minutes

for a single run, easily allowing for daily builds as new data becomes available.

3.4 Discussion

Heavy-duty gas turbine engines are common, efficient and reliable means to produce electric

power. Over the years however their performance gradually degrades, eventually requiring

maintenance. Stopping and servicing the engine is costly, compelling to minimize at the

same time both the number of scheduled interventions and the risk of unscheduled stops.

Accurately predicting the engine’s emissions (particularly NOx) can provide information to

support decisions over engine adjustment and maintenance scheduling.

Physically rigorous modeling approaches have found limited application because of the com-

plexity of the involved phenomena and the required effort for model set-up and maintenance

in an industrially productive environment. At the same time most advanced machine learning

methods require data in quantities which are not available in this specific application. This

chapter addressed the problem by raising the quality of the data at the cost of further reducing

its size, producing an ideal environment for a selection of simpler machine learning algorithms.

The custom-filtered dataset is complete, has low noise, and is limited to task-related data.

Importantly, the results have been proven impossible to reproduce without such thorough

data preparation.

The collection of machine learning algorithms proposed ranges from linear regression to

neural networks, allowing key insight as to the level of sophistication necessary for this appli-

cation. Each method is run on an spectrum of different parameter configurations through

cross-validation. Two methods in particular (FFNN+iRPROP, and S-ν-SVR) are shown to be

capable of reliably training models with the highest feasible precision (i.e. sensor-level), with-

out overfitting sensor noise. Both methods are comparable in performance and offer short

wall-clock running time. Further analysis shows that no unlearned pattern is left in the data at

the end of the training.

Modeling NOx emissions to sensor-level precision enables informed scheduling of engine

maintenance, minimizing the risk of unplanned shutdowns caused by surpassing the legal

limits of NOx production. The data cleaning pipeline proposed can be applied in principle

to other datasets featuring the same set of problems such as noise, incompleteness, and

redundancy. A broad range of techniques for both denoising and missing values reconstruction

is available in the literature, which could lead to the availability of larger amounts of training

data. Data generated by reconstructing and cleaning algorithms though can arguably be

considered less indicative than the smaller subset of complete, clean data already included

in the dataset. The advantages are also limited, as even recovering the full data available

would result in orders of magnitude less data than required by the most advanced machine

learning techniques, rendering the extra work inconsequential. Selecting an algorithm that is

capable of achieving high precision already on a tiny, high quality subset of the original data
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has proven highly successful in this application.

The results obtained with neural networks are of particular significance for this thesis. Using

an external component to prepare the data for neural network consumption greatly boosts

the performance of smaller, shallow networks, to the point of reaching the highest possible

performance. This concept will be revisited and further expanded in Chapters 5 and 6. Boost-

ing the effectiveness and efficiency of smaller networks greatly reduces the burden on the

training algorithm, enabling the application in the presence of fewer data or heavier training

algorithms, such as with evolutionary algorithms (neuroevolution).

To further boost the performance of evolutionary algorithms, the next chapter will focus on

addressing fitness plateaus, where the evolutionary algorithm’s population is comprised of

individuals which are indistinguishable based on performance alone.
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As seen in Chapters 1 and 2, reinforcement learning neuroevolution provides a way to learn

complex interactions based on nothing but a score of the performance of candidate solutions.

A common issue though is the loss of direction for improvement due to candidate solutions

becoming indistinguishable based on performance.

This commonly happens in two cases: fitness plateaus and premature convergence. (i) In

the first case, the fitness function presents large plateaus over the space of individuals, i.e.

even different individuals obtain the exact same score. This is often the case with problems

that accumulate reward based on discrete events: often a large spectrum of individuals

will obtain the same score, and the search is stuck until some mutation triggers the next

scoring interaction. In the second case (ii) the population maintained by the evolutionary

algorithm becomes more and more homogeneous (individuals become indistinguishable

by genotype) as a result of the search increasing the resolution and minimizing variance.

Unless the convergence basin leads to the global optimum (or a an otherwise sufficient result),

the convergence is deemed premature, becoming stuck for all practical purposes. Proper

resuming of the search requires a major parametric overhaul.

A common approach in these cases is to restart the search from a new location; selecting a

proper location though is itself nontrivial [Fukunaga, 1998]. This chapter proposes to keep

track of the exploration during the standard evolution process, and then select as restart

location the area in parameter space which has been least explored, leveraging the concept

of novelty search, as described in Chapter 2.6. Results on two multi-modal problems suggest

that this method strikes a balance between completely random exploration and standard

exploitation mechanisms.

4.1 Introduction

Evolution Strategies (ES) are a modern class of evolutionary algorithms with advanced features

such as scale invariance (invariant to the scale of parameters) and fitness shaping (invariant
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to the scale of fitness), making them ideal for black-box optimization applications. While

extremely apt at converging in a given attraction basin though, escaping such basin to search

for better optima requires external mechanisms such as restart strategies [Beasley et al., 1993,

Fukunaga, 1998, Auger and Hansen, 2005].

Over the past decade Novelty Search (NS; Lehman and Stanley [2008, 2010]) has received

attention due to the starkly opposite approach: disregarding fitness altogether, individuals are

ranked by their novelty, i.e. by their distance to an archive of reference individuals marking

previously explored volumes of the search space. This work was originally aimed at continuous

evolution, proposing that (given enough time) a search uniquely based on novelty can be

led by the environment’s limitation towards the goal even with no knowledge whatsoever

of the latter. Further work leverages the method for explicit exploration [Graziano et al.,

2011], integrating it with the standard fitness signal to achieve superior results in standard

evolutionary algorithms [Cuccu and Gomez, 2011].

This chapter takes yet another direction, by leveraging novel individuals to identify volumes of

the search space which are most promising for restarting the search, i.e. where individuals

were generated while following the fitness gradient, but where the search has not yet reach

the same level of granularity as in other parts of the space. Two functions are used to test

this method’s performance: a custom function which provide an easy parametrization of

plateau and local optima, to push the method to its limits; and the standard Rastrigin function,

demonstrating the scaling to higher dimensions.

4.1.1 Radial NES

Natural Evolution Strategies is a family of black-box optimization algorithms presented in

Chapter 2.5. Algorithms of this family have characteristics and properties which are considered

state-of-the-art such as fast adaptation and invariance to linear transformations. Choosing

an algorithm from the NES family for our benchmarks allows to verify that the proposed

restart strategy does not break such properties, and is thus compatible with state-of-the-art

implementations.

On the other hand though, the algorithms available in the literature (such as XNES and SNES:

see Chapter 2.5.2) include advanced mechanics which make them resilient to local optima and

plateaus. Since the proposed restart strategy aims at overcoming these problems altogether

and independently, the selection of a simpler algorithm, less capable of inherently mitigating

these problems, arguably provides a more objective perspective on the restart strategy itself.

To such end, this section introduces Radial NES (RNES): a novel, baseline algorithm of the

NES family, based on a radial Gaussian distribution. This means it maintains a single variance

over all dimensions, reducing the distribution parameters to θ = (µ,σ). The density of the

distribution is thereby
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p(z |θ) = 1

(
p

2πσ)d
·exp

(
−‖z−µ‖2

2σ2

)
,

which together with the exponential coordinates discussed in Chapter 2.5.2 yields the update

equations

µ←µ+ηµ ·σ ·
λ∑

i=1
uk ·sk (4.1)

σ←σ ·exp

(
ησ

2
·
λ∑

i=1
uk ·

(‖sk‖2 −d
))

, (4.2)

with standard normal samples sk ∼ N (0,I) generating the corresponding individuals as

zk =µ+σ ·sk .

One generation of RNES consists of (i) generating a population of individuals by sampling the

search distribution, (ii) sort them based on their fitness, (iii) update the distribution parame-

ters. The execution thus follows Algorithm 1, as seen in Chapter 2.5.1, where Equations 4.1

and 4.2 implement NESUPDATE.

4.2 Leveraging the Novelty Archive

As seen in Chapter 2.6, the novelty archive is key to computing the non-stationary novelty

signal and adapt to increasing resolution. This characteristic is fundamental to maintain the

invariant properties of the evolutionary search. In the proposed setup the novelty score is

defined directly in parameter space for RNES, but the method can in principle scale back to

higher complexity applications such as neuroevolution and behavioral novelty.

The thought process leading eventually to the restart strategy stemmed from two possible

ways to combine novelty and fitness. The next two subsections provide a rationale as to how

this could be achieved, the corresponding limitation, and the reasons why a restart strategy is

more likely to succeed in this context.

4.2.1 Linear Combination

Combining fitness and novelty has been explored in [Cuccu and Gomez, 2011] using the

equation
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ρ ·nov(zk )+ (1−ρ) · f (zk ) ,

with nov(·) denoting novelty1 and f i t (·) fitness. In RNES this would replace f i t (zk ) in Equation

(2.1), providing a smooth gradient even in cases of fitness plateaus.

Such an application expects fitness and novelty to be normalized in the same range in order to

meaningfully blend together. In general such normalization could be non-straightforward,

as it requires knowing the absolute minimum and maximum values for both fitness and

novelty. In NES though this score is solely utilized to sort the individuals in a fitness-shaping

context. This enables computing the scores (position in sorted order) individually for fitness

and novelty, and compute the blending equation on the corresponding utilities instead, i.e. by

replacing uk in equation (2.2):

ρ ·un
k + (1−ρ) ·u f

k ,

where un
k is the utility of individual zk with respect to novelty (equation 2.3), u f

k its utility with

respect to fitness, and ρ ∈ [0,1] is the same blending parameter.

While such a simple integration mechanism is intriguing, it turns out not to work as intended,

because of the interaction between scale-invariance and non-stationary novelty. Based on

the chosen value of ρ and point of initialization, the search will initiate a trend towards

convergence or divergence, which is then constant on all scales. This implies a sudden

transition on the value of ρ, which hinders the search by promoting at once both convergence

to local optima and explosive divergence based on a highly unstable switching point.

4.2.2 Hard Switch

A natural follow-up would be to consider ρ restricted to {0,1}, embracing the hard switch

between fitness and novelty. Rendering the two phases independent would allow following

both greedy exploitation and explicit exploration in alternating phases. Once convergence is

achieved on a local minimum, enabling novelty search would ensure exploration out of that

basin towards less explored areas of the parameter space. Finding a new basin of attraction

and switching to exploitation once again hopefully allows to converge on a better optimum.

This requires the design of a switching point between the two modes. The fitness-based

exploitation can for example go on until a convergence criterion is met. If more evaluations

are still alloted to the algorithm, rather than terminating (returning the best individual en-

1In this work, novelty is computed against both the archive and the current population.
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Figure 4.1 – The function f`,w , for configurations (`= 5, w = 0) and (`= 20, w = 2). The first
configuration tests the performance of the algorithm in presence of fitness plateaus, while the
second and much harder also adds deceptive local minima to the function.

countered so far) the algorithm would then switch to novelty search. In RNES such a criterion

is straightforward, as σ is an explicit step size: once this falls below an arbitrary threshold

(say 10−5, or a numerical accuracy limit), the algorithm can be considered to have achieved

convergence, thus switching to the novelty phase.

4.2.3 Evolutionary Restarts

While intuitively sound, upon further examination the hard switch described above shows

some important limitations. When ρ = 0 computing the novelty of the individuals could be

in principle skipped, although in practice it is still necessary in order to update the novelty

archive. At the same time, when ρ = 1 the potentially expensive fitness evaluation can be

skipped entirely, unless its byproduct are used in computing the novelty (e.g. behavioral

novelty). In our case so far, novelty is based on genotypic similarity, meaning it uniquely

depends on the parameters set.

With no feedback from the application, how much novelty is enough to decide to switch back

to fitness-based exploitation? Examining the distribution variance σ provides no further clue,

since while its lower bound is 0, its upper value is unbound, and novelty will naturally bring

the search to diverge. Working in isolation presents further challenge regarding updating

the novelty archive: adding an individual actively represents having tested and verified that

part of the space, but unless the fitness function is actually run, potentially best-performing

individuals will not be considered as solutions.

Moreover, where should the search restart from? Switching the search to novelty-based

exploration while maintaining the same µ and σ of the end of exploitation makes it difficult

to leave the current attraction basin, by explicitly starting from its center (µ) and with a

potentially very small update step size (σ). Once the option of a search restart based on

novelty comes under consideration, the issues discussed so far become irrelevant.
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`= 5 `= 15 `= 30
w = 0 97 87 85
w = 2 19 3 0
w = 10 60 13 2

Table 4.1 – Performance without novelty restarts. Percentage of trials (out of 100 runs) in
which RNES without novelty restarts finds the global optimum of the custom function f`,w ,
with ` length of the plateaus and w number of local optima (“waves”) on each plateau.

This chapter proposes to restart the search on the the individual with highest novelty so far:

high novelty implies an area of the space which has been reached by the evolution in the past,

but has been explored the least. To restart the search, the new µ is set to the novel individual,

while σ is calculated as the average distance between µ and a set of k nearest neighbors, with

k fixed at initialization. This allows to immediately resume fitness-based exploitation, aiming

to converge to a potentially new and hopefully better optimum. And even if not, searching

around µwill automatically lower its novelty, ensuring that further restarts will not consider

the same area again.

The new starting parameters for the search distribution respect the invariants of the underlying

ES: µ had been previously generated by the search and is thus a plausible value, while σ is

derived from previous exploration around the same volume and is thus also consistent. Using

novelty uniquely for its novelty archive rather than for an intrinsic score for the individual

relates this approach to other previous archive-based evolutionary methods as common in

multi-objective optimization [Zhang and Sanderson, 2007, Knowles and Corne, 1999], except

for the use of novelty as its underlying criterion.

4.3 Results

Novelty-based restarts are tested in the following sections to verify its contribution in presence

of fitness plateaus and multimodal fitnesses. One important consideration is how the first

run up until the restart is identical between an algorithm enhanced by novelty restarts and

a standard ES, thus the addition of the restart strategy does not alter minimal performance.

This particularly implies that applying novelty restarts to a task with a unimodal fitness land-

scapes, while providing no performance improvements, will produce no downside, making

the decision to adopt this method much more straightforward.

As in [Schaul et al., 2011], the default values for population size and learning rate come

from optimized heuristics in CMA-ES [Hansen and Ostermeier, 2001]: for all experiments

the population size was set to λ = 4+b3log(d)c, and the learning rates to ηµ = 1, and ησ =
(3+ log(d))/(5

p
d) respectively, with d number of parameters (dimensions).

The function f`,w utilized in the following experiments is designed as follows:
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f`,w (x) =


x2 for |x| ≤ 1

1− 1
2 sin2

(
πw(|x|−1)

`

)
for 1 ≤ |x| ≤ `+1

(|x|−`)2 for |x| ≥ `+1 ,

with parameters ` ≥ 0 and w ∈N. This function is based on a standard parabola and thus

symmetric around its global optimum at 0. The parabola is though chopped open at x =+1

and x =−1, and the branches diverging from the central basin are shifted outwards by plateaus

of length `. Additionally, w waves can be added to these extensions, corresponding to an

equal number of local optima (Figure 4.1). The distribution is initialized at every trial with

parameters µ= `+1 and σ= 1.

4.3.1 Overcoming Multimodal Plateaus

The first set of experiments studies the performance of the algorithm on both fitness plateaus

and simple multimodal landscapes. Fitness plateaus render individuals indistinguishable

by awarding exactly the same fitness to all, thus providing no gradient nor direction for

improvement. Adding shallow local optima with attraction basins of arbitrary size further

increases the difficulty, as a search reaching the very edge between the global optimum

attraction basin and the last (shallow) local optimum may still be attracted back away from

the global optimum.

RNES was run with and without novelty restarts on the f function, with all combinations of

parameters ` ∈ {5,15,30} and w ∈ {0,2,10}. Flat fitness plateaus correspond to w = 0. Each

run was alloted 10000 generations, corresponding to 40000 fitness evaluations. The stopping

criterion, also used to trigger restarts, was σ< 10−10.

Table 4.1 shows the percentage of runs in which RNES without restarts was able to converge to

the global optimum. RNES copes relatively well with plateaus of limited length (proportional

to its startingσ), but the addition of multiple local optima (waves) makes the task much harder.

Particularly, the task is hardest for only two local optima (per side), because for any given ` the

size of each attractor basins is inversely proportional to the number of basins present. A large

` and low w correspond to (fewer but) larger attraction basins, which are harder to escape.

Table 4.2 reports instead the median number of generations it took RNES with novelty restarts

to identify the optimum with an accuracy of 10−5. The algorithm was successful in all runs for

most configurations. The restart strategy helps to identify the optimum reliably, and scales

gracefully with plateau length and number of local optima. Figure 4.2 depicts a typical novelty

archive at the end of a run. The number of attraction basins visited is a testament to the ability

of the restarts to overcome local convergence and stagnation. At the same time, the fitness-

based search makes sure that the interesting regions around the local optima are sampled at a
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`= 5 `= 15 `= 30
w = 0 79 298 319
w = 2 267 668 (677)∗

w = 10 101 792 903

Table 4.2 – Performance with novelty restarts. Median number of generations to find the
global optimum, out of 5 runs. RNES + novelty restarts consistently succeeds in all runs but
for one configuration. The target function is the same f`,w as Table 4.1, with ` length of
plateaus and w number of local optima (“waves”) on each plateau. The hardest configuration
is 〈`= 30, w = 2〉 which corresponds to the longest plateau and smallest (nonzero) number of
local optima, the latter consequently have the largest attraction basins. (*) This configuration
was solved only in one out of 5 runs, in 677 generations.

much higher resolution than the rest of the space.

4.3.2 High Dimensions and the Rastrigin Function

The function f`,w represents by design a worst-case scenario for ES. The lack of gradient in the

flat version w = 0 induces such divergence in the search that the algorithm struggles to moveµ

and gradually reduce σ even if individuals are luckily sampled from the global optimum basin,

rendering recovery unlikely in the finite number of generations alloted. The introduction of

deception with w > 0 only exacerbates the condition, by making the algorithm converge on

suboptimal basins, in turn diminishing its exploratory capability.

The restart strategy here not only drastically improves the performance of the search, but

actually enables as simple an ES as RNES to be applied to complex fitness landscapes. Novel

elements are treated as milestones, from which the search can resume whenever meaningful

local improvements are no longer detected.

However this could in principle be imputed to an archive-filling behavior, where all local

optima are in turn added an archive practically used as an exclusion list. Such a case would

hinder the ability of the algorithm to scale to higher dimensions, as the number of local optima

scales exponentially, beyond the ability of any explicit archive to keep track of them.

To test whether or not this is the case, the next experiments are based on the Rastrigin function,

a common benchmark for search performance on high dimensional spaces. It presents a

d-dimensional quadratic global trend, overlayed with a grid of local optima:

fRastrigin :Rd →R, x 7→ 10d +
d∑

i=1

[
x2

i −10 ·cos(2πxi )
]

.
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Figure 4.2 – Novelty archive at the end of a typical run of RNES with novelty restarts for our
hardest configuration of `= 30 and w = 2. Exploring the local optima at increasing resolution
essentially marks them as “explored”, prompting the next restart to look elsewhere. These
results by themselves could be in principle imputed to an archive-filling behavior: further
experiments in Section 4.3.2 however address this concern by proving it unnecessary.

d = 2 d = 5 d = 10 d = 20
24.6 25.6 18.9 16.2

Table 4.3 – Percentage of trials in which RNES without novelty restarts finds the global opti-
mum of the Rastrigin function, out of 1000 runs.

RNES with novelty restarts was tested on this setup initializing µ0 randomly from a uniform

distribution in [−5,5]d , with σ = 1. Similarly to the previous setup, Table 4.3 reports the

percentage of successful runs for RNES without novelty restarts, while Table 4.4 highlights the

number of generations needed for RNES with novelty restarts to succeed. Experiments were

conducted for d ∈ {2,5,10,20}, with 10000 generations per run.

The results show that novelty restarts are capable of scaling to relatively high dimensions. For

perspective, consider that even in the hypercube [−1.5,1.5]d the Rastrigin function has 3d

local optima. Sensibly representing them all in its explicit archive would require a scaling of

at leastΩ(3d ), which would not be feasible. Our results show instead a much more graceful

scaling, thanks to the Rastrigin problem providing a global trend that favors exploration,

making it (from our algorithm’s standpoint) much less deceptive than the purposely-built f`,w

function. This is arguably a much more common condition in most problems and real-world

applications, which emphasizes the actual difficulty of our custom engineered, worst-case

41



Chapter 4. Overcoming Stagnation with Novelty

d = 2 d = 5 d = 10 d = 20
352 234 64.3 (1374)∗

Table 4.4 – Median number of generations (over 25 runs) it takes RNES with novelty restarts to
identify the global optimum of a d-dimensional Rastrigin function. With d = 20 the algorithm
succeeded in 23 out of 25 runs in the alloted budget of 10000 generations.

f`,w .

4.4 Discussion

Fitness stagnation is a common problem for ES when the fitness landscape includes plateaus

(as common in reinforcement learning) and multimodality (which leads to premature con-

vergence). Novelty search sidesteps these problems by uniquely focus on individual novelty

rather than fitness. Integrating a novelty-based component into fitness-based ES would lead

to improved performance.

A direct integration of fitness and novelty in the objective score however leads to renouncing

scale invariance, which limits its application to extremely simplistic ES. A hard switch between

fitness- and novelty-based objectives is also proved unsuccessful, causing the algorithm to

diverge. In order to carry novelty-based improvements to state-of-the-art ES, this paper

presents novelty-based restarts. This is a simple yet powerful restart strategy which stores

information about the search so far in an explicit archive, leveraging it then to propose

promising configurations for resuming an already-converged run. Notably this setting respects

the black-box invariants which make modern ES so flexible, since all information for the restart

is extracted from the run itself, without introducing extra hyperparameters.

In order to clearly highlight the advantage of such an approach, this work presents a worst-

case-scenario fitness function to study how the algorithm performs in presence of fitness

plateaus and multimodal problems. A new algorithm of the NES family then provides an ES as

simple as possible while retaining state-of-the-art characteristics. This allows verifying that

the restart strategy respects the requirements of (and thus can be ported to) modern ESs.

A second benchmark is based instead on the Rastrigin function, arguably less deceptive but

more realistic, and capable of scaling to arbitrarily higher dimensions. The results highlight

the ability of the algorithm to perform in high dimensions without relying on an archive-

filling behavior, which would require a potentially exponential quantity of elements as the

dimensionality grows.

The next chapter continues on this direction by further investigating the applications of

Novelty Search to sustain diversity in the EA’s population.
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5 Feature Extraction and Decision
Making

Novelty Search (Chapter 2.6) can provide an EA with intrinsic motivation to further the search

even when individuals are indistinguishable based on fitness alone (i.e. stagnation). In the

previous Chapter (4) this was implemented through a novel restart strategy: the EA is allowed

to completely converge before being redirected to a new interesting area of the search space.

Information about individual novelty though could support the evolution itself even before

convergence, if the setting allows so; this happens to be the case with neuroevolution.

Further work in this direction is motivated by the need to address reinforcement learning

problems sporting complex, high dimensional observations such as raw images. Recent results

on evolving deep neural network controllers end-to-end in this context has recently proven the

viability of such an approach [Salimans et al., 2017, Chrabaszcz et al., 2018, Such et al., 2017,

Risi and Togelius, 2017]. This method though requires high computational resources, while

blending (and thus hiding) the distinction between feature extraction and decision making.

This chapter explores the application of unsupervised learning as a compressor (i.e. pre-

processor, feature extractor) that takes the observation and returns a compact code to the

network decision maker. Such a compressor is trained online along with the network evolution,

on images obtained by the network controllers as they interact with the environment. This

incidentally makes the compressor aware of the history of observations seen so far, as yet-

unseen images will be harder to compress. Since obtaining novel observations requires

the network to interact with the environment in novel ways, the network’s score is boosted

proportionally to the novelty of the images obtained by its interaction with the environment.

Experimental results are based on a new vision-based version of the classic mountain car

benchmark [Sutton, 1996]: the network’s only input is a third-person representation of the

simulation rather than the standard vectors of position and velocity. This greatly raises the task

complexity, with the controller now deciding the next action based on a higher-dimensional

and less informative input.
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5.1 Introduction

Until the advent of deep learning, training neural networks using evolutionary computation

(neuroevolution (NE; Yao [1993], Floreano et al. [2008]) used to have clear advantages over

single-agent gradient-descent methods for reinforcement learning (RL) tasks [Runarsson and

Lucas, 2005, Lucas and Runarsson, 2006, Lucas and Togelius, 2007], especially in application

requiring memory [Gomez, 2003, Stanley, 2004]. Applications to high-dimensional inputs such

as images were limited due to computational resources limitations, which promoted work

using indirect encodings to generate larger networks from a smaller set of parameters [Gruau,

1994]. While in direct encoding the parameters identically correspond to network weights

(as described in Chapter 2.4), indirect encoding uses complex genotype to phenotype func-

tions. For example intermediate networks [Gauci and Stanley, 2007] or (de)compression

algorithms [Koutník et al., 2010, 2013b], defined over the EA’s parameters, are used to ulti-

mately generate the network weights.

This chapter proposes an alternative approach: instead of exposing the network directly to

the high-dimensional input, an unsupervised learning (UL) compressor produces a smaller

encoding from the observation. This is used in turn by the network as input, greatly reducing

the size of its input layer, and negating the need to dedicate additional layers to feature

extraction. This work also trains the compressor online, on the very observations obtained by

the individuals of a population at each generation, in turn removing dependencies on prior

knowledge and bootstrapping.

The work described in this chapter, which was previously presented as a paper [Cuccu et al.,

2011b], was the first instance of UL used as pre-processing to boost neuroevolution. Previous

work on single-agent RL methods [Lange and Riedmiller, 2010, Legenstein et al., 2010, Fer-

nández and Borrajo, 2008, Gisslén et al., 2011, Pierce and Kuipers, 1997, Jodogne and Piater,

2007] showed limits in the quality of the produced features: a single agent interacting deter-

ministically with the environment will hardly obtain novel observations until a late stage, and

allowing high training flexibility in late stages typically causes forgetfulness of early-learned

features. This is tackled in this chapter through neuroevolution by training a single, common

compressor on observations obtained by all the individuals in the population. This guar-

antees a larger pool of behaviors at each generation, which generates a broader sample of

observations.

Another key improvement is the introduction of intrinsic motivation [Schmidhuber, 1991,

2006, 2010] to boost the score of some individuals. Since the compressor is trained online

on the very observations obtained by the individuals during evolution, it will naturally be

biased towards such observations, which make it less apt at compressing previously-unseen

images. At the same time, while obtaining a previously-seen observation may or may not

correspond to a previously-seen state of the environment, a previously-unseen observation

correspond necessarily to a novel environment state (under the assumption of an deterministic

environment).
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The ability of an individual to produce novel observations is thus directly linked to its ability to

bring the environment to novel states, which implies a behavior capable of novel (previously

unseen) interaction. Rewarding such ability steers the search towards producing offspring

that further explores such interactions, offering direction for improvement even in presence of

fitness plateaus or multimodal landscapes, similarly to what previously discussed in Chapter 4.

This work presents a novel compressor based on Vector Quantization (VQ; Gray [1984]), and

uses Separable Natural Evolution Strategies (SNES; Schaul et al. [2011]) as the evolutionary

algorithm. The genotypes are interpreted into single-layer fully-connected recurrent neural

networks (RNN). The new visual mountain car environment has been introduced by this

work to provide a complex, high-dimensional problem to assess the performance of this

system. The following section will delve deeper into sensory compression (Section 5.2), frame-

work architecture (Section 5.3) and current implementation (Section 5.4), before presenting

experimental results (Section 5.5.3) and discussion (Section 5.6).

5.2 Compressing Observations

This section provides a formal definition of the process described in the work.

At each time step t , an observation ot ∈Rdi m is obtained from the environment based on its

current state. This is encoded by compressor C into a code vector ct ∈Rn where n << dim as

follows:

ct =C (ot ) .

The action at is decided by the controller, a neural network which approximates policy π, by

using the current code as input. The use of recurrent connections in the networks makes them

potentially aware of the entire history of code inputs and actions ({ct ,at , . . . ,c0,a0}) through its

internal representation mt:

at = π(ct ,mt )

mt+1 = G(mt ,ct ,at ) .

The neural network thus takes input ct and computes the internal activation as G(·), yielding

the following equation:

at =π(ct ,G(mt−1,ct−1,at−1)) .
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Inverting the compression operation uses operator R(·) to produce a reconstruction ô as

follows:

ôt = R(C (ot )) .

This enables measuring the quality of the reconstruction in terms of distortion (i.e. reconstruc-

tion error) d(ot , ôt ), using a measure such as the squared error:

d(ot , ôt ) = 1

2
‖ot − ôt‖2 . (5.1)

The overall quality of the compressor can then be evaluated based on its expected distortion:

D(C ,R) =∑
o

p(o) d(o,R(C (o)) ) , (5.2)

where p(o) indicates the probability for observation o to be returned by the environment.

Let the compressor be parameterized by w; if the gradient ∇wD(C ,R) can be computed or

approximated, the compressor can be improved through unsupervised learning.

While the code generated this way is guaranteed to be lower dimensional than the original

observation, no guarantees are given in terms of observation aliasing, where different obser-

vations can in principle generate the same code. This adds up to the intrinsic observation

aliasing of the environment, where different internal states can in principle lead to identical

observations. The problem is mitigated through the use of RNNs, which leverage their internal

memory to distinguish states with identical codes, based on the sequence of observations and

actions which led to them.

5.3 Proposed System

The proposed architecture augments the standard neuroevolution setup with a compressor

which pre-processes the observation into a lower-dimensional code, as seen in Figure 5.1

Standard neuroevolution maintains a population of individual genotypes (parameter sets),

initialized at random, each corresponding to a neural network phenotype. Evaluating a

genotype (individual) corresponds to generating the corresponding phenotype (the neural

network), and interactively running it against an environment (e.g. in a RL task), which

obtains a score used as the individual fitness. A new population of offspring can then be

produced based on the most fit chromosomes, corresponding to an update of the distribution
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Figure 5.1 – System architecture. Following classic neuroevolution, an evolutionary algo-
rithm (1) generates a population of individuals (2), each of which is interpreted into a neural
network (3) and evaluated in a task against an environment (4). The difference though here
is that each observation (5) is sent to an external compressor (6) rather than the network
directly. The compressor produces a compact code (7) that the network uses as input. Each
observation is independently considered by the compressor (8) to further its training (9),
which is done in-between generations. At the end of each individual run, the fitness of the
individual is computed by a composition of the environment’s cumulative reward (10) and
the compressor’s estimate of the individual’s novelty (11). The training update of both the
evolutionary algorithm (12) and the compressor (13) can take place independently once all
individuals have undergone the evaluation process.

parameters in SNES (Section 2.5).

During an individual’s evaluation, observations are interpreted into network inputs. The

network is then activated, and its outputs are again interpreted into a selection of the next

action. The observation interpretation however does not usually go beyond preparing the

input vector for network consumption, e.g. by normalizing the observation’s values in the

range required by the activation function of choice. The work here presented proposes the

inclusion of a compressor producing a lower-dimensional code for the network, which can

be interpreted as an advanced observation preparation (Algorithm 2). A smaller input size

implies a reduced input layer for the network’s, the latter often accounting for the majority of

the network’s overall weights (and thus complexity).

The same compressor is shared between all individuals in a population, ensuring fair indi-

vidual comparison. The training is delayed to the end of each generation. The training set is

composed by a list of observations selected by the compressor itself out of all observation it

receives for compression. These observations are generated by the environment as a conse-

quence of its interaction with (one of) the population’s individuals. Interleaving the online

training with the evolution process thus makes the compressor aware of the novelty of each

observation, simply computed through reconstruction error of the compressed image.

During the first generation, individuals will generate most likely relatively simpler controllers,

in terms of their ability to interact with the environment towards addressing the task’s goal.

These individuals will thereby have limited capabilities of exploring the range of possible in-

teractions with the environments, in turn obtaining only a subset of the possible observations

from the environment. During earlier generations, the compressor will use these for training,
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specializing on such subset.

Later generations will see the emergence of individuals capable of interacting with the en-

vironment in ever novel ways, leading in turn to new observations. The compressor is by

definition not trained to efficiently compress these observations, which in turn corresponds

to higher reconstruction error and thus higher novelty (as seen in Chapter 2.6). In turn this

makes them prime candidates to be selected for compressor training, meaning the next gener-

ation of individual will be able to rely on a compressor ready to encode the previously novel

observations.

At the same time, while low-novelty observations can come in principle from either old or new

ways of interacting with the environment, high novelty observations can only be generated

through novel ways of interacting with the environment. This means that an individual’s

behavioral novelty can be approximated by the novelty of the observations generated during

its interaction with the environment, e.g. as the highest novelty obtained by an observation

during its run.

At the end of an individual’s evaluation, the fitness score typically returned to the evolutionary

algorithm is based on the total accumulated reward obtained by the individual throughout the

run. This work augments this score with a measure of the novelty of the individual, as deduced

from the novelty of the images it obtained from the environment, following [Cuccu and Gomez,

2011]. The complete loop thus becomes (details in Algorithm 2): (i) the environment produces

an observation for the agent current run; (ii) the compressor produces a short code for the

agent’s neural network, which will use it to select an action leading to the next observation;

(iii) internally, the compressor produces a reconstruction based on the code, used to compute

the observation’s novelty; (iv) this novelty is used both to decide whether to include this image

in the training set, and to compute the individual’s novelty (max over all observations).

The networks’ evolution and the compressor’s training thus work independently but in synergy.

At the beginning, networks and compressor are both initialized at random: the compressor

produces a code of little value, but the initial networks would anyway not profit by high-

quality codes. Encoded observations nonetheless enable the networks to produce actions,

which lead to more observations from the environment, which are used by the compressor for

training, increasing the quality of its encodings over time. At the same time the evolutionary

algorithm picks up a fitness gradient to improve the neural network population. As the control

sophistication rises in later generations, new environment states are reached, leading to ever

novel images, supporting a continuous improving of the compressor.

5.4 Experimental Setup

The evolutionary algorithm selected for the proposed setup is Separable NES (SNES; Schaul

et al. [2011]). This algorithm and its Natural Evolution Strategies family are discussed in

Chapter 2.5. SNES provides the fastest performance of the family, making it applicable to
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evolve larger networks: this enables running the same experiments on larger networks using

raw pixel as inputs, providing a better performance assessment.

The specialized, online version of Vector Quantization (VQ; Gray [1984]) used as the com-

pressor is instead a novel method using per-centroid decaying learning rates to enable late

learning while limiting early-features forgetfulness, introduced in the next sections.

Algorithm 2 UL+NE

Initialize( bestFIT, bestIND)
ot ← Initialize(ENV)
while not solved(Env) do

for IND ∈ population do
Initialize(NOVIND)
for step = 1. . . maxsteps do

[error, code] ← COMPRESS(ot , D)
if error > NOVIND then

NOVIND ← error
omax ← ot

at ← SelectAction(IND, code)
ot ← ENVUPDATE(at )

fit← ft ask ⊕NOVIND

if fit > bestFIT then . Best performing individual so far
bestFIT ← fit
bestIND ← IND

X << omax . << Append to compressor training set

UPDATEEA()
D ← TRAINCOMPRESSOR(D,X )
X ←∅

return bestIND

5.4.1 Vector Quantization and Online Learning

Vector Quantization (VQ; Gray [1984]) is an algorithm for lossy compression and dimensional-

ity reduction. Widely regarded for its simplicity, it originated in the context of signal processing.

It works by maintaining a dictionary D of centroids d0 . . .d|D|, with |D| being the dictionary

size. An input vector o is compared with each centroid in the dictionary, producing a vector

of |D| values collectively called a code c. In its original implementation, the code is a vector

of zeros with a single 1 in correspondence of the centroid deemed most similar to the input

vector (lowest reconstruction error).

C (ot ) = c = [c0 . . .c|D|] , ci =
1 argmini

[
d

(
ot ,R(i )

)]
0 otherwise .

(5.3)
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Reconstructing an input vector o based on its code c corresponds to returning this most

similar centroid, which can be obtained with a product of the code and the dictionary ôt = cD .

This basically partitions the input space in |D| regions based on the centroids and the chosen

distortion / error measure.

Minimizing the expected squared-error distortion in batch for all possible observation yields

the K-means algorithm. Porting the algorithm to online learning, where the batch has unbound

size and is not available beforehand, requires instead to follows the gradient of decreasing

distortion ∇DD(C ,R) (after Equation 5.2). The update rule for each centroid hence becomes:

di ← di +α ci (ot −di )

= (1−α ci ) di +α ci ot ,

where ci = 0 for all elements but where C (ot ) = i , for which it is 1. Intuitively, this moves

the trained centroid towards the training element ot with a step size defined by the learn-

ing rate α, decreasing the overall distortion, in a fashion similar to a “mixture of experts”

system [Dietterich, 2000].

As discussed earlier though, some of the observations are seen by the compressor only dur-

ing later stages of training. The compressor needs to maintain a consistent encoding for

observations seen earlier, while still being flexible enough to learn new features in the future.

Particularly in the case of VQ, this means that some centroids need to specialize to earlier

observations, while others need to retain the adaptability to ensure later training.

To obtain this, each centroid is augmented with a different learning rate depending on the

number of times it has been selected for training. The training keeps selecting the same

centroid for training images which are most similar to the centroid itself, which specializes but

lowers its learning rate the further it is trained. Novel observations will instead be matched

to untrained centroids, which will retain a higher learning rate and will thus quickly adapt

to their new specialization. In this work, the centroid-specific learning rate αhi is set to 1/hi ,

with hi being the number of times centroid i has been trained (its history). A constant ω acts

as a lower bound to prevent convergence to zero, which would render the centroid unable of

further adaptation. The learning rate thus decays by 1/h until reaching ω, from which point

on it remains constant:

αhi =
1/hi if 1/hi >ω
ω otherwise .

(5.4)
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5.5 Experimental Setup

All experiments use fully-connected single-layer recurrent neural networks with a total of three

neurons, one corresponding to each action, directly connected to all inputs. Action selection

is performed stochastically using a softmax function on the output layer:

p(ai ) = exp(ai /τ)∑3
j=1 exp(a j /τ)

, (5.5)

with temperature τ= 0.0001.

The compressor’s dictionary size is fixed at |D| = 8 centroids. Each centroid is an array of 450

elements, matching the observations from the environment, initialized at random. The code is

thus 56 times smaller than the raw observation, and the network’s input connections consist of

8×3 = 24 weights instead of 450×3 = 1350 weights – plus 3 recurrent connections and 3 biases

in both cases. The training set for the compressor is built by selecting a single image from

each individual at each generation. Under the reasoning that a useful image for training is

arguably the one that the compressor struggled the most to reconstruct [Schmidhuber, 1991],

the image selected for training is the one with highest novelty, i.e. the highest reconstruction

error. Notably the images are set aside during the individuals’ runs, as the novelty of each

observation is already calculated to estimate the individual’s novelty for fitness scoring, nicely

integrating the setup. The compressor is then trained at the end of each generation, which

resets the training set to empty.

The next sections presents the new visual mountain car task, this work’s setup, and the

corresponding results.

5.5.1 Visual Mountain Car

Our configuration is tested on a new, visual-based version of the mountain car bench-

mark [Moore, 1991, Singh and Sutton, 1996], a standard benchmark for the ability of an

algorithm to perform in presence of large fitness plateaus (Figure 5.3). The car, controlled by

the agent, can only accelerate forward or backwards (plus a NOOP option). At full acceleration

from a standstill on the bottom of the valley, the car does not have sufficient torque to climb

the steep slope and reach the goal. A successful agent thereby needs to learn a swinging

behavior, where a stage of forward thrust and one of backward thrust are alternated at the

stalling points. This allows accumulating the necessary momentum for the car to overcome

the steepness and reach the rightmost peak, thus succeeding in the task.

The environment state is determined by the car’s position and velocity. The results presented

are governed by the following update rules:
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Figure 5.2 – Fitness plateau, conceptualized. The fitness of the controllers depends on
time to completion, so all individuals unable to complete the task (as common in initial
populations) equally receive zero fitness. Such a simple scoring mechanism, common to
many applications (especially in reinforcement learning), has the drawback of making the
controllers indistinguishable based on performance. The fitness slope leading to the optimum
can only be reached through exploration.

vt+1 = [
vt +0.001 at + g cos(3pt )

]
(5.6)

pt+1 = [
pt + vt+1

]
, (5.7)

with time step t , position pt ∈ [−1.2,0.5], velocity vt ∈ [−0.07,0.07], action at ∈ {−1,0,1}, and

gravity g . The altitude of the car is thus calculated as cos(3p). The trial ends with success at

time t if the position p = 0.5 is reached, with reward = 1000− t ), or at time 1 000 with failure

and reward = 0.

Rather than providing direct access to the environment’s state as in the classic version, the

visual mountain car produces a high-dimensional observation by returning a [15×30] = 450

pixels image to the controller. The car is drawn as a color block against white background

(Figure 5.4), with coordinates corresponding to a discretized (thus imprecise) approximation

of 〈p,cos(3p)〉 normalized over the image coordinates.

The original mountain car benchmark was designed to highlight the sensitivity of classical

reinforcement learning methods to fitness plateaus. Neuroevolution performs better in this

context (to the extent of making the classical mountain car somehow trivial), but has limited

applicability to higher-dimensional problems. The visual mountain car instead stresses both

points at once, by providing a higher-dimensional problem with a wide initial fitness plateau,

with sufficient complexity to highlight the synergy between the online-trained compressor

and the evolutionary algorithm’s fitness.
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Figure 5.3 – Original mountain car task. In the original version, the controller receives both
the car’s position and velocity as input. Figure courtesy of [Sutton, 1996].

The task is further complexified by the lack of velocity information, both as in speed (the

vector’s magnitude) and heading (vector sign). The recurrent network needs to compute and

maintain internally such crucial information in order to develop the swinging behavior. To

reduce the impact of luck on initialization, the car is initially positioned at the bottom of

the valley, i.e. the environment is initialized with p0 ∈ [−0.7,−0.3], and negligible velocity

v0 ∈ [−0.07/4,0.07/4]. Finally, to require deeper, multiple swings, the gravity was doubled

from g =−0.0025 to g =−0.005. The low gravity was meant for (and required by) classical RL

methods to ensure the task could be solved by chance in a reasonable number of trials, thus

booting the learning process. Raising it greatly increases the task’s difficulty, as the fitness

plateau is much larger (Figure 5.2).

5.5.2 Configurations

In order to clearly distinguish and assess the advantage in boosting the neuroevolution score

with intrinsic motivation, four different experiment configurations are evaluated:

1. Random Weight Guessing (RWG; Schmidhuber et al. [2001]): the compressor encoding

and training remains as discussed, but the networks are generated with randomly

selected (i.i.d.) weights rather than being trained with SNES. The best network found

is ultimately returned. RWG tends to perform surprisingly well on low-difficulty tasks,

providing a reliable baseline and a measure of the task complexity.

2. Raw images: end-to-end evolution of neural networks using raw pixel input. The com-

pressor is therefore excluded from this setup. The network weight counts is proportion-

ally larger, but no extra layers are added. This provides an insight on the contribution of

the compressor encoding over raw data.

3. Base system: the system presented so far, with the inclusion of the compressor, but
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Figure 5.4 – Visual mountain car task. (a) Third person perspective of the car (black square)
on the slope (cosine function). (b) Observation returned from the environment as a [15×30]
matrix, where the background is represented as 0s (white) and the car’s approximate location
is represented as 1s (color). Both images refer to the car positioned at p = 0 on the standard
slope cos(3p), p ∈ [−1.2,0.5]. No velocity information is available to the controller. The goal is
to reach the top of the rightmost peak, at p = 0.5.

limited to evaluate individuals based on fitness alone, without the addition of the

compressor’s novelty signal.

4. Proposed system: the full contribution presented in this work. The compressor encodes

the observations, the network decides actions based on the code, the compressor is

trained online on a subset of the observations, and the individual score is a combination

of the task’s cumulative reward and the novelty computed by the compressor.

The evolutionary algorithm was initialized withµ randomly sampled i.i.d. from [−0.5,0.5], and

variance set to 1 for all parameters. The population size was fixed to 20 samples / individuals,

with learning ratesαµ =ασ = 0.35. Each setup was alloted 35 generations. All coefficients were

tested to be robust to small variations. The fitness for experiments including novelty signal

was a simple sum of the reward from the environment and the distortion calculated on the

most novel image. As the novelty magnitude is smaller than the environment’s reward, further

normalization was not needed: fitness plateaus assign the same fitness to all individuals,

making the novelty signal the unique differentiation anyway. SNES utilizes fitness shaping as

seen in Section 2.5, thus ensuring the difference in scale is not penalized in the evolution.

5.5.3 Results

Training the compressor incrementally specializes the centroids, as highlighted in Figure 5.5.

Results on the four setups described above (Section 5.5.2) are described in Figure 5.6.

The low performance of Random Weight Guessing (RWG) suggests that the task is of non-

trivial complexity. Moreover, Figure 5.6 only reports results of RWG networks trained to use

codes from the UL compressor as inputs, because training networks on raw pixel inputs using
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(a)

(b)

(c)

Figure 5.5 – Online VQ centroids. (a) Random initialization. (b) After training on observations
from the first generation. (c) At task end. The latter is capable of recognizing all possible
environment states and distinguish them in 8 classes, where similar positions tend to receive
the same representation. Action selection still requires memory to distinguish between the
forward and backward swinging motions, switching behavior on stalling.

RWG was never successful on the task. Interestingly, the 8-dimensional compressed code is

still four times larger than the state vector of the original task (constituted of position and

velocity), while at the same time much less informative (at best, the encoding can capture an

approximated position).

In order to test the limits of the contribution of the novelty signal to the overall evolution, the

gravity was raised from g =−0.005 to g =−0.00545, while the maximum number of steps was

halved from 1000 to 500. This makes the task barely solvable at all, lowering the probability of

finding a solution by mere chance. Results are presented on the right-hand side in Figure 5.6.

Not only the performance of the RWG setup is reduced, but the performance of the one based

on SNES is drastically hindered. The setup based on raw pixel images fed to a SNES-trained

network was never successful, and has as such been removed from the plot.
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Figure 5.6 – Experimental performance. Results are presented as the average number of steps
required to solve the visual mountain car task at each generation (smoothed with moving
average, window size 3). The plot on the left-hand side shows performance based on the
experiment setup as described in Section 5.5.2. Compressing the observations significantly
reduces the training time. Intrinsic motivation has a distinctive but minor positive impact on
performance. The right-hand side plot corresponds to a harder task with increased gravity and
reduced alloted time, as described in Section 5.5.3. This greatly broadens the fitness plateau
constituted by individuals unable to solve the task, thus receiving zero reward. The addition of
behavioral novelty from the compressor as intrinsic motivation provides a search direction
even inside the plateau, greatly boosting the algorithm’s performance and reliability.

While the setup of SNES plus compressor – but without novelty – still shows an improving trend,

its convergence speed is notably reduced. The setup including the novelty signal instead shows

a learning trend comparable to the much simpler settings on the left-hand side. There is in

principle no guarantee that exploration alone will overcome an arbitrarily large fitness plateau

in limited time; the novelty signal however introduces a direction of principled exploration

which points the search towards improvement even in presence of fitness plateau. This acts

as a sort of “recovery system” for the search, leading away from known sub-optimal volumes

(since already explored without the search succeeding) even when a direction towards higher

fitness is not available, which increases overall performance. These results are comparable

with the work discussed in Chapter 4, where the search was restarted entirely in a new area of

the search which was promising from a novelty perspective.

5.6 Discussion

This chapter proposes the use of a compressor to produce a low-dimensional encoding from

high-dimensional observations. This is used as input by neural network controllers in a

reinforcement learning neuroevolution task. The compressor is trained online on the very

images produced by the individuals during their runs, thereby accumulating a history of the

interactions with the environment across the evolutionary process so far. This enables it to

evaluate a new observation for its novelty, which in turn is tied to the ability of the individual

which obtained it to interact with the environment in a novel way, i.e. behavioral novelty.

Constructing the fitness of the individual from a combination of the environment’s reward
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and the compressor’s novelty score helps overcoming fitness plateaus in the search, improving

overall performance.

The method is tested on a new, harder, visual version of the mountain car task set to return high-

dimensional images from a third-person perspective rather than the usual highly informative

and low-dimensional vectors of position and velocity. Different setups were considered,

including combinations with random weight guessing and raw pixel input (i.e. skipping

the compressor) to highlight the contribution of each part. The final setup includes a very

small (3 neurons) single-layer fully-connected recurrent neural network for the controller,

Separable Natural Evolution Strategies for the evolutionary algorithm (these two in a classic

neuroevolution setup), and a novel compressor based on Vector Quantization suited for online

learning.

A first set of results shows how the compressor greatly simplifies the task, enabling RWG to

reach the goal at all and SNES to be consistently successful, with the novelty signal from the

compressor only marginally improving the results. An additional set of experiments, where

the environment parameters are set for a harder task pushing the boundaries of feasibility,

highlights the true value of the inclusion of the novelty signal. This implementation alone

remains resilient to the increase in task complexity, easily surpassing the performance of all

other methods.

The next chapter will continue along this line by addressing a problem orders of magnitudes

more complex.
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Shallow Networks

The previous chapter highlights the advantages of observation pre-processing in neuroevo-

lution applications. The results presented refer to a single baseline though, leaving open

the question of whether the system could scale to larger, more complex applications, and

whether it could maintain the generalization necessary to tackle different tasks with minimal

adaptation.

Deep reinforcement learning on Atari games for example already provides results by means

of mapping pixel directly to actions (see Chapter 6.2.1); internally, the deep neural network

bears the responsibility of both extracting useful information and making decisions based on

it. By separating the image processing from decision-making, one could better understand

the complexity of each task, as well as potentially find smaller policy representations that are

easier for humans to understand and may generalize better.

To this end, this chapter proposes a new method for learning policies and compact state

representations separately but simultaneously for policy approximation in reinforcement

learning. State representations are generated by an encoder based on two novel algorithms:

Increasing Dictionary Vector Quantization makes the encoder capable of growing its dictionary

size over time, to address new observations as they appear in an open-end online-learning

context; Direct Residuals Sparse Coding encodes observations by disregarding reconstruction

error minimization, and aiming instead for highest information inclusion. The encoder selects

autonomously (online) observations to train on, in order to maximize code sparsity.

As the dictionary size increases, the encoder produces increasingly larger inputs for the neural

network: this is addressed by a variation of the Exponential Natural Evolution Strategies

algorithm which adapts its probability distribution dimensionality along the run. The system

is tested on a selection of Atari games using tiny neural networks of only 6 to 18 neurons

(depending on the game’s controls). These are still capable of achieving results comparable—

and occasionally superior—to state-of-the-art techniques which use two orders of magnitude

more neurons.
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6.1 Introduction

In deep reinforcement learning, a large network learns to map complex, high dimensional

input (often visual) to actions, in a direct policy approximation. When a giant network with

hundreds of thousands of parameters learns a relatively simple task (such as playing Qbert) it

stands to reason that only a small part of what is learned is the actual policy. A common un-

derstanding is that the network internally learns to extract useful information (features) from

the image observation with the first layers by mapping pixels to intermediate representations,

allowing the last (few) layer(s) to map these representations to actions. The policy is thus

learned at the same time as the intermediate representations, making it almost impossible to

study the policy in isolation.

Separating the representation learning from the policy learning allows in principle for higher

component specialization, enabling smaller networks dedicated to policy learning to address

problems typically tackled by much larger networks. This size difference represents a net

performance gain, as larger networks can be devoted to addressing problems of higher com-

plexity. For example, current results on Atari games are achieved using networks of hundreds

of neurons; making the same game playable (with comparable performance) by a network

k times smaller paves the road to training larger networks on k independent games, using

currently available methods and resources.

Separating the policy network from the image parsing also allows to better understand how

network complexity contributes to accurately representing the policy. While vision-based

tasks are often addressed with very large networks, the learned policies by themselves would

in principle not require such high-capacity models. Yet another reason to investigate how to

learn smaller policy networks by addressing the image processing with a separate component

is that smaller networks may offer better generalization. This phenomenon is well-known

from supervised learning, where smaller-capacity models tend to overfit less, but has not been

explored much in reinforcement learning.

The key contribution of this chapter is a new method for learning policy and features simulta-

neously but separately in a complex reinforcement learning setting. This is achieved through

two novel algorithms: Increasing Dictionary Vector Quantization (IDVQ) and Direct Residuals

Sparse Coding (DRSC).

IDVQ maintains a dictionary of centroids in the observation space, which can then be used

for encoding. The two main differences with standard VQ are that the centroid (i) are trained

online by (ii) disregarding reconstruction error. Online training is achieved with the algorithm

autonomously selecting images for its training from among the observations it receives to be

encoded, obtained by the policies as they interact with the environment. The disregard for

reconstruction error comes instead from shifting the focus of the algorithm to the arguably

more crucial criterion (from the perspective of the application at hand) of ensuring that all of

the information present in the observation is represented in the centroids. This is done by

means of constructing new centroids as a residual image from the encoding while ignoring
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Figure 6.1 – System diagram. At each generation the optimizer (1) generates sets of weights
(individuals) (2) for the neural network controller (3). Each network is evaluated episodically
against the environment (4). At each step the environment sends an observation (5) to an
external compressor (6), which produces a compact encoding (7). The network uses that
encoding as input. Independently, the compressor selects observations (8) for its training set
(9). At the end of the episode, the environment returns the fitness (cumulative reward; 10)
to the optimizer for training (neuroevolution; 11). Compressor training (12) takes place in
between generations.

reconstruction artifacts. See Section 6.3.2 for further discussion.

The dictionary trained by IDVQ is then used by DRSC to produce a compact code for each

observation. This code will be used in turn by the neural network (policy) as input to select

the next action. The code is a binary string: a value of ‘1’ indicates that the corresponding

centroid contains information also present in the image, and a limited number of centroids

are used to represent the totality of the information.

As the training progresses and more sophisticated policies are learned, complex interactions

with the environment result in increasingly novel observations; the dictionary reflects this

by growing in size, including centroids that account for newly discovered features. A larger

dictionary corresponds to a larger code, forcing the neural network to grow in input size. This

is handled using a specialized version of Exponential Natural Evolution Strategy which adapts

the dimensionality of the underlying multivariate Gaussian.

With the goal of minimizing the network size while maintaining comparable scores, experi-

mental results show that this approach can effectively learn both components simultaneously,

achieving state-of-the-art performance on several ALE games while using a neural network of

only 6 to 18 neurons, i.e. two orders of magnitude smaller than any known previous implemen-

tation. This research paves the road for training deep networks entirely dedicated to policy

approximation, aiming at problems of unprecedented complexity.

6.2 Related work

6.2.1 Video games as AI benchmarks

Games are useful as AI benchmarks as they are often designed to challenge human cognitive

capacities. Board games such as Chess and Go have been used as AI benchmarks since the
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inception of artificial intelligence research, and have been increasingly used for testing and

developing AI methods [Yannakakis and Togelius, 2018]. Though various video game-based

AI competitions and frameworks exist, the introduction of the Arcade Learning Environment

(ALE) did much to catalyze the use of arcade games as AI benchmarks [Bellemare et al., 2013].

ALE is based on an emulation of the Atari 2600, the first widely available video game console

with exchangeable games, released in 1977. This was a very limited piece of hardware: 128

bytes of RAM, up to 4 kilobytes of ROM per games, no video memory, and an 8-bit processor

operating at less than 2 MHz. The limitations of the original game console mean that the games

are visually and thematically simple. Most ALE games feature two-dimensional movement and

rules mostly triggered by sprite intersection. In the most common setup, the raw pixel output

of the ALE framework is used as inputs to a neural network, and the outputs are interpreted

as commands for playing the game. No forward model is available, so planning algorithms

cannot be used. Using this setup, Mnih et al. reached above human level results on a majority

of 57 Atari games that come with the standard distribution of ALE [Mnih et al., 2015]. Since

then, a number of improvements have been suggested that have improved game-playing

strength on most of these games [Hessel et al., 2017].

6.2.2 Neuroevolution

Neuroevolution refers to the use of evolutionary algorithms to train neural networks [Floreano

et al., 2008, Yao, 1999, Igel, 2003, Risi and Togelius, 2017]. Typically, this means training the

connection weights of a fixed-topology neural network, though some algorithms are also

capable of evolving the topology at the same time as the weights [Stanley and Miikkulainen,

2002].

When using neuroevolution for reinforcement learning, a key difference is that the network

is only trained in between episodes, rather than at every frame or time step. In other words,

learning happens between episodes rather than during episodes; this has been called phyloge-

netic rather than ontogenetic reinforcement learning [Togelius et al., 2009]. While it could be

argued that evolutionary reinforcement learning should learn more slowly than ontogenetic

approaches such as Q-learning, as the network is updated more rarely and based on more

aggregated information, the direct policy search performed by evolutionary algorithms allows

in principle for a freer movement in policy space. Empirically, neuroevolution has been found

to reach state-of-the-art performance on reinforcement learning problems which can be

solved with small neural networks [Gomez et al., 2008] and to reach close to state-of-the-art

performance on games in the ALE benchmark played with visual input [Salimans et al., 2017,

Chrabaszcz et al., 2018]. In general, neuroevolution performs worse in high-dimensional

search spaces such as induced by deep neural networks, but there have also been recent

results where genetic algorithms have been shown to be competitive with gradient descent

for training deep networks for reinforcement learning [Such et al., 2017]. Neuroevolution

has also been found to learn high-performing strategies for a number of other more modern
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games including racing games and first-person shooters, though using human-constructed

features [Risi and Togelius, 2017].

For training the weights of a neural network only, modern variants of evolution strategies can

be used. The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [Hansen and Oster-

meier, 2001] represents the population implicitly as a distribution of possible search points; it

is very effective at training small-size networks in reinforcement learning settings [Igel, 2003].

Another high-performing development of evolution strategies, introduced in Chapter 2.5, is

the Natural Evolution Strategies (NES) family of algorithms [Wierstra et al., 2014b]. While both

CMA and NES suffer from having a number of parameters required for evolution growing su-

perlinearly with the size of the neural network, there are versions that overcome this problem,

as discussed in Chapter 7.

6.2.3 Compressed representation in reinforcement learning

The high dimensionality of visual input is a problem not only for evolutionary methods, but

generally for learning technique. The origin of the success of deep learning can be traced

to how deep convolutional networks handle large dimensional inputs; up until a few years

ago, reinforcement learning generally relied on low-dimensional features, either by using

intrinsically low-dimensional sensors (such as infrared or laser range-finders) or by using

hard-coded computer vision techniques to extract low-dimensional state representations from

image data. Such hard mappings however do not lend themselves to generalization; in order

to create a more general reinforcement learning method, the mapping must be automatically

constructed or learned.

Several approaches have been proposed in that sense in reinforcement learning. Some of

them rely on neural networks, in particular on various forms of autoencoders [Alvernaz and

Togelius, 2017, Ha and Schmidhuber, 2018]. An alternative is to use compressors as seen in

Chapter 5, where a number of prototype vectors are found and each vector is used as a feature

detector–the value of that feature being the similarity between the actual high-dimensional

input and the vector, similar to a radial basis function network.

6.3 Method

The system proposed is divided into four main components: (i) the Environment is an

Atari game, taking actions and providing observations; (ii) the Compressor extracts a low-

dimensional code from the observation, while being trained online with the rest of the system;

(iii) the Controller is the policy approximizer, i.e. the neural network; finally (iv) the Optimizer

is the learning algorithm, improving the performance of the network over time, in this case an

Evolution Strategy. Each component is described in more detail below.
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6.3.1 Environment

The testing environment of choice is the Arcade Learning Environment (ALE), interfaced

through the OpenAI Gym framework [Brockman et al., 2016]. As discussed above, ALE is built

on top of an emulator of the Atari 2600, with all the limitations of that console. In keeping

with ALE conventions, the observation consists of a [210×180×3] tensor, representing the

RGB pixels of the screen input. The output of the network is interpreted (using one-hot

encoding) as one of 18 discrete actions, representing the potential inputs from the joystick.

The frame-skipping is fixed at 5 by following each action with 4 NOOP commands.

6.3.2 Compressor

The role of the compressor is to provide a compact representation for each observation coming

from the environment, enabling the neural network to entirely focus on decision making. This

is done through unsupervised learning on the very same observations that are obtained by the

network interacting with the environment, in an online learning fashion.

This work address such limitations through a new algorithm based on Vector Quantization

(VQ), named Increasing Dictionary VQ, coupled with a new Sparse Coding (SC) method named

Direct Residuals SC. Together they aim at supporting the study of the spaces of observations

and features, while offering top performance for online learning. The only prior work using

unsupervised learning as a pre-processor for neuroevolution is Cuccu et al. [2011b], Alvernaz

and Togelius [2017]. The following sections will derive IDVQ+DRSC starting from the vanilla

VQ, explaining the design choices which led to these algorithms

Vanilla vector quantization

The standard VQ algorithm [Gray, 1984] maintains a fixed-size set of centroids (called a dictio-

nary) in the space of observations. A target vector is approximated by a linear combination of

the dictionary and a set of coefficients (the code), corresponding to a similarity between the

target vector and each centroid. The dictionary is adapted by minimizing reconstruction error

during training.

Applications to online reinforcement learning however present a few limitations. Additional

training data is not only unavailable until late stages, but is also only accessible if obtained

by individuals through interaction with the environment. Take for example an Atari game

with different enemies in each level: observing a second-level enemy depends on the ability to

solve the first level of the game, requiring in turn the compressor to recognize the first-level

enemies. A successful run should thereby alternate improving the dictionary with improving

the candidate solutions: at any stage, the dictionary should provide an encoding supporting

the development of sophisticated behavior.

In online learning though, two opposite needs are in play: on one hand, the centroids need
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Algorithm 3 IDVQ

Inputs:
X : training set, X ∈X
D: current dictionary
δ: minimal aggregated residual for inclusion

Initialize:
D ←∅ . dictionary initialized empty

for X in X do
P ← X . residual information to encode
c ← DRSC (X ,D,ε,Ω) . ε andΩ given
P̂ ← cD

ℛ←P − P̂

ri ← max(0,ri ), ∀ri ∈ℛ . remove artifacts
if Σ|ℛ| > δ then

D <<ℛ . append ℛ to D

return D

to be trained in order to provide a useful and consistent code; on the other hand, late stage

training on novel observations requires at least some centroids to be preserved untrained.

Comparing to vanilla VQ, random centroids cannot be used for the code. The work in Chap-

ter 5.4.1 is only able to do so because the observations are already very simplistic.

Uniformly drawing from the space of all possible images generates in principle an enormously

sparse spread w.r.t. the small sub-volume of an Atari game’s image. The similarity of a random

centroid to any such image will be about the same: using random centroids as the dictionary

consequently produces an almost constant code for any image from a same game1. Image

differentiation is relegated to the least significant digits, making it suboptimal as a neural

network input. Directly addressing this problem naturally calls for starting with a smaller

dictionary size, and increasing it at later stages as new observations call for it.

Increasing Dictionary VQ

Increasing Dictionary VQ (IDVQ, Algorithm 3) is a new compressor based on VQ which auto-

matically increases the size of its dictionary over successive training iterations, specifically

tailored for online learning. Rather than having a fixed-size dictionary, IDVQ starts with an

empty dictionary, thus requiring no initialization, and adds new centroids as the learning

progresses.

This is done by building new centroids from the positive part of the reconstruction error,

which corresponds to the information from the original image (rescaled between 0 and 1)

which is not reconstructed by the current encoding (see Algorithm 3). Growth in dictionary

size is regulated by a threshold δ, indicating the minimal aggregated residual considered to

1This has also been empirically verified in earlier iterations of this work
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Algorithm 4 DRSC

Inputs:
X : vector to encode (observation)
D: dictionary trained with IDVQ
ε: minimal aggregated residual loss
Ω: maximum nonzero elements in the code

Initialize:
P ← X . residual information to encode
c ←~0 . output code
ω← 0 . non-zero elements in the code

while Σ|P | > ε and ω<Ω do
S ← sim(P ,di ),∀di ∈D

msc ← index of max (S )
cmsc ← 1 . c = [c1 . . .cn]
ω←ω+1
P ←P −dmsc .D = [d1 . . .dn]
ρi ← max(0,ρi ), ∀ρi ∈P

return c

be a meaningful addition. The training set is built by uniformly sampling the observations

obtained by all individuals in a generation.

Centroids added to the dictionary are not further refined. This is in line with the goal of

image differentiation rather than minimizing reconstruction error: each centroid is purposely

constructed to represents one particular feature, which was found in an actual observation

and was not available in the dictionary before.

Growing the dictionary size however alters the code size, and thus the neural network input

size. This requires careful updates in both the controller and the optimizer, as addressed in

Sections 6.3.3 and 6.3.4 respectively.

Direct Residuals Sparse Coding

The performance of dictionary-based algorithms depends more on the encoding than on

dictionary training – to the point where the best performing algorithms have but a marginal

improvement in performance when using sophisticatedly trained centroids versus random

training samples [Coates and Ng, 2011]. Sparse coding algorithms have been shown in recent

years to consistently surpass the performance of other encoding algorithms in compression

and reconstruction tasks [Mairal et al., 2014, Zhang et al., 2015].

The reconstruction is commonly a linear combination of the dictionary using the code as

coefficients. Most implementations utilize a dot product for this task; while conceptually

elegant, an avoidable performance overhead comes from multiple (most) products having

null coefficients. On top of that, state-of-the-art encoding algorithms often take an iterative
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Figure 6.2 – Trained centroids. A few centroids trained with IDVQ during a run of the game
Qbert. Notice how the first captures the initial state of the game (backgroud), while the others
build features as subsequent residuals: lit cubes, avatar and enemy. Colors are inverted for
printing purposes.

approach [Mallat and Zhang, 1993, Pati et al., 1993] where (i) few centroids are selected, (ii) a

corresponding code is built, (iii) the reconstruction error is computed, and (iv) the algorithm

loops back to (i) to try alternative combinations of centroids. Sparse coding algorithms usually

use an over-complete dictionary and enforce sparsity using the `0 or `1 of the code as a

regularization term, further increasing the toll on performance. In the proposed context

though, the time taken by the encoding proportionally reduces the time alloted for decision

making. Prioritizing distinction over precision requires an overhaul of the objective function

from the ground up, as the code will be used to recognize a state and issuing a consequent

action rather than reconstructing the original input.

Direct Residuals Sparse Coding (DRSC, Algorithm 4) addresses these issues: a novel sparse

coding algorithm specifically tailored to produce highly differentiating encoding in a mini-

mum amount of time. Its key characteristics are: (i) it uses compact dictionaries rather than

comprehensive ones, based on atomic centroids constructed as residual images from the re-

construction of training vectors; (ii) it produces binary encodings, reducing the reconstruction

process to an unweighted sum over the centroids selected by the code’s nonzero coefficients;

(iii) it produces the code in a single pass based on the reconstruction residuals, and terminates

early after a small number of centroids are selected. Leveraging IDVQ, where the dictionary is

designed to represent most of the observation’s content through consecutive residuals, DRSC

iteratively selects the centroid that most closely resembles the remaining information in the

encoded observation.

Step-by-step breakdown

Increasing Dictionary VQ is used to train a dictionary, used by Direct Residuals SC to encode

(compress, extract features from) an observation (image). To understand how these algo-

rithms work together, consider a working starting dictionary and see how DRSC produces an

encoding.

The initialization includes two steps: the code, as an arrays of zeros with the same size as the

dictionary, and the residual information still needing encoding, initially the whole original
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image. The algorithm then loops to select centroids to add to the encoding, based on how

much of the residual information can they encode. To select the most similar centroid, the

algorithm computes the differences between the residual information and each centroid in

the dictionary, aggregating each of these differences by summing all values. The centroid with

the smallest aggregated difference is thereby the most similar to the residual information, and

is chosen to be included in the encoding. The corresponding bit in the binary code is then

flipped to ‘1’, and the residual information is updated by subtracting the new centroid.

The sign of the values in the updated residual information (old residual minus new centroid,

the order matters) are now significant: (i) values equal to zero mean a perfect correspondence

between the pixel information in the old residual and the corresponding value in the new

centroid; (ii) positive values correspond to information that was present in the old residual

but not covered by the new centroid; (iii) negative values correspond to information present

in the new centroid, but absent (or of smaller magnitude) in the old residual. This is crucial as

the goal of the algorithm is to fully represent the totality of the original information, and from

this end is free to disregard reconstruction artifacts as found in (iii).

Encoding algorithms typically do not distinguish the sign of these values: aiming at minimizing

reconstruction error, they focus on the error’s magnitude, not on its origin. DRSC is instead

focused solely on representing all the information initially present in the image. The artifacts

in the negative values are disregarded by setting them to zeros. The result is a residual image

of information present in the original image but not yet captured by the reconstruction.

The algorithm then keeps looping and adding centroids until the (aggregated) residual infor-

mation is lower than a threshold, corresponding to an arbitrary precision in capturing the

information in the original image. To enforce sparsity, a secondary stopping criterion for the

encoding loop is when too many centroids are added to the code, based on another threshold.

Images with high residual information after encoding are prime candidates for compressor

training.

The dictionary is trained with IDVQ by adding new centroids to minimize leftover residual

information in the encoding. The training begins by selecting an image from the training set

and encoding it with DRSC, producing the binary code as described above. A dot product

between the code and the dictionary (corresponding to summing the selected centroids since

the code is binary) produces a reconstruction of the original image, similarly to other VQ-based

algorithms.

The difference between the training image and the reconstruction then produces a reconstruc-

tion error (image), where the sign of the values once more corresponds to their origin: positive

values are leftover information from the image which is not encoded in the reconstruction,

while negative values are reconstruction artifacts with no relation to the original image. This

reconstruction error image is then aggregated (with a sum) to estimate the quantity of infor-

mation missed by the encoding. If it is above a given threshold, a new centroid should be

added to the dictionary to enable DRSC to make a more precise reconstruction. The new
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centroid is the reconstruction error itself, as it will by definition enable a perfect capture of the

leftover information of the current encoding.

6.3.3 Controller

The controller for all experiments is a single-layer fully-connected recurrent neural network

(RNN). Each neuron receives the following inputs through weighted connections: the inputs

to the network, the output of all neurons from the previous activation (initially zeros), and a

constant bias (always set to 1). The number of inputs is equal at any given point in time to

the size of the code coming from the compressor. As the compressor’s dictionary grows in size,

so does the network’s input. In order to ensure continuity in training (i.e. the change needs

to be transparent to the training algorithm), it is necessary to define an invariance across

this change, where the network with expanded weights is equivalent to the previous one.

This is done by setting the weights of all new connections to zero, making the new network

mathematically equivalent to the previous one, as any input on the new connections cancels

out. The same principle can be ported to any neural network application.

The number of neurons in the output layer is kept equal to the dimensionality of the action

space for each game, as defined by the ALE simulator. This is as low as 6 in some games, and 18

at most. Actions are selected deterministically in correspondence to the maximum activation.

No hidden layer nor extra neurons were used in any of the presented results. The increase in

dimensionality in the input connections’ weights corresponds to a growth in the parameter

vector of the optimizer, as described below in Section 6.3.4.

6.3.4 Optimizer

The optimizer used in the experiments is a variation of Exponential Natural Evolution Strat-

egy(XNES, introduced in Chapter 2.5.2. This section derives a version tailored for evolving

networks with dynamic varying size.

Since the parameters are interpreted as network weights in direct encoding neuroevolution,

changes in the network structure need to be reflected by the optimizer in order for future

samples to include the new weights. Particularly, the multivariate Gaussian acquires new

dimensions: θ should be updated keeping into account the order in which the coefficients of

the distribution samples are inserted in the network topology.

Section 6.3.3 explains how the network update is carried through by initializing the new

weights to zeros. In order to respect the network’s invariance, the expected value of the

distribution (µ) for the new dimension should be zero. As for Σ, the values for the new rows

and columns need to be inserted in correspondence to the new dimensions, knowing that (i)

the new weights did not vary so far in relation to the others (as they were equivalent to being

fixed to zero until now), and that (ii) everything learned by the algorithm until now was based

on the samples having always zeros in these positions. So Σmust have for all new dimensions
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Table 6.1 – Game scores. Scores on a sample of Atari games (sorted alphabetically), compared
to results from HyperNeat [Hausknecht et al., 2014] and OpenAI ES [Salimans et al., 2017].
Results from GA (1B) [Such et al., 2017] and NSRA-ES [Conti et al., 2017] are also provided
(though the intersection between games sets is minimal) to include work aimed at expanding
the network size, rather than shrinking it. All methods were trained from scratch on raw pixel
input but for NSRA-ES, which uses a compact state representation read from the simulated
Atari RAM. Column ‘#n’ indicates how many neurons were used in this work in a single layer
(output) for each game. The number of neurons corresponds to the number of available
actions in each game, i.e. no neurons are added for performance purpose.

Game HyperNeat OpenAI ES GA (1B) NSRA-ES IDVQ+DRSC+XNES #n

DemonAttack 3590 1166.5 - - 325 6
FishingDerby -49 -49 - - -10 18
Frostbite 2260 370 4536 3785 300 18
Kangaroo 800 11200 3790 1200 18
NameThisGame 6742 4503 - 920 6
Phoenix 1762 4041 - 4600 8
Qbert 695 147.5 - 1350 1250 6
Seaquest 716 1390 798 960 320 18
SpaceInvaders 1251 678.5 - - 830 6
TimePilot 7340 4970 - - 4600 10

Table 6.2 – Results. The presented method achieves comparable scores (sometimes better)
using up to two orders of magnitude less neurons, and no hidden layers. The proposed
feature extraction algorithm IDVQ+DRSC is simple enough (using basic, linear operations)
to be arguably unable to contribute to the decision making process in a sensible manner
(see Section 6.3.2). This implies that the tiny network trained on decision making alone is of
sufficient complexity to learn a successful policy, potentially prompting for reconsidering the
actual complexity of this standard benchmark. The following numbers refer to networks for
games with the largest action set (18). See Table6.1 for the actual number of neurons used in
the output layer for each game.

HyperNeat OpenAI ES GA (1B) NSRA-ES IDVQ+DRSC+XNES

# neurons ~3034 ~650 ~650 ~650 ~18
# hidden layers 2 3 3 3 0
# connections ~906k ~436k ~436k ~436k ~3k

(i) zeros covariance and (ii) arbitrarily small variance (diagonal), only in order to bootstrap the

search along these new dimensions.

Take for example a one-neuron feed-forward network with 2 inputs plus bias, totaling 3 weights.

A function mapping the optimizer’s parameters to the weights in the network structure (i.e.

the genotype to phenotype function) will first fill the values of all input connections, then all

bias connections. Extending the input size to 4 requires the optimizer to consider two more
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weights before filling in the bias:

µ=
[
µ1 µ2 µb

]
→

[
µ1 µ2 0 0 µb

]

Σ=

σ
2
1 c12 c1b

c21 σ2
2 c2b

cb1 cb2 σ2
b

 →


σ2

1 c12 0 0 c1b

c21 σ2
2 0 0 c2b

0 0 ε 0 0

0 0 0 ε 0

cb1 cb2 0 0 σ2
b



with ci j being the covariance between parameters i and j , σ2
k the variance on parameter k,

and ε being arbitrarily small (0.0001 here). The complexity of this step of course increases

considerably with more sophisticated mappings, for example when accounting for recurrent

connections and multiple neurons, but the basic idea stays the same. The evolution can pick

up from this point on as if simply resuming, and learn how the new parameters influence the

fitness.

6.4 Experimental setup

The experimental setup further highlights the performance gain achieved, and is thus crucial

to properly understand the results presented in the next section:

• All experiments were run on a single machine, using a 32-core Intel(R) Xeon(R) E5-2620 at

2.10GHz, with only 3GB of ram per core (including the Atari simulator and Python wrapper).

• The maximum run length on all games is capped to 200 interactions, meaning the agents

are alloted a mere 1′000 frames, given a constant frameskip of 5. This was done to limit the

run time, but in most games longer runs correspond to higher scores.

• Population size and learning rates are dynamically adjusted based on the number of param-

eters, based on the XNES minimal population size and default learning rate [Glasmachers

et al., 2010]. The population size is rescaled by 1.5 and the learning rate by 0.5. In all runs on

all games, the population size is between 18 and 42, again very limited in order to optimize

run time on the available hardware.

• The dictionary growth is roughly controlled by δ (see Algorithm 3), but depends on the

graphics of each game. The average dictionary size by the end of the run is around 30-50

centroids, but games with many small moving parts tend to grow over 100. In such games

there seems to be direct correlation between higher dictionary size and performance, but

the reference machine performed poorly over 150 centroids. Numbers close to δ= 0.005 are

robust in the setup across all games.

• Graphics resolution is reduced from [210×180×3] to [70×80], averaging the color channels

to obtain a grayscale image. This also contributes to lower run times.
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• Every individual is evaluated 5 times to reduce fitness variance.

• Experiments are allotted a mere 100 generations, which averages to 2 to 3 hours of run time

on the reference machine.

These computational restrictions are extremely tight compared to what is typically used in

studies utilizing the ALE framework. Limited experimentation indicates that relaxing any

of them, i.e. by accessing the kind of hardware usually dedicated to modern deep learning,

consistently improves the results on the presented games. The full implementation is available

open-source on my GitHub2.

6.5 Results

The goal of this work is not to propose a new generic feature extractor for Atari games, nor a

novel approach to beat the best scores from the literature. The declared goal is to show that

dividing feature extraction from decision making enables tackling hard problems with minimal

resources and simplistic methods, and that the deep networks typically dedicated to this task

can be substituted for simple encoders and tiny networks while maintaining comparable

performance. Table 6.2 emphasizes such findings in this regard.

Under these assumptions, Table 6.1 presents comparative results over a set of 10 Atari games

from the hundreds available on the ALE simulator. This selection is the result of the following

filtering steps: (i) games available through the OpenAI Gym; (ii) games with the same observa-

tion resolution of [210,160] (simply for implementation purposes); (iii) games not involving

3D perspective (to simplify the feature extractor). The resulting list was further narrowed

down due to hardware and runtime limitations. A broader selection of games would support a

broader applicability of the presented specialized setup; this work on the other hand aims at

highlighting that a simple setup is indeed able to play Atari games with competitive results.

Results on each game differ depending on the hyperparameter setup. To offer a more direct

comparison, the same settings as described above are used for all games, rather than specializ-

ing the parameters for each game. Some games performed well with these parameters (e.g.

Phoenix); others feature many small moving parts in the observations, which would require

a larger number of centroids for a proper encoding (e.g. Name This Game, Kangaroo); still

others have complex dynamics, difficult to learn with such tiny networks (e.g. Demon Attack,

Seaquest).

The resulting scores are mainly compared with two recent publications that offer a broad

set of results across Atari games on comparable settings, namely Salimans et al. [2017] and

Hausknecht et al. [2014]. The list of games and correspondent results are available in Table 6.1.

Notably, the setup achieves high scores on Qbert, arguably one of the harder games for its

requirement of strategic planning.

2https://github.com/giuse/DNE
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The resulting scores are compared with recent papers that offer a broad set of results across

Atari games on comparable settings, namely Salimans et al. [2017], Such et al. [2017], Conti

et al. [2017], Hausknecht et al. [2014]. The list of selected games and correspondent results are

available in Table 6.1. Notably, the proposed setup achieves high scores on Qbert, arguably

one of the harder games for its requirement of strategic planning.

The real results of the paper however are highlighted in Table 6.2, which compares the number

of neurons, hidden layers and total connections utilized by each approach. The proposed setup

uses up to two order of magnitude less neurons, two orders of magnitude less connections,

and is the only one using only one layer (no hidden). connections.

6.6 Discussion

This chapter presented a method to address complex learning tasks such as learning to

play Atari games by decoupling policy learning from feature construction, learning them

independently but simultaneously to further specializes each role. Features are extracted

from raw pixel observations coming from the game using a novel and efficient sparse coding

algorithm named Direct Residual Sparse Coding. The resulting compact code is based on a

dictionary trained online with yet another new algorithm called Increasing Dictionary Vector

Quantization, which uses the observations obtained by the networks’ interactions with the

environment as the policy search progresses. Finally, tiny neural networks are evolved to

decide actions based on the encoded observations, to achieving results comparable with the

deep neural networks typically used for these problems while being two orders of magnitude

smaller.

This work shows how a relatively simple and efficient feature extraction method, which

counter-intuitively does not use reconstruction error for training, can effectively extract

meaningful features from a range of different games. The implication is that feature extraction

on some Atari games is not as complex as often considered. On top of that, the neural network

trained for policy approximation is also very small in size, showing that the decision making

itself can be done by relatively simple functions.

The method is empirically evaluated on a set of well-known Atari games using the ALE bench-

mark. Tight performance restrictions are posed on these evaluations, which can run on

common personal computing hardware as opposed to the large server farms often used for

deep reinforcement learning research. The source code is open sourced for further repro-

ducibility.

The game scores are in line with the state of the art in neuroevolution, while using but a

minimal fraction of the computational resources usually devoted to this task. One goal of this

work is to clear the way for new approaches to learning, and to call into question a certain

orthodoxy in deep reinforcement learning, namely that image processing and policy should

be learned together. Future work will address training deep networks entirely dedicated to
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policy learning, capable in principle of scaling to problems of unprecedented complexity. To

this end it is crucial to design EAs capable of graciously scaling their performance with the

size of the network, as discussed in the next chapter.

74



7 Scaling Towards Large Networks

As seen in Chapter 2.5, Natural Evolution Strategies is a family of evolutionary algorithms

which maintain a probability distribution over the search space instead of the classic explicit

population. They have high performance in convergence speed, but their applicability is

limited by their heavy computational requirements.

Trade-offs have been investigated, such as XNES vs. SNES (see Chapter 2.5: the former main-

tains full covariance information (fast convergence, slow execution), the latter with diagonal

covariance (slow convergence, fast execution). Depending on the task at hand however, a finer

control over this trade-off could in principle improve performance.

This chapter proposes Block Diagonal NES (BD-NES), a novel algorithm of the NES family

which enables users to customize the trade-off depending on the application. Grouping

together parameters with expected high variance, while ignoring inter-group covariance, gives

a block-diagonal shape to the distribution’s covariance matrix Σ, hence the name. Moreover,

BD-NES generalizes both XNES and SNES (see Chapter 2.5.2), as full covariance information

corresponds to having 1 block of size n, while a diagonal covariance matrix corresponds to n

blocks of size 1.

This algorithm is tested on a novel benchmark crossing the Octopus Arm and the Acrobot, two

widely common benchmarks; integrating both greatly increases the task complexity. Neural

network controllers trained with BD-NES achieve higher performance than using SNES, while

being too large to train using XNES.

7.1 Introduction

Natural Evolution Strategies, discussed in Chapter 2.5, is a family of evolutionary algorithms

where the population is maintained implicitly, through a probability distribution over the

parameters’ space. The distribution’s parameters are updated based on the natural gradient,

providing state-of-the-art performance. Algorithms of the family have been successfully

applied to evolving neural networks (neuroevolution) for policy approximation in a variety of
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reinforcement learning problems [Schaul et al., 2011, Yi et al., 2009, Cuccu et al., 2011b].

Two algorithms in particular, both based on Gaussian distributions, have seen wider adop-

tion (see Chapter 2.5.2). XNES [Glasmachers et al., 2010] maintains a standard multivariate

Gaussian as denoted by its mean vector and covariance matrix (similarly to CMA-ES [Hansen

and Ostermeier, 2001]); SNES [Schaul et al., 2011] on the other hand constraints its search to

distributions which can be described using a diagonal covariance matrix, i.e. where all search

parameters are considered separable (i.e. independent). These offer a trade-off between what

are basically two different kinds of speed:

• XNES has high convergence speed, meaning it produces higher quality solutions in fewer

iterations. This comes at a cost of each iteration taking a longer time to execute.

• SNES instead has high execution speed, implying that each execution is done in a shorter

wall-clock time. The trade-off here is the requirement of far more iterations than XNES

to produce solutions of comparable quality, as the convergence is slow.

XNES thus constitutes the better choice in all cases where the user can afford the wall-clock

time for its execution. Unfortunately its computational performance is cubic on the number

of parameters O (p3), which limits its applicability to problems with few thousands parameters

– and this, on modern hardware. SNES instead, while slower on per-iteration convergence,

offers linear performance O (p), thus scaling to problems with hundreds of thousands of

parameters.

Most problems however include at least some degree of inter-parameter correlation. For

neuroevolution applications in particular, weights of connections entering a same neuron

contribute together to the neuron’s activation: updates should be proportional across all

weights, rather than independent. While not precluding a priori the possibility to converge

to the same solutions as XNES, missing those relationships means that SNES will typically

require orders-of-magnitude more generations to reach comparable results. The ability to

fine-tune the balance between execution speed and convergence speed based on the problem

specifications could be expected in principle to improve overall performance.

This chapter leverages this intuition by introducing a novel algorithm of the NES family, which

generalizes both XNES and SNES, by maintaining a block diagonal covariance matrix, namely

Block Diagonal NES (BD-NES). The user selects which subset of the parameters are expected

to have higher correlation, thus injecting human domain knowledge in an otherwise black-box

setting.

The rest of the chapter will cover the derivation for BD-NES (Section 7.2), comparative results

against SNES on problems beyond the applicability of XNES (Section 7.3), and a discussion of

these results and implications (Section 7.4).
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Figure 7.1 – Block Diagonal parameterization. Both covarianceΣ and meanµ are partitioned
into blocks. In particular Σ is a block-diagonal matrix, hence it is populated with zeros
outside the blocks. Each pair θi = 〈Σi ,µi 〉 defines a sub-distribution which internally holds
full covariance information while being independent from other blocks. By changing the
number and size of the blocks, users can select a trade-off between convergence-speed and
execution-speed. Particularly notable are the boundary settings: 1 block of p parameters
(fastest convergence, slowest execution) corresponds to XNES, while p blocks of size 1 (slowest
convergence, fastest execution) corresponds to SNES.

7.2 Algorithm Design

BD-NES is characterized by maintaining a Gaussian distribution with a block-diagonal co-

variance matrix over the space of parameters. Blocks in the covariance matrix corresponds

to groups of parameters between which full covariance information is maintained. Blocks

are however independent from each other, so parameters in different blocks are considered

independent for sampling purposes. Size can vary between blocks.

Sampling the main distribution intuitively corresponds to sampling a set of sub-distributions

(possibly in parallel) and joining the resulting samples into a full individual. This limits the

intuition of BD-NES as simply a set of XNES algorithms running in parallel, as the fitness func-

tion is defined over full individuals and not block-localized subsamples. After the individual

is constructed and evaluated, the individual score is used for the constituting subsamples in

each underlying XNES.

In neuroevolution in particular, parameter correlation can be partially evinced from the

network structure independently of the actual application or task. Network weights can be

grouped at either neuron or layer level, as discussed in Section 7.1. Figure 7.1 exemplifies a

layout where weights entering a same neuron are grouped together.

Algorithm 5 showcases the final algorithm applied to neuroevolution. The parameters corre-

spond to the network weights (in direct encoding), grouping together those entering a same
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neuron. As the groups can be described by maintaining independent distributions, each group

is assigned a Gaussian with a mean µi and a covariance Σi . The overall BD-NES distribution is

parametrized by a mean built by concatenating the means corresponding to all parameters

groups µ= 〈µ0 . . .µn〉, and covariance built by placing the parameters groups covariances as

the block of a block-diagonal matrix Σ=Diag(Σ0, . . . , Σn).

A generation of BD-NES is thus constituted of (i) sample λ times (with λ population size) each

sub-distribution parametrized by µi , Σi ; (ii) produce λ individuals by joining the sub-samples

from each of the distributions; (iii) evaluate each individual on the task (in neuroevolution:

generate the corresponding network phenotype, run it on the task, return the accumulated re-

ward); (iv) assign the individual score as the fitness for each of the sub-samples that constitute

it; (v) run the XNES update on each sub-distribution using the thus scored sub-samples.

Algorithm 5 provides the algorithm pseudocode, while an open-source implementation can

be found at my GitHub repository1.

Algorithm 5 BD-NES

Inputs:
n: number of blocks
λ: population size

Initialize:
θb ← (µb ,Σb), b ∈ 1. . .n

while not solved do
for i ← 1. . .λ do

zi ← {zi
b ∼N (µb ,Σb)}, ∀b ∈ 1. . .n . individual from concatenating sub-samples

fiti
b ← f (zi ), ∀b ∈ 1. . .n . assign the individual’s fitness to each sub-sample

θb ← XNES_UPDATE(θb , fitb , zb), ∀b ∈ 1. . .n . update sub-distributions

Performance Analysis

As mentioned in Section 7.1, BD-NES generalizes the two main NES algorithms (SNES and

XNES; see Chapter 2.5). This is because both full matrices and diagonal matrices are special

cases of block-diagonal matrices: the first with one block of size p, the second with p blocks

of size one. From a performance perspective thus BD-NES complexity is bound by the two, i.e.

having a lower bound of O (p) (SNES) and upper bound of O (p3) (XNES).

More precisely, Section 7.2 and Algorithm 5 highlight how each block borrows the update

equation from XNES. The performance of a particular instantiation of BD-NES is thus O (B×b3)

with B number of blocks (known constant) and b size of the largest block, which is O (b3).

This implies that any further subdivision of the parameters set into blocks reduces the cubic

term while increasing a constant, enabling for large performance gains from just few blocks

subdivision.

1https://github.com/giuse/machine_learning_workbench/
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Since the cubic term in XNES comes from the covariance matrix updates, inspecting said

matrix provides a direct intuition of the performance savings. Subdividing the parameters set

into two groups immediately corresponds to a covariance matrix made of four quadrants, two

of which (top-right and bottom-left, corresponding to half of the values of the matrix) are set

to zeros and do not need maintaining.

Parallelization

BD-NES is an algorithm particularly suited for a parallel implementation. Since all the sub-

distributions are independent, they can all be sampled and then updated independently in

parallel. Moreover, individual scoring is also independent across individuals, meaning that all

evaluations can also be run in parallel. The algorithm only requires synchronization in two

points: (i) to build full individuals by concatenating sub-samples from all sub-distributions,

and (ii) to return the scores of all individuals so that each sub-distribution can execute the

XNES update.

Since both sampling and update are executed independently on all blocks, (each represented

by an independent XNES instance), a parallel implementation has constant scaling on the

number of groups, and thus on the number of neurons or layers, which removes the known hid-

den constant B from O (B ×b3). While this in principle does not change the big-O performance

of O (b3), in practice this means that as long as parallel resources are available there is no limit

on the number of parameters and thus network size. This partially decouples the algorithm

performance from the performance of currently available hardware, a feat usually achieved

only through the use of the most simplistic evolution strategies [Salimans et al., 2017].

A further improvement in performance can be obtained by spreading the covariance blocks

over machines augmented with processing units optimized for linear algebra such as Graphics

Processing Units (GPUs) and Tensor Processing Units (TPUs). If a [b×b] matrix can be fit in the

processing unit’s dedicated memory, there is no need to further move it, as only distribution

samples are to be extracted and distributed through the network, enabling a potentially

considerable speedup of the O (b3) update step. The availability of such hardware has greatly

increased in the past years thanks to deep learning applications, making it a prime time for

parallel evolutionary algorithms with state-of-the-art convergence such as BD-NES.

7.3 Experimental Setup

To test the performance of BD-NES on a complex neuroevolution task, this work presents a

new reinforcement learning control benchmark coming as a crossover between the (already

quite complex) Octopus Arm and Acrobot. Such an environment requires large network

controllers, with a number of parameters (weights) beyond the applicability of full-covariance

methods such as XNES and CMA-ES [Hansen and Ostermeier, 2001]. Such problems have

been addressed by SNES in past work, but at the cost of convergence speed and often quality
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Figure 7.2 – The Octopus Arm Acrobot task. An arm composed of flexible segments is con-
trolled by a neural network. Initially hanging down, goal of the task is to raise it against gravity
and stretch it to touch the point directly above its fulcrum. Limited arm strength imposes the
need to learn a wind-and-unwind behavior through direct muscle control. The frames shown
correspond to the behavior of a neural network evolved with BD-NES.

of result. Ideally BD-NES should provide a better trade-off by considering intra-neuron

correlation while ignoring any inter-neuron.

7.3.1 The Octopus-Arm Acrobot Task

The proposed Octopus Arm Acrobot task blends two classic RL benchmarks for increased

complexity:

• From the Octopus Arm [Yekutieli et al., 2005, Woolley and Stanley, 2010]: the neural

network controls a segmented non-rigid arm by directly controlling the “muscles” that

compose it. Each segment has constant volume (non-compressible) and includes three

muscles which can be independently contracted.

• From the Acrobot [Spong, 1994]: the arm is suspended from a swiveling pivot, pointing

downwards following gravity. The pivot provides two more torque (rotational) controls.

The goal of the task is to raise the arm against gravity and touch a point stretching

directly above the pivot, against gravity. The pivot does not have sufficient torque to

raise the arm directly, thus requiring to learn a wind-and-unwind behavior (Figure 7.2)

For each segment, the input to the network is constructed as two pairs of 〈x, y〉 coordinates

corresponding to the positions of the two extending corners of the segment, plus the cor-

responding velocities 〈x,y〉. This totals to 8 inputs per segment; to this is added the pivot’s

rotational torque and velocity, for a total of 8s +2 inputs with s number of segments in the

arm. The output of the network is interpreted as whether to contract any of the 3 muscles plus

a torque and direction control for the pivot, for a total of 3s +2 control variables. The result

proposed are based on a 10-segments arm, for a total of 82 inputs and 32 controls.

The pivot is under-actuated, i.e. the available torque is not sufficient to simply swing up the

outstretched arm. Also, rather than using the simpler, high level actions which were defined in

the classic version of the octopus arm (allowing to simultaneously contract groups of muscles),
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this work opted for the much harder direct and independent muscle control.

7.3.2 Parameterization

Results shown utilize a fully-connected single-layer recurrent neural network of 32 neurons.

Each neuron outputs corresponds to one of the 32 control variables of the task. The recurrent

connections provide the controller with limited memory capabilities, enabling it to internally

compute and consider momentum in the swing. For simplicity, no hidden layer have been

added to the architecture, as the network’s complexity is shown sufficient to learn a prompt

and smooth trajectory.

The network accounts for 32×82 input connections, plus 32×32 recurrent connections and

32 bias connections, totaling 3680 weights. Searching in 3680 dimensions with XNES was

unfeasible at the time of this work. The full covariance matrix has 3680×3680 = 13542400

entries. At the same time though, each of the 32 neurons accounts for only 1/32 of the

incoming connections, which is 82+32+1 = 115. Grouping the corresponding parameters for

BD-NES yields 32 115×115 blocks, each thus made of 13225 values, two orders of magnitude

smaller than the full covariance tackled by XNES.

7.3.3 Complete Setup

This experiment fixes the population size to λ= 50. The learning rate for the mean was set

using the NES defaults (as seen in Chapter 2.5) of ηµ = [
log(p)+3

]
/
[
5
p

p
]

and ηΣ = ηµ/2.

Each run was alloted 200 generations, corresponding to a total of 10000 individual evaluations.

The fitness function considers both the distance between the arm tip and the goal (to avoid

the fitness plateau of all unsuccessful individuals) and the time taken to solve the task (to

develop an optimized behaviors with a direct, fluid and short movement). Let t the time taken

to touch the goal (i.e. number of steps until success), T the maximum alloted number of steps

before defaulting to failure (100 in this experiment), and d and D the Euclidean distances

between the tip of the arm at its final position and the target vs. its initial position respectively.

The fitness of an individual z is then computed as:

f (z) = 1− t

T

d

D
. (7.1)

This differs from the original fitness proposed in [Woolley and Stanley, 2010] because the latter

only focuses on the distance between the arm tip and the goal, thus promoting locally greedy

behaviors that minimize the distance to the goal without including any swinging motion. The

integration with the acrobot task, together with the decision for direct muscle control (vs. the

original high-level actions) makes this choice less ideal. The fitness function proposed in this
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Figure 7.3 – Performance comparison. The performance of the BD-NES algorithm (top)
is compared against SNES (middle) and RWG (bottom) on the octopus arm acrobot task.
What look like curves are actually scatterplots, with (tight) error bars over 20 runs. BD-NES
displays the more consistent behavior, achieving higher fitness with fewer iterations (faster
convergence), and learns solutions of distinctively higher quality.

work instead includes a time-to-solve factor which rewards execution speed, leading to much

more fluid and purposeful movements.

To establish the complexity of the octopus arm acrobot task, a baseline was established

through Random Weight Guessing (RWG; Schmidhuber et al. [2001]): comparably to SNES

and BD-NES, 10000 networks are generated, in this case by selecting the network weights

i.i.d. in a given range. These are divided into “generations” of λ individuals to provide direct

comparison with the two ES. At each generation the networks are evaluated, and the best

individual found is returned at the end of the task.

7.3.4 Results

Experimental results are depicted in Figure 7.3, as performance of the best individual found

up to each generation. While looking like a line plot at first glance, the graph is a dense

scatterplot with very tight error bars, corresponding to 20 runs for statistical significance. BD-

NES converges notably faster than SNES, reaching a performance equivalent to the latter with

roughly 30% less evaluations (7000 at generation 140 vs. 10000 at generation 200). Arguably

even more importantly, it does this in shorter wall-clock time: while the main advantage of

SNES is speed, BD-NES reaches comparable results in 15% less CPU time (55 minutes for BD-

NES vs. 65 minutes for SNES). For fair comparison, BD-NES was implemented in a standard

sequential fashion over a single CPU, thus not leveraging parallel resources nor GPU/TPU

computation, both of which would further and considerably shorten the total run time.
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All experiments were run on a machine with Intel i7 640M processor running at 3.33GHz,

with 4GB of DDR3 RAM at 1066MHz. All code was implemented in Wolfram Mathematica

but for linking the Java implementation of the Octopus Arm, which is available online at

http://www.cs.mcgill.ca/~idprecup/workshops/ICML06/octopus.html.

7.4 Discussion

Natural Evolution Strategies is a family of black box optimization algorithms with state of

the art performance and a history of applications to neuroevolution. The most prominent

algorithms of the family (XNES and SNES; see Chapter 2.5.2) maintain a Gaussian distribution

over the space of network weights, as described in Chapter 2.4. The two algorithms differ on

whether covariance between parameters is maintained or ignored, trading off convergence

speed and execution speed. While faster convergence typically yields higher solution quality

for a given number of iterations, choosing an algorithm with high execution speed enables

applying the algorithm to problem with much higher dimensionality.

Block Diagonal NES (BD-NES) generalizes both XNES and SNES, thus sidestepping the choice,

while enabling the user to select a more fine-grained trade-off. The parameters set is parti-

tioned into groups of (expectedly) high-correlated parameters. Full covariance information

is then maintained inside each group, while covariance between groups is instead ignored,

leading to the construction of a block diagonal covariance matrix.

When used to train neural networks (neuroevolution), parameter correlation can be partially

reduced to the (known) network structure, making parameters grouping straightforward for

weights entering a same neuron or layer. This information is always available independently

from the actual task of application.

Algorithm performance is tested on a new, high-complexity reinforcement learning control

task called the octopus arm acrobot, built by combining the classical octopus arm and acrobot

tasks. Results are compared with SNES for algorithm performance, since the size of the

network and hence the number of parameters is too high for XNES to be applicable. Results

from random weight guessing also provide a baseline for the task’s complexity. BD-NES

performance is shown to surpass SNES both in higher convergence speed (i.e. less evaluations)

and shorter wall-clock time for comparable results. Moreover, BD-NES is ultimately capable

of producing solutions of consistently higher quality in the total time alloted.

A sequential implementation of BD-NES scales linearly with the number of blocks, which in

neuroevolution corresponds to neurons and/or layers. A parallel implementation has constant

scaling over the number of blocks, since the updates for each block are run independently,

and performance is only bound by the size of the largest block. This makes BD-NES a prime

candidate for deep neuroevolution, i.e. searching for deep networks with potentially millions

of weights. A further boost in performance can be achieved by running the updates indepen-

dently on multiple machines (as many as there are blocks) augmented with GPUs or TPUs.
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Each single covariance block update is independent from the others, the block size can be

tailored to fit in the device’s dedicated memory, and no further moving of the matrix is neces-

sary, the only communication between blocks being restricted to individual sub-samples and

fitness scores.

This chapter concludes the overview over the research questions stipulated in Chapter 1.1.

It is now time to tally the results so far and discuss whether these have been addressed to

satisfaction.
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8 Conclusions

The overarching goal of the work presented in this thesis is to extend the applicability of

neuroevolution to a broader range of applications, somehow complementary to deep learning.

Neural networks have caught the public spotlight over the past years thanks to their superior

performance and adaptability to a large set of applications. Deep learning however trains the

networks based on the backpropagation algorithm, a single-agent gradient descent technique

with a strict set of requirements limiting its applicability. An alternative can be found in

neuroevolution, which searches in the space of neural networks using evolutionary algorithms,

sidestepping these limitations entirely. While this broadens the scope of problems that can be

addressed by neural networks, the performance of traditional neuroevolution methods is not

yet on par with deep learning results, requiring further research.

This thesis began (Question 1) by examining whether there is any reason to consider alter-

natives to deep learning at all (Chapter 3). Given the extreme complexity attainable by deep

neural networks, it could be argued that selecting a sufficiently large network should be suffi-

cient in principle to address problems of arbitrary complexity. One of the limitations of deep

learning though is in the amount of data consequently required to train deep networks: in

many applications simply not enough data is available. The chapter highlights such limitations

in the scope of a highly complex industrial application. The proposed approach is instead

based on extracting small quantities of high-quality data during pre-processing, constructing

an ideal environment for the training of simpler models such as shallow networks, with results

reaching the highest precision attainable (i.e. sensor-level predictions). Deep learning is an

extremely powerful tool, but more suited for problems of scale. Depending on the application,

it is crucial to maintain a wide perspective over machine learning as a whole, to be able to

select an appropriate tool for each application.

Next, Question 2 addressed fitness stagnation, which is a major limitation to the otherwise

robust applicability of neuroevolution. Evolutionary algorithms performance deteriorates

in the presence of deceptive fitness landscapes such as plateaus and local attraction basins.

In reinforcement learning for example, applications with sporadic reward returns generate
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ample fitness plateaus, where individuals are simply indistinguishable based on performance

alone. Chapter 4 tackles this issue by means of a novel restart strategy, inspired by novelty

search. Upon detecting convergence (the algorithm has stopped improving), the search is

restarted in an area of the space which is considered promising from a novelty perspective,

i.e. which has been visited before but not thoroughly explored, and where individuals with

uncommon behaviors are found. This makes the algorithm extremely resilient to stagnation,

while boosting its scaling invariance: even after full convergence, the search has a chance to

keep using the start anew with a larger scope over the next most promising area. The method

can be applied to any evolutionary algorithm with no disadvantages, and is likely to improve

performance in most applications.

The thesis then moved on (Question 3) to address the scalability of neuroevolution towards

problems typically requiring larger sized neural networks. The question here points to how

can neuroevolution scale to problems with high dimensionality. Particularly, as networks need

to deal with high-dimensional inputs, a large amount of their weights (i.e. their computational

power) is devoted to feature extraction, i.e. extracting sensible information from the data. The

actual decision making can be seen as an additional process on top of it. Chapter 5 delegated

feature extraction to a simple yet specialized unsupervised learning method. With minimal

performance overhead, this produces a compact code on top of which a relatively small

network can achieve high performance. The feature extractor (or encoder) is trained online

along the normal neuroevolution iterations, based on data obtained by (and for) the networks

generated through the evolution. This not only does eliminate the need for bootstrapping

or prior knowledge, but makes the encoder aware of the interactions between individuals

and environment throughout the whole search so far, across generations. Such awareness

enables the encoder to produce a novelty score for each individual, based on its ability to

interact with the environment in novel ways, which in turn further boosts the performance of

the evolutionary search. Results show how such a system, decoupling feature extraction from

decision making, is indeed advantageous and requires further investigation.

The work of Chapter 5 extends Chapter 6 in order to verify (Question 4) whether such tech-

niques are sufficient to address problems commonly considered “complex” for modern ma-

chine learning. A new system of encoder plus network was tested on a modern deep learning

benchmark based on a simulator of the Atari gaming console. This time the encoder was de-

signed anew specifically for pre-processing observations in the context of continuous control,

emphasizing its ability to differentiate observations as an approximation of state differentia-

tion. A tiny decision-making networks on top is then proven capable of playing Atari games

with as little as six neurons, whereas the literature usually calls for hundreds. Rather than

making a point on smaller networks though, the main implication is that large networks (as

currently trained to address Atari games) could in principle be better applied to problems of

much higher complexity, by dedicating their full computational power to decision making

alone.

Last, Question 5 could be considered the “elephant in the room” over the previous few chap-
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ters: can evolutionary algorithms scale to deep networks? The methods presented in the

chapters so far enable addressing higher complexity problems with smaller networks, but

eventually more complex tasks still require proportionally larger networks. Chapter 7 answers

by proposing a new evolution strategy capable of state-of-the-art results, flexible performance

and high parallelization. Particularly the algorithm allows to adapt the size of the blocks to the

performance available on single machines, then scales linearly with the size of the network, or

constantly over multiple machines if available, unlocking the potential in principle to evolve

neural networks of unprecedented size.

8.1 Limitations and Perspectives

To understand the applicability and correspondingly the limitations of Neuroevolution it is

important to understand just how general are the techniques upon which it is founded: neural

networks and evolutionary algorithms.

Neural networks are universal approximators [Hornik et al., 1989]. A network with one hidden

layer and nonlinear activation can in principle approximate any function to arbitrary precision.

The catch is of course in the cost: using a single layer requires a finite but otherwise undisclosed

number of neurons, often impractical. And whether such a parametrization is easy (if possible

at all) to learn is beyond the scope of the theorem.

Networks with neurons on multiple layers tend to be more efficient from this perspective:

as function composition raises the functional complexity more quickly, less neurons are

required to approximate a function of given complexity. Increasing the number of layers thus

improves the effectiveness of training methods by reducing the number of neurons (and thus

weights, parameters) to learn. At the same time however it also makes the process harder for

algorithms which propagate the error back through the network, because of the vanishing

gradient problem: it is hard to impute correctly the contribution of a first-layer weight to the

construction of a given error in a many-layered network, as accountability decays with each

layer. Neuroevolution on the other hand does not compute gradients over the weights, and

thus does not suffer from negative effects with network depth.

Still there are other downsides to the adoption of neural networks which are not as easily

sidestepped. Most importantly, in many modern applications there is a need for under-

standability and maintainability. While neural networks have been crucial in constructing

impressive results in several applications from autonomous driving to medical diagnosis, their

deployment has been rather limited because the process through which the answers are gen-

erated is not humanly fathomable. Being unable to understand why and how a certain answer

is generated drastically reduces the confidence in using such answers in critical domains and

applications. The equations implicit in deep networks are too large for human reading, let

alone understanding. The behavior of a network can be known in any given case, but this

does not imply any expectation or deductibility on the expected behavior in an unseen con-

text. This is a limit unfortunately orthogonal to neuroevolution, inherent in neural networks:
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their mathematical parametrization offers unlimited adaptability, at the cost of being beyond

human comprehension.

In order to obtain results which are understandable by humans, it is necessary to consider

alternative function approximators, built from the ground up for human interpretability.

Incidentally, while gradient descent methods such as backpropagation would require a mathe-

matical overhaul to be applicable to new models, black box optimization techniques such as

evolutionary algorithms by definition are not concerned with the nature of the application,

and will thereby remain relevant and viable for training the newly designed models. The

only requirement for the application of evolutionary algorithms is for a fitness function to

score individuals (i.e. parameter sets) based on their performance on the task. Some work

gets away with setting aside even this requirement, showing that evolutionary algorithms are

capable of performing based uniquely on intrinsic criteria [Lehman and Stanley, 2008, 2010].

In principle there is no application (that can be described by a set of parameters) for which

evolutionary algorithms are not applicable. In practice though, as shown throughout this

thesis, performance limitations still apply, and need to be further addressed in future work.

8.2 Future Work

The first and natural step concerns the implementation of an encompassing system that

integrates all the work presented so far: input pre-processing, novelty-based exploration, and

scaling to deep networks. Each technique described in these chapters, while been developed

in isolation, has been designed with the goal of integrating with each other in mind. Imple-

menting such a system still remains a challenge though, mainly because of the number of

components and their complexity.

A first design was described in Chapter 5 as having three components: a model, an optimizer

(to train the model) and a pre-processor – plus naturally an environment providing the task.

Chapter 5 proposes a system that addresses a continuous control task using fully-connected

recurrent neural networks as the model, Separable NES as the optimizer, and a custom VQ

with per-centroid decaying learning rates for the pre-processor. Chapter 6 offers a different

instance, with tiny single-layer recurrent neural networks as the model, eXponential NES as the

optimizer, and Increasing Dictionary VQ plus Direct Residuals SC addressing pre-processing.

A natural next step would be to introduce Block Diagonal NES as the optimizer, in order to

scale the model to deep recurrent networks. Still each block can be improved independently,

then be fit back in the architecture in a plug-in fashion.

New and more sophisticated feature extractors should be created to improve on the specialized

techniques presented in Chapters 5 and 6. The pre-processor in Chapter 6 in particular has

been designed with simplicity in mind, to highlight how all decision making had to reside in the

network component. Addressing environments with higher complexity however will require

methods capable of extracting generic features with no prior knowledge of the environment.

Neural network-based techniques such as convolutional networks and autoencoders are
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themselves prime candidates, with BD-NES enabling the alternative option of training them

with neuroevolution. The ability to reconstruct the original observation from the compressed

code, set aside in Chapter 6 in favor of bare simplicity, should also be taken into account in

further design. This would enable to reintroduce the ability to generate a novelty signal to

improve the scoring, as presented in Chapter 5.

Finally, modern evolution strategies are yet to reach their pinnacle of performance and op-

timization. BD-NES, presented in Chapter 7, enables scaling the network size based on the

available computational resources. This is achieved by grouping together parameters with

high covariance, while discarding altogether the covariance between parameters of different

groups. The same concept could in principle be applied to other evolutionary algorithms,

paving the way for an entire class of new parallel implementations.
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