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ABSTRACT
Deep reinforcement learning, applied to vision-based problems like
Atari games, maps pixels directly to actions; internally, the deep
neural network bears the responsibility of both extracting useful
information and making decisions based on it. By separating the im-
age processing from decision-making, one could better understand
the complexity of each task, as well as potentially find smaller policy
representations that are easier for humans to understand and may
generalize better. To this end, we propose a newmethod for learning
policies and compact state representations separately but simulta-
neously for policy approximation in reinforcement learning. State
representations are generated by an encoder based on two novel
algorithms: Increasing Dictionary Vector Quantization makes the
encoder capable of growing its dictionary size over time, to address
new observations as they appear in an open-ended online-learning
context; Direct Residuals Sparse Coding encodes observations by
disregarding reconstruction error minimization, and aiming instead
for highest information inclusion. The encoder autonomously se-
lects observations online to train on, in order to maximize code
sparsity. As the dictionary size increases, the encoder produces
increasingly larger inputs for the neural network: this is addressed
by a variation of the Exponential Natural Evolution Strategies al-
gorithm which adapts its probability distribution dimensionality
along the run. We test our system on a selection of Atari games
using tiny neural networks of only 6 to 18 neurons (depending
on the game’s controls). These are still capable of achieving re-
sults comparable—and occasionally superior—to state-of-the-art
techniques which use two orders of magnitude more neurons.
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1 INTRODUCTION
In deep reinforcement learning, a large network learns to map
complex, high dimensional input (often visual) to actions, for direct
policy approximation. When a giant network with hundreds of
thousands of parameters learns a relatively simple task (such as
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playing Qbert) it stands to reason that only a small part of what is
learned is the actual policy. A common understanding is that the
network internally learns to extract useful information (features)
from the image observation in its first layers by mapping pixels to
intermediate representations, allowing the last few layer(s) to map
these representations to actions. The policy is thus learned at the
same time as the intermediate representations, making it almost
impossible to study the policy in isolation.

Separating the representation learning from the policy learning
allows in principle for higher component specialization, enabling
smaller networks dedicated to policy learning to address problems
typically tackled by much larger networks. This size difference rep-
resents a net performance gain, as larger networks can be devoted
to addressing problems of higher complexity. For example, current
results on Atari games are achieved using networks of hundreds of
neurons and tens of thousands of connections; making the same
game playable (with comparable performance) by a network k times
smaller paves the road to training larger networks on k independent
games, using currently available methods and resources.

Separating the policy network from the image parsing also al-
lows us to better understand how network complexity contributes
to accurately representing the policy. While vision-based tasks are
often addressed with very large networks, the learned policies by
themselves should in principle not require such high-capacity mod-
els, as these policies in themselves often appear to not be very
complex. Yet another reason to investigate how to learn smaller
policy networks by addressing the image processing with a separate
component is that smaller networks may offer better generaliza-
tion. This phenomenon is well-known from supervised learning,
where smaller-capacity models tend to overfit less, but has not been
explored much in reinforcement learning.

The key contribution of this paper is a new method for learning
policy and features simultaneously but separately in a complex
reinforcement learning setting. This is achieved through two novel
algorithms: Increasing Dictionary Vector Quantization (IDVQ) and
Direct Residuals Sparse Coding (DRSC).

IDVQ maintains a dictionary of centroids in the observation
space, which can then be used for encoding. The two main dif-
ferences with standard VQ are that the centroids are (i) trained
online by (ii) disregarding reconstruction error. Online training is
achieved with the algorithm autonomously selecting images for its
training from among the observations it receives to be encoded,
obtained by the policies as they interact with the environment. The
disregard for reconstruction error comes instead from shifting the
focus of the algorithm to the arguably more crucial criterion (from
the perspective of the application at hand) of ensuring that all of
the information present in the observation is represented in the
centroids. This is done by means of constructing new centroids as



a residual image from the encoding while ignoring reconstruction
artifacts. See Section 3.2 for further discussion.

The dictionary trained by IDVQ is then used by DRSC to produce
a compact code for each observation. This code will be used in
turn by the neural network (policy) as input to select the next
action. The code is a binary string: a value of ‘1’ indicates that the
corresponding centroid contains information also present in the
image, and a limited number of centroids are used to represent the
totality of the information.

As the training progresses and more sophisticated policies are
learned, complex interactions with the environment result in in-
creasingly novel observations; the dictionary reflects this by grow-
ing in size, including centroids that account for newly discovered
features. A larger dictionary corresponds to a larger code, forcing
the neural network to grow in input size. This is handled using
a specialized version of Exponential Natural Evolution Strategy
which adapts the dimensionality of the underlying multivariate
Gaussian.

With the goal of minimizing the network size while maintaining
comparable scores, experimental results show that this approach
can effectively learn both components simultaneously, achieving
state-of-the-art performance on several ALE games while using a
neural network of only 6 to 18 neurons, i.e. two orders of magni-
tude smaller than any known previous implementation. This re-
search paves the road for training deep networks entirely dedicated
to policy approximation, addressing problems of unprecedented
complexity.

2 RELATEDWORK
2.1 Video games as AI benchmarks
Games are useful as AI benchmarks as they are designed to chal-
lenge human cognitive capacities. Board games such as Chess and
Go have been used as AI benchmarks since the inception of artificial
intelligence research, and have been increasingly used for testing
and developing AI methods [31]. Though various video game-based
AI competitions and frameworks exist, the introduction of the Ar-
cade Learning Environment (ALE) did much to catalyze the use of
arcade games as AI benchmarks [2].

ALE is based on an emulation of the Atari 2600, the first widely
available video game console with exchangeable games, released in
1977. This was a very limited piece of hardware: 128 bytes of RAM,
up to 4 kilobytes of ROM per games, no video memory, and an
8-bit processor operating at less than 2 MHz. The limitations of the
original game console mean that the games are visually and themat-
ically simple. Most ALE games feature two-dimensional movement
and rules mostly triggered by sprite intersection. In the most com-
mon setup, the raw pixel output of the ALE framework is used
as inputs to a neural network, and the outputs are interpreted as
commands for playing the game. No fast forward model is available,
so planning algorithms are ineffective. Using this setup, Mnih et al.
reached above human level results on a majority of 57 Atari games
that come with the standard distribution of ALE [21]. Since then, a
number of improvements have been suggested that have improved
game-playing strength on most of these games [16, 18].

2.2 Neuroevolution
Neuroevolution refers to the use of evolutionary algorithms to train
neural networks [9, 17, 23, 32]. Typically, this means training the
connection weights of a fixed-topology neural network, though
some algorithms are also capable of evolving the topology at the
same time as the weights [26].

When using neuroevolution for reinforcement learning, a key
difference is that the network is only trained in between episodes,
rather than at every frame or time step. In other words, learning hap-
pens between episodes rather than during episodes; this has been
called phylogenetic rather than ontogenetic reinforcement learn-
ing [28]. While it could be argued that evolutionary reinforcement
learning should learn more slowly than ontogenetic approaches
such as Q-learning, as the network is updated more rarely and
based on more aggregated information, the direct policy search
performed by evolutionary algorithms allows in principle for a freer
movement in policy space. Empirically, neuroevolution has been
found to reach state-of-the-art performance on reinforcement learn-
ing problems which can be solved with small neural networks [11]
and to reach close to state-of-the-art performance on games in
the ALE benchmark played with visual input [4, 24]. In general,
neuroevolution performs worse in high-dimensional search spaces
such as induced by deep neural networks, but there have also been
recent results where genetic algorithms have been shown to be
competitive with gradient descent for training deep networks for
reinforcement learning [27]. Neuroevolution has also been found
to learn high-performing strategies for a number of other more
modern games including racing games and first-person shooters,
though using human-constructed features [23].

For training the weights of a neural network only, modern vari-
ants of evolution strategies can be used. The Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [14] represents the popu-
lation implicitly as a distribution of possible search points; it is very
effective at training small-size networks in reinforcement learning
settings [17]. Another high-performing development of evolution
strategies is the Natural Evolution Strategies (NES) family of algo-
rithms [29]. While both CMA and NES suffer from having a number
of parameters required for evolution growing superlinearly with
the size of the neural network, there are versions that overcome
this problem [7, 25].

2.3 Compressed representation in
reinforcement learning

The high dimensionality of visual input is a problem not only for
evolutionary methods, but generally for learning technique. The
origin of the success of deep learning can be traced to how deep
convolutional networks handle large dimensional inputs; up until
a few years ago, reinforcement learning generally relied on low-
dimensional features, either by using intrinsically low-dimensional
sensors (such as infrared or laser range-finders) or by using hard-
coded computer vision techniques to extract low-dimensional state
representations from image data. Such hard mappings however do
not lend themselves to generalization; in order to create a more
general reinforcement learning method, the mapping must be auto-
matically constructed or learned.
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Figure 1: System diagram. At each generation the optimizer (1) generates sets of weights (2) for the neural network controller
(3). Each network is evaluated episodically against the environment (4). At each step the environment sends an observation (5)
to an external compressor (6), which produces a compact encoding (7). The network uses that encoding as input. Independently,
the compressor selects observations (8) for its training set (9). At the end of the episode, the environment returns the fitness
(cumulative reward; 10) to the optimizer for training (neuroevolution; 11). Compressor training (12) takes place in between
generations.

Several approaches have been proposed in that sense in reinforce-
ment learning. Some of them rely on neural networks, in particular
on various forms of autoencoders [1, 13]. An alternative is to use ex-
ternal compressors such as based on vector quantization [8], where
a number of prototype vectors are found and each vector is used
as a feature detector–the value of that feature being the similarity
between the actual high-dimensional input and the vector, similar
to a radial basis function network.

3 METHOD
Our system is divided into four main components: i) the Environ-
ment is an Atari game, taking actions and providing observations;
ii) the Compressor extracts a low-dimensional code from the obser-
vation, while being trained online with the rest of the system; iii)
the Controller is our policy approximizer, i.e. the neural network;
finally iv) the Optimizer is our learning algorithm, improving the
performance of the network over time, in our case an Evolution
Strategy. Each component is described in more detail below.

3.1 Environment
We test our method on the Arcade Learning Environment (ALE),
interfaced through the OpenAI Gym framework [3]. As discussed
above, ALE is built on top of an emulator of the Atari 2600, with all
the limitations of that console. In keeping with ALE conventions,
the observation consists of a [210×180×3] tensor, representing the
RGB pixels of the screen input. The output of the network is inter-
preted (using one-hot encoding) as one of 18 discrete actions, repre-
senting the potential inputs from the joystick. The frame-skipping
is fixed at 5 by following each action with 4 NOOP commands.

3.2 Compressor
The role of the compressor is to provide a compact representation
for each observation coming from the environment, enabling the
neural network to entirely focus on decision making. This is done
through unsupervised learning on the very same observations that
are obtained by the network interacting with the environment, in
an online learning fashion.

We address such limitations through a new algorithm based on
Vector Quantization (VQ), named Increasing Dictionary VQ, cou-
pled with a new Sparse Coding (SC) method named Direct Residuals
SC. Together they aim at supporting the study of the spaces of ob-
servations and features, while offering top performance for online
learning. To the best of our knowledge, the only prior work us-
ing unsupervised learning as a pre-processor for neuroevolution
is [1, 8]. The following sections will derive IDVQ+DRSC starting
from the vanilla VQ, explaining the design choices which led to
these algorithms

3.2.1 Vanilla vector quantization. The standard VQ algorithm [12]
is a dictionary-based encoding technique with applications in di-
mensionality reduction and compression. Representative elements
in the space (called singularly centroids and collectively called a
dictionary) act as references for a surrounding volume, in a manner
akin to k-means. The code of an element in the space is then a
vector where each position corresponds to a centroid in the dictio-
nary. Its values are traditionally set to zeros, except for the position
corresponding to the closest representative centroid in the space.
Variations use a dense code vector, capturing the contribution of
multiple centroids for higher precision. In either case the original
can be reconstructed as a vector product between the code and the
dictionary. The difference between the original and its reconstruc-
tion is called reconstruction error, and quantifies the information
lost in the compression/decompression process. The dictionary is
trained by adapting the centroids to minimize reconstruction error
over a training set.

Applications to online reinforcement learning however present
a few limitations. Additional training data is not only unavailable
until late stages, but is also only accessible if obtained by individuals
through interaction with the environment. Take for example an
Atari game with different enemies in each level: observing a second-
level enemy depends on the ability to solve the first level of the
game, requiring in turn the compressor to recognize the first-level
enemies. A successful run should thereby alternate improving the
dictionary with improving the candidate solutions: at any stage, the
dictionary should provide an encoding supporting the development
of sophisticated behavior.



Algorithm 1 IDVQ
Inputs:

𝒳 : training set, X ∈ 𝒳
D: current dictionary
δ : minimal aggregated residual for inclusion

Initialize:
D ← ∅ ▷ dictionary initialized empty

for X in 𝒳 do
P ← X ▷ residual information to encode
®𝒸← DRSC(X ,D, ϵ,Ω) ▷ ϵ and Ω given
P̂ ← ®𝒸D
ℛ ← P − P̂
𝓇i ← max(0,𝓇i ), ∀𝓇i ∈ ℛ ▷ remove artifacts
if Σ|ℛ | > δ then
D << ℛ ▷ append ℛ to D

return D

In online learning though, two opposite needs are in play: on one
hand, the centroids need to be trained in order to provide a useful
and consistent code; on the other hand, late stage training on novel
observations requires at least some centroids to be preserved un-
trained. Comparing to vanilla VQ, we cannot use random centroids
for the code. As they are uniformly drawn from the space of all
possible images, their spread is enormously sparse w.r.t. the small
sub-volume of an Atari game’s image. The similarity of a random
centroid to any such image will be about the same: using random
centroids as the dictionary consequently produces an almost con-
stant code for any image from a same game1. Image differentiation
is relegated to the least significant digits, making it suboptimal as a
neural network input. Directly addressing this problem naturally
calls for starting with a smaller dictionary size, and increasing it at
later stages as new observations call for it.

3.2.2 Increasing Dictionary VQ. We introduce Increasing Dic-
tionary VQ (IDVQ, Algorithm 1), a new compressor based on VQ
which automatically increases the size of its dictionary over suc-
cessive training iterations, specifically tailored for online learning.
Rather than having a fixed-size dictionary, IDVQ starts with an
empty dictionary, thus requiring no initialization, and adds new
centroids as the learning progresses.

This is done by building new centroids from the positive part
of the reconstruction error, which corresponds to the information
from the original image (rescaled between 0 and 1) which is not
reconstructed by the current encoding (see Algorithm 1). Growth
in dictionary size is regulated by a threshold δ , indicating the min-
imal aggregated residual considered to be a meaningful addition.
The training set is built by uniformly sampling the observations
obtained by all individuals in a generation.

Centroids added to the dictionary are not further refined. This is
in line with the goal of image differentiation rather than minimizing
reconstruction error: each centroid is purposely constructed to
represents one particular feature, which was found in an actual
observation and was not available in the dictionary before.

Growing the dictionary size however alters the code size, and
thus the neural network input size. This requires careful updates in
1This has also been empirically verified in earlier iterations of this work

Algorithm 2 DRSC
Inputs:

X : vector to encode (observation)
D: dictionary trained with IDVQ
ϵ : minimal aggregated residual loss
Ω: maximum nonzero elements in the code

Initialize:
P ← X ▷ residual information to encode
®𝒸← ®0 ▷ output code
ω ← 0 ▷ non-zero elements in the code

while Σ|P | > ϵ and ω < Ω do
𝒮 ← sim(P,𝒹i ),∀𝒹i ∈ D

msc← index of max (𝒮 )
®𝒸msc ← 1 ▷ ®𝒸 = [ ®𝒸1 . . . ®𝒸n ]
ω ← ω + 1
P ← P −𝒹msc ▷ D = [𝒹1 . . .𝒹n ]

ρi ← max(0, ρi ), ∀ρi ∈ P
return ®𝒸

both the controller and the optimizer, as addressed in Sections 3.3
and 3.4 respectively.

3.2.3 Direct Residuals Sparse Coding. The performance of algo-
rithms based on dictionary approaches depends more on the choice
of encoding than on the dictionary training – to the point where
the best performing algorithms have but a marginal improvement
in performance when using sophisticatedly trained centroids ver-
sus randomly selected samples [5]. This highlights the importance
of selecting an effective encoding algorithm to best leverage the
characteristics of a dictionary trained with IDVQ. In recent years,
several studies have shown algorithms based on Sparse Coding
to consistently perform best on compression and reconstruction
tasks [19, 33]. These typically alternate training the centroids and
minimizing the ℓ1 norm of the code (which approximates ℓ0 norm),
ultimately yielding a code that is mostly composed of zeros. In
our case though, the dictionary is already trained with IDVQ: we
thereby focus on the construction of the sparse code instead.

The classic way to construct a sparse code is through an iter-
ative approach [20, 22] where at each step (i) few centroids are
selected, (ii) a corresponding code is built and (iii) the code quality
is evaluated based on the reconstruction error, with the ℓ1 norm
of the code as a regularization term. This process is repeated over
different combinations of centroids to incrementally reduce the
reconstruction error, at the cost of the algorithm’s performance.
Moreover, the reconstruction is computed as a vector product be-
tween the code and the dictionary: while conceptually elegant, this
dot product produces a linear combination (of the centroids with
the code values) where most terms have null coefficients.

In our case though the focus is in differentiating states in order
to support the decision maker, rather than perfecting the recon-
struction of the original input. The encoding algorithm will be
called on each and every observation coming from the environ-
ment, proportionally reducing the computational time available for
decision making. This forces an overhaul of the encoder’s objective
function from the ground up, prioritizing distinction over precision,
i.e. observation differentiation over reconstruction error.



Figure 2: Trained centroids. A few centroids trained with IDVQ during a run of the game Qbert. Notice how the first captures
the initial state of the game (backgroud), while the others build features as subsequent residuals: lit cubes, avatar and enemy.
Colors are inverted for printing purposes.

To this end we introduce Direct Residuals Sparse Coding (DRSC,
Algorithm 2) as a novel sparse coding algorithm specifically tailored
to produce highly differentiating encoding in the shortest amount of
time. Its key characteristics are: (i) it utilizes centroids constructed
as residual images from IDVQ, thus avoiding the centroid-train
phase; (ii) it produces binary encodings, reducing the reconstruction
process to an unweighted sum over the centroids corresponding
to the code’s nonzero coefficients; and (iii) it produces the code in
a single pass, terminating early after a small number of centroids
are selected. The result is an algorithm with linear performance
over dictionary size, which disassembles an observation into its
consecutive most similar components as found in the dictionary.

3.2.4 Step-by-step breakdown. Increasing Dictionary VQ is used
to train a dictionary, used by Direct Residuals SC to encode (com-
press, extract features from) an observation (image). To understand
how these algorithms work together, let us hypothesize a working
starting dictionary and see how DRSC produces an encoding.

The initialization includes two steps: the code, as an arrays of
zeros with the same size as the dictionary, and the residual infor-
mation still needing encoding, initially the whole original image.
The algorithm then loops to select centroids to add to the encoding,
based on how much of the residual information can they encode.
To select the most similar centroid, the algorithm computes the
differences between the residual information and each centroid in
the dictionary, aggregating each of these differences by summing
all values. The centroid with the smallest aggregated difference is
thereby the most similar to the residual information, and is chosen
to be included in the encoding. The corresponding bit in the binary
code is flipped to ‘1’, and the residual information is updated by
subtracting the new centroid.

The signs of the values in the updated residual information (old
residual minus new centroid, the order matters) are now significant:
(i) values equal to zero mean a perfect correspondence between the
pixel information in the old residual and the corresponding value
in the new centroid; (ii) positive values correspond to information
that was present in the old residual but not covered by the new
centroid; (iii) negative values correspond to information present in
the new centroid, but absent (or of smaller magnitude) in the old
residual. This is crucial towards the goal of fully representing the

totality of the original information, and to this end the algorithm is
free to disregard reconstruction artifacts as found in (iii).

Most encoding algorithms make no distinction between not-yet-
encoded information and reconstruction artifacts: as they aim at
minimizing reconstruction error, they focus on the error’s mag-
nitude rather than its origin. DRSC instead focuses solely on rep-
resenting all the information initially present in the image, and
the artifacts found in the negative values are thereby disregarded
by setting them to zero. The result is a residual image of infor-
mation present in the original image but not yet captured by the
reconstruction.

The algorithm then keeps looping and adding centroids until
the (aggregated) residual information is lower than a threshold,
corresponding to an arbitrary precision in capturing the informa-
tion in the original image. To enforce sparsity in the case that the
correct centroids are not available in the dictionary, a secondary
stopping criterion for the encoding loop is when too many cen-
troids are added to the code, based on another threshold. Images
with high residual information after encoding are prime candidates
for compressor training.

The dictionary is trained with IDVQ by adding new centroids
to minimize leftover residual information in the encoding. The
training begins by selecting an image from the training set and
encoding it with DRSC, producing the binary code as described
above. A dot product between the code and the dictionary (i.e.
summing the centroids selected by the code, since it is binary)
produces a reconstruction of the original image, similarly to other
dictionary-based algorithms.

The difference between the training image and the reconstruc-
tion then produces a reconstruction error (-image), where the sign
of the values once again correspond to their origin: positive values
are leftover information from the image which is not encoded in the
reconstruction, while negative values are reconstruction artifacts
with no relation to the original image. This reconstruction error
image is then aggregated (with a sum) to estimate the quantity of
information missed by the encoding. If it is above a given threshold,
a new centroid should be added to the dictionary to enable DRSC
to make a more precise reconstruction. But in that case the resid-
ual itself makes for the perfect centroid, as it exactly captures the
information missed by the current encoding, and is then added to
the dictionary.



3.3 Controller
The controller for all experiments is a single-layer fully-connected
recurrent neural network (RNN). Each neuron receives the follow-
ing inputs through weighted connections: the inputs to the network,
the output of all neurons from the previous activation (initially ze-
ros), and a constant bias (always set to 1). The number of inputs is
equal at any given point in time to the size of the code coming from
the compressor. As the compressor’s dictionary grows in size, so
does the network’s input. In order to ensure continuity in training
(i.e. the change needs to be transparent to the training algorithm),
it is necessary to define an invariance across this change, where
the network with expanded weights is equivalent to the previous
one. This is done by setting the weights of all new connections to
zero, making the new network mathematically equivalent to the
previous one, as any input on the new connections cancels out. The
same principle can be ported to any neural network application.

The number of neurons in the output layer is kept equal to the
dimensionality of the action space for each game, as defined by
the ALE simulator. This is as low as 6 in some games, and 18 at
most. Actions are selected deterministically in correspondence to
the maximum activation. No hidden layer nor extra neurons were
used in any of the presented results. The increase in dimension-
ality in the input connections’ weights corresponds to a growth
in the parameter vector of the optimizer, as described below in
Section 3.4.2.

3.4 Optimizer
The optimizer used in the experiments is a variation of Exponen-
tial Natural Evolution Strategy(XNES; [10]) tailored for evolving
networks with dynamic varying size.

The next section briefly introduces the base algorithm and its
family, followed by details on our modifications.

3.4.1 Exponential NES. Natural Evolution Strategies (NES; [29,
30]) is a family of evolutionary strategy algorithms that maintain a
distribution over the parameters space rather than an explicit popu-
lation of individuals. It is distinguishable over similarly distribution-
based ES (e.g. Covariance Matrix Adaptation Evolution Strategy;
CMA-ES [14]) for its update function based on the natural gradient,
constructed by rescaling the vanilla gradient based on the Fischer
information matrix ∇̃ = F−1∇θ J (θ ).

The expectation of the fitness function f for a given sample z
with respect to parameters θ is computed as

J (θ ) = Eθ [f (z)] =
∫

f (z)p(z|θ )dz

Where p(z|θ ) is a conditional probability distribution function
given parameter θ . This allows writing the updates for the distribu-
tion as

θ ← θ − η∇̃θ J = θ − ηF
−1∇θ J (θ )

The most representative algorithm of the family is Exponen-
tial NES (XNES; [10]), which maintains a multivariate Gaussian
distribution over the parameters space, defined by the parameters
θ = (µ, Σ). Based on the equation above, with the addition of Monte
Carlo estimation, fitness shaping and exponential local coordinates
(see [30] for the full derivation), these parameters are updated as:

µ ← µ + ηµ

λ∑
k=1

uk zk

A← A exp(
ηA
2

λ∑
k=1

uk (zk z
⊺
k − I))

with ηµ and ηA learning rates, λ number of estimation sam-
ples (the algorithm’s correspondent to population size), uk fitness
shaping utilities, and A upper triangular matrix from the Choleski
decomposition of Σ, Σ = A⊺A.

The update equation for Σ bounds the performance to O(𝓅3)
with 𝓅 number of parameters. At the time of its inception, this lim-
ited XNES to applications of few hundred dimensions. Leveraging
modern hardware and libraries though, our current implementation
easily runs on several thousands of parameters in minutes2.

3.4.2 Dynamically varying the dimensionality. This paper intro-
duces a novel twist to the algorithm as the dimensionality of the
distribution (and thus its parameters) varies during the run. Since
the parameters are interpreted as network weights in direct encod-
ing neuroevolution, changes in the network structure need to be
reflected by the optimizer in order for future samples to include the
new weights. Particularly, the multivariate Gaussian acquires new
dimensions: θ should be updated keeping into account the order in
which the coefficients of the distribution samples are inserted in
the network topology.

In Section 3.3 we explain how the network update is carried
through by initializing the new weights to zeros. In order to respect
the network’s invariance, the expected value of the distribution (µ)
for the new dimension should be zero. As for Σ, we need values
for the new rows and columns in correspondence to the new di-
mensions. We know that (i) the new weights did not vary so far
in relation to the others (as they were equivalent to being fixed to
zero until now), and that (ii) everything learned by the algorithm
until now was based on the samples having always zeros in these
positions. So Σ must have for all new dimensions (i) zeros covari-
ance and (ii) arbitrarily small variance (diagonal), only in order to
bootstrap the search along these new dimensions.

Take for example a one-neuron feed-forward network with 2
inputs plus bias, totaling 3 weights. Let us select a function mapping
the optimizer’s parameters to the weights in the network structure
(i.e. the genotype to phenotype function), as to first fill the values
of all input connections, then all bias connections. Extending the
input size to 4 requires the optimizer to consider two more weights
before filling in the bias:

µ =
[
µ1 µ2 µb

]
→

[
µ1 µ2 0 0 µb

]
Σ =


σ 2
1 c12 c1b

c21 σ 2
2 c2b

cb1 cb2 σ 2
b

 →


σ 2
1 c12 0 0 c1b

c21 σ 2
2 0 0 c2b

0 0 ϵ 0 0
0 0 0 ϵ 0
cb1 cb2 0 0 σ 2

b


2For a NES algorithm suitable for evolving deep neural networks see Block Diagonal
NES [7], which scales linearly on the number of neurons / layers.



Table 1: Game scores. Scores on a sample of Atari games (sorted alphabetically), compared to results fromHyperNeat [15] and
OpenAI ES [24]. Results from GA (1B) [27] and NSRA-ES [6] are also provided (though the intersection between games sets
is minimal) to include work aimed at expanding the network size, rather than shrinking it. All methods were trained from
scratch on raw pixel input (NSRA-ES uses a compact state representation read from the simulated Atari RAM to compute
novelty). Column ‘# of neurons’ indicates how many neurons were used in our work in a single layer (output) for each game.
Thenumber of neurons corresponds to the number of available actions in each game, i.e. no neurons are added for performance
purpose.

Game HyperNeat OpenAI ES GA (1B) NSRA-ES IDVQ+DRSC+XNES # of neurons

DemonAttack 3590 1166.5 - - 325 6
FishingDerby -49 -49 - - -10 18
Frostbite 2260 370 4536 3785 300 18
Kangaroo 800 11200 3790 - 1200 18
NameThisGame 6742 4503 - - 920 6
Phoenix 1762 4041 - - 4600 8
Qbert 695 147.5 - 1350 1250 6
Seaquest 716 1390 798 960 320 18
SpaceInvaders 1251 678.5 - - 830 6
TimePilot 7340 4970 - - 4600 10

Table 2: Results. Our proposed approach achieves comparable scores (sometimes better) using up to two orders of magnitude
less neurons, and no hidden layers. The proposed feature extraction algorithm IDVQ+DRSC is simple enough (using basic,
linear operations) to be arguably unable to contribute to the decision making process in a sensible manner (see Section 3.2.4).
This implies that the tiny network trained on decision making alone is of sufficient complexity to learn a successful policy,
potentially prompting for reconsidering the actual complexity of this standard benchmark. The following numbers refer to
networks for games with the largest action set (18). See Table 1 for the actual number of neurons used in the output layer for
each game.

HyperNeat OpenAI ES GA (1B) NSRA-ES IDVQ+DRSC+XNES

# neurons ~3034 ~650 ~650 ~650 ~18
# hidden layers 2 3 3 3 0
# connections ~906k ~436k ~436k ~436k ~3k

with ci j being the covariance between parameters i and j, σ 2
k

the variance on parameter k , and ϵ being arbitrarily small (0.0001
here). The complexity of this step of course increases considerably
with more sophisticated mappings, for example when accounting
for recurrent connections and multiple neurons, but the basic idea
stays the same. The evolution can pick up from this point on as if
simply resuming, and learn how the new parameters influence the
fitness.

4 EXPERIMENTAL SETUP
The experimental setup further highlights the performance gain
achieved, and is thus crucial to properly understand the results
presented in the next section:

• All experiments were run on a single machine, using a 32-core
Intel(R) Xeon(R) E5-2620 at 2.10GHz, with only 3GB of ram per
core (including the Atari simulator and Python wrapper).
• The maximum run length on all games is capped to 200 interac-
tions, meaning the agents are alloted a mere 1′000 frames, given
our constant frameskip of 5. This was done to limit the run time,
but in most games longer runs correspond to higher scores.

• Population size and learning rates are dynamically adjusted based
on the number of parameters, based on the XNES minimal popu-
lation size and default learning rate [10]. We scale the population
size by 1.5 and the learning rate by 0.5. In all runs on all games,
the population size is between 18 and 42, again very limited in
order to optimize run time on the available hardware.
• The dictionary growth is roughly controlled by δ (see Algo-
rithm 1), but depends on the graphics of each game. The average
dictionary size by the end of the run is around 30-50 centroids,
but games with many small moving parts tend to grow over
100. In such games there seems to be direct correlation between
higher dictionary size and performance, but our reference ma-
chine performed poorly over 150 centroids. We found numbers
close to δ = 0.005 to be robust in our setup across all games.
• Graphics resolution is reduced from [210 × 180 × 3] to [70 × 80],
averaging the color channels to obtain a grayscale image. This
also contributes to lower run times.
• Every individual is evaluated 5 times to reduce fitness variance.
• Experiments are allotted a mere 100 generations, which averages
to 2 to 3 hours of run time on our reference machine.



These computational restrictions are extremely tight compared
to what is typically used in studies utilizing the ALE framework.
Limited experimentation indicates that relaxing any of them, i.e. by
accessing the kind of hardware usually dedicated to modern deep
learning, consistently improves the results on the presented games.
The full implementation is available on GitHub under MIT license3.

5 RESULTS
The goal of this work is not to propose a new generic feature
extractor for Atari games, nor a novel approach to beat the best
scores from the literature. Our declared goal is to show that divid-
ing feature extraction from decision making enables tackling hard
problems with minimal resources and simplistic methods, and that
the deep networks typically dedicated to this task can be substi-
tuted for simple encoders and tiny networks while maintaining
comparable performance. Table 2 emphasizes our findings in this
regard.

Under these assumptions, Table 1 presents comparative results
over a set of 10 Atari games from the hundreds available on the
ALE simulator. This selection is the result of the following filtering
steps: (i) games available through the OpenAI Gym; (ii) games with
the same observation resolution of [210, 160] (simply for imple-
mentation purposes); (iii) games not involving 3D perspective (to
simplify the feature extractor). The resulting list was further nar-
rowed down due to hardware and runtime limitations. A broader
selection of games would support a broader applicability of our
particular, specialized setup; our work on the other hand aims at
highlighting that our simple setup is indeed able to play Atari games
with competitive results.

Results on each game differ depending on the hyperparameter
setup. To offer a more direct comparison, we opted for using the
same settings as described above for all games, rather than special-
izing the parameters for each game. Some games performed well
with these parameters (e.g. Phoenix); others feature many small
moving parts in the observations, which would require a larger
number of centroids for a proper encoding (e.g. Name This Game,
Kangaroo); still others have complex dynamics, difficult to learn
with such tiny networks (e.g. Demon Attack, Seaquest).

The resulting scores are compared with recent papers that offer
a broad set of results across Atari games on comparable settings,
namely [6, 15, 24, 27]. Our list of games and correspondent results
are available in Table 1. Notably, our setup achieves high scores
on Qbert, arguably one of the harder games for its requirement of
strategic planning.

The real results of the paper however are highlighted in Table 2,
which compares the number of neurons, hidden layers and total
connections utilized by each approach. Our setup uses up to two
order of magnitude less neurons, two orders of magnitude less
connections, and is the only one using only one layer (no hidden).

6 CONCLUSIONS
We presented a method to address complex learning tasks such as
learning to play Atari games by decoupling policy learning from
feature construction, learning them independently but simultane-
ously to further specializes each role. Features are extracted from
3https://github.com/giuse/DNE/tree/six_neurons

raw pixel observations coming from the game using a novel and
efficient sparse coding algorithm named Direct Residual Sparse Cod-
ing. The resulting compact code is based on a dictionary trained
online with yet another new algorithm called Increasing Dictio-
nary Vector Quantization, which uses the observations obtained
by the networks’ interactions with the environment as the policy
search progresses. Finally, tiny neural networks are evolved to de-
cide actions based on the encoded observations, to achieving results
comparable with the deep neural networks typically used for these
problems while being two orders of magnitude smaller.

Our work shows how a relatively simple and efficient feature ex-
traction method, which counter-intuitively does not use reconstruc-
tion error for training, can effectively extract meaningful features
from a range of different games. The implication is that feature ex-
traction on some Atari games is not as complex as often considered.
On top of that, the neural network trained for policy approximation
is also very small in size, showing that the decision making itself
can be done by relatively simple functions.

We empirically evaluated our method on a set of well-known
Atari games using the ALE benchmark. Tight performance restric-
tions are posed on these evaluations, which can run on common
personal computing hardware as opposed to the large server farms
often used for deep reinforcement learning research. The source
code is open sourced for further reproducibility. The game scores
are in line with the state of the art in neuroevolution, while using
but a minimal fraction of the computational resources usually de-
voted to this task. One goal of this paper is to clear the way for new
approaches to learning, and to call into question a certain ortho-
doxy in deep reinforcement learning, namely that image processing
and policy should be learned together (end-to-end).

As future work, we plan to identifying the actual complexity
required to achieve top scores on a (broader) set of games. This
requires first applying a feature extraction method with state-of-
the-art performance, such as based on autoencoders. Our findings
though support the design of novel variations focused on state
differentiation rather than reconstruction errorminimization. As for
the decision maker, the natural next step is to train deep networks
entirely dedicated to policy learning, capable in principle of scaling
to problems of unprecedented complexity. Training large, complex
networks with neuroevolution requires further investigation in
scaling sophisticated evolutionary algorithms to higher dimensions.
An alternative research direction considers the application of deep
reinforcement learning methods on top of the external feature
extractor. Finally a straightforward direction to improve scores is
simply to release the constraints on available performance: longer
runs, optimized code and parallelization should still find room for
improvement even using our current, minimal setup.
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