Hydra: Cancer Detection Leveraging Multiple
Heads and Heterogeneous Datasets

Giuseppe Cuccu®, Johan Jobin*, Julien Clément*, Akansha Bhardwaj*,
Carolin Reischauert$, Harriet Thony$¥, Philippe Cudré-Mauroux*

* eXascale Infolab, University of Fribourg, Switzerland — {firstname.lastname}@unifr.ch
1 Department of Medicine, University of Fribourg, Switzerland — carolin.reischauer @unifr.ch
§ Department of Radiology, HFR Cantonal Hospital of Fribourg, Switzerland — harriet.thoeny @h-fr.ch

Abstract—We propose an approach combining layer freezing
and fine-tuning steps alternatively to train a neural network over
multiple and diverse datasets in the context of cancer detection
from medical images. Our method explicitly splits the network
into two distinct but complementary components: the feature
extractor and the decision maker. While the former remains
constant throughout training, a different decision maker is used
on each new dataset. This enables end-to-end training of the
feature extractor on heterogeneous datasets (here MRIs and
CT scans) and organs (here prostate, lung and brain). The
feature extractor learns features across all images, with two
major benefits: (i) extended training data pool, and (ii) enforced
generalization across different data. We show the effectiveness of
our method by detecting cancerous masses in the SPIE-AAPM-
NCI Prostate MR Classification data. Our training process
integrates the SPIE-AAPM-NCI Lung CT Classification dataset
as well as the Kaggle Brain MRI dataset, each paired with a
separate decision maker, improving the AUC of the base network
architecture on the Prostate MR dataset by 0.12 (18% relative
increase) versus training on the prostate dataset alone. We also
compare against standard end-to-end Transfer Learning over the
same datasets for reference, which only improves the results by
0.04 (6% relative increase).

Index Terms—Deep Learning, Transfer Learning, Prostate
Cancer Detection

I. INTRODUCTION AND MOTIVATION

According to the World Health Organization [1], “cancer
caused 9.6 million deaths in 2018, making it the second leading
cause of death”. Early detection and treatment dramatically
increase the chances of recovery. Computer-Aided Diagnosis
(CAD) could in principle automate most of the diagnostic
procedures in imaging, enabling radiology specialists to focus
on the most challenging cases. Furthermore, the global shortage
of trained radiologists has worsened over the last decade [2], [3],
while aging populations have increased their demand. Though
Deep Learning (DL) methods — e.g., convolutional neural
networks (CNNs) — have been used to that end in the past [4],
they traditionally require the provision of large collections of
annotated data for optimal training and performance.

For medical applications, this is often unattainable or subject
to complex processes; privacy regulations on patient data are
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increasingly stringent, and using such data typically requires
going through a series of lengthy steps involving patient
consent, ethical committees, and data anonymization. The
process of collecting high-quality data (and meta-data) is
tedious, error-prone, and often led by professionals with clinical
duties who need to fill this information during their down
time. Furthermore, medical institutions naturally prioritize
patient treatment, and do not always have the luxury to
consider the long-term benefits of publishing and sharing
their data. Accurate, reliable labeling also requires a high
degree of expertise, while in practice the task is often relegated
to residents, so that the ground truth may sometimes be
questionable. Overall this makes the availability of high-
quality medical data a real issue (as we experienced first-hand
throughout this project).

Data availability has been one of the toughest challenges
slowing the application of DL to CAD. One solution to that
problem is to consider multiple heterogeneous datasets to
improve the training on one task. The main technique along
these lines is Transfer Learning (TL; [5], [6]), defined as “the
improvement of learning in a new task through the transfer of
knowledge from a related task that has already been learned”.
While enabling access to a larger data pool and potentially
leading to higher model generalization, this also introduces
a moving target problem for the optimization algorithm,
as the new training ends up partially forgetting previous
dataset-specific properties, especially w.r.t. the decision-making
process [6], [7].

We propose a method based on Transfer Learning to
circumvents that limitation and allow a network to specialize on
multiple datasets at the same time. Our underlying assumption
is that the input data (medical images of different types and
from different organs in our case) shares features that can
be captured jointly (see figure 1). Our method splits the
neural architecture into independent components with explicit
responsibilities: a “Feature Extractor” (FE; the body) and
multiple “Decision Makers” (DM; the heads, one for each
dataset). Named Hydra after the Greek myth, our approach
offers the following advantages:

e L earning generic features common across several datasets,
by leveraging the moving target.
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Figure 1: Datasets. Our Hydra framework enables training a
model on multiple and diverse datasets. We present results on
the PROSTATEx MRI (a) dataset, augmented by adopting the
Lung CT (b) and Kaggle Brain (c) datasets for training.

e Considering a larger training pool (joint datasets), at least
from the perspective of the FE.

e Sidestepping the moving target problem at the DM level,
since each head retains explicit specialization on the corre-
sponding dataset.

A. Related Work

We tested the performance of our framework in the context
of Computer-Aided Diagnosis of malignant lesions. As our
target dataset, we selected the SPIE-AAPM-NCI Prostate
MR Classification Challenge (PROSTATEX) dataset [8]-[10],
arguably the most well-known publicly available dataset for
prostate lesion classification, initially published in 2017 as
part of the PROSTATEx Grand Challenge [11]. It includes
multi-sequence MRI scans from 204 patients, from multiple
axes and with multiple modalities, in DICOM format.

A study by Armato et al. [11] summarizes the results of the
32 teams that took part in the challenge. The best-performing
method obtained an AUC (Area Under the ROC Curve) on the
challenge test set of 0.87, with the next three tied at 0.84. The
median AUC for the challenge was 0.68. Armato et al. also
report the ability of a less-experienced (human) radiologist at
0.81 AUC, with experts reaching 0.91.

Liu et al. [12] took part in the PROSTATEx challenge and
achieved the second-best performance at the time, with a test
AUC of 0.84 (validation AUC 0.92) and a network architecture

called XMasNet. Their data processing pipeline stacks different
combinations of MRI sequences, mimicking color channels,
then process the stack with 2D convolution as if it were an
RGB (red-green-blue) image.

Mehrtash et al. [13] include different processing units
addressing specific MRI sequences independently. The outputs
of these units are then fed into a common fully-connected
layer. The final model reached an AUC of 0.80 on the official
PROSTATEXx challenge test set.

We base our architectural and data augmentation choices
on the work by Song et al. [14], which — to the best of
our knowledge — published the best PROSTATEX results so
far. Their work builds on the MRI-as-color-channels stacking
intuition from the input data stacks images from XMasNet, but
with a novel network architecture inspired by VGG [15]. Their
results claim an AUC of 0.94, though their implementation
and data have not been publicly released. We re-implement
their network architecture and image augmentation procedure
to establish a performance baseline, before adapting it to Hydra
to produce our results.

Hydra extends Transfer Learning. Abubakar and al. [16]
claim that the “Transfer Learning process is used in two
approaches: fine-tuning, where some modifications are made
and as an off-the-shelf feature extractor where features are
extracted in order to train a machine learning classifier”. The
central idea behind Hydra is to combine layer freezing and fine-
tuning steps alternatively. It can be seen as an asynchronous
multi-task learning algorithm, where the datasets are provided
in turn, switching between last layers training and whole
model training. Samala and al. [17] showed that “multi-task
Transfer Learning may be an effective approach for training
DCNN in medical imaging applications when training samples
from a single modality are limited”, which is our case. The
association of a pre-trained model with multi-task learning
demonstrated its efficacy [18]. Our approach keeps the essence
of this architecture, but is fundamentally different in three
ways: (1) we do not use a pre-trained model coming from
another source like ImageNet (2) we use multiple datasets of
different body parts alternatively (multiple steps) and (3) each
head of the multi-task learning is trained at a different step.

In order to test our multi-dataset approach, we introduce
two more datasets with different imaging modalities (CT scans
and MRIs), body parts (lung and brain) and file types (PNG
and JPEG): the SPIE-AAPM Lung CT Challenge dataset [19]-
[21] (Lung CT), and the “Brain MRI Images for Brain Tumor
Detection” dataset [22] (Kaggle Brain). A discussed above,
state-of-the-art results rely on dedicated architectures (e.g.
multi-channel 2D convolutions) that optimize the performance
based on a single, homogeneous dataset (e.g. multi-sequence
MRI). We focus on heterogeneous data types and modalities
instead. To run our study, we select only one sequence from the
PROSTATEXx dataset (the DWI images with the highest b-value),
which obviously makes our setup and results different from
previous studies, but which ensures that the different datasets
can be used together and that all our experiments can be



Algorithm 1 Hydra training process

Inputs:

0: Target dataset, partitioned into train, test and validation: Oyain, Gval, Gest-
3: Set of support datasets o;, each split into train and validation (no test).
By: End-to-end model initialized with bootstrapping on 6,,;, split into feature extractor and decision maker: Brg,

Bpwm
Initialization:

B < trainp g4 par(Bo, Orrain)
Main:
for §; in X ++ 6 do
DM; + il’litDM()
B+ BFE ® DM;
DM; + trainDMfonly(B, (5)
B+ BFE S DML
B — trainend-to-end(Ba 5)
return B

> Train model end-to-end on target (train) dataset

> 6 will be used again, last, after all other o;

> For §; = 6 we can reuse the first Bpy, from B
> Build end-to-end model

> Chosen based on results on V%

> Update DM; (FE has not changed)

> Train both FE and DM; this time

compared on a fair basis. For comparison, our method ends up
using only ~15% of the imaging data available in PROSTATEx,
which allows in return to highlight the applicability of Hydra
to leverage multiple, diverse data types.

B. Contribution

The key contributions of this work are as follows:

e A novel framework named Hydra, combining fine-tuning
and layer freezing and enabling training on multiple and
diverse datasets (different data types and potentially different
tasks) by using multiple independent decision makers (the
“heads”, one per dataset) on top of a common feature extractor
(the “body™).

e A novel learning algorithm for the Hydra framework, which
alternates head specialization with end-to-end training to
smooth the learning process.

e A demonstration of Hydra’s applicability on a domain with
high impact but bridled by data scarcity, computer-aided
diagnosis based on multi-type medical imaging (MRI and
CT scans over three distinct organs).

e The publication of our code-base in an open-source package
for reproducibility and extensibility purposes’

II. METHOD

We propose a method that reuses features learned on a dataset
to improve performance on further datasets. This immediately
recalls Transfer Learning, which tackles the problem of limited
data availability by training on multiple datasets sharing
common features.

The main limitation of TL however lies in the fact that its
training either targets generalization (e.g. common low-level
features) with layer freezing or specialization (e.g. dataset-
specific decisions based on the features) with fine-tuning.
Both goals are typically not addressed simultaneously but

ISee our public repository at: https://github.com/eXascaleInfolab/hydra

separately, which does not allow to specialize different parts
of the architecture to the different roles.

Instead, we explicitly split our network architecture into
feature extraction (FE, the “body”) and decision maker (DM,
the “head”). While the common FE remains the same (as in:
shared) throughout all training, each dataset is matched to a
different DM head. This allows each head to specialize on
the decision required for the particular dataset/task, while the
body can retain its generalization capability, being trained in
extracting features that are useful across all datasets.

In order to enable the applicability of standard Deep Learning
end-to-end training methods on this architecture, we introduce
a sequential training algorithm (see Algorithm 1 and Figure 2)
providing a successful proof-of-concept of our idea and a
baseline for further work. The following sections describe the
architecture used in our experiments and detail our learning
process.

A. Training Overview

Our training approach mainly consists of alternating training
a new DM in isolation on the corresponding dataset, and end-
to-end training of both FE+DM on the same dataset, totaling
five steps with the proposed sequence of one target plus two
supporting datasets. The process is described in Algorithm 1,
illustrated in Figure 2, and discussed in detail below.

Pre-processing. At initialization, all datasets are first pre-
processed into a common format. To maximize the generality
of the learned features, we select data from all datasets that
can be hypothesized to contain similar features. For imaging
datasets, this means selecting them based on color schemes
and gradients, levels of detail, and generic look.

In our case, we select DWI sequences from the MRI datasets,
which visually match the CT scans of the Lung CT dataset
relatively well. As a negative example, a dataset of pictures
of houses or cars would not offer a good visual match, as
(i) the color scheme is in principle different, (ii) the main
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Figure 2: Hydra training process. Alternating between adapting the new head to the existing body (“DM training”) and
end-to-end training including the feature extractor enables a smoother transition across datasets. The first and last datasets are
the same and the target of our study: the first one is to initialize the features in a more useful configuration, while the last one

is used to specialize the network on the target problem.

geometries do not correspond (internal organs lack straight
lines and definite angles), and (iii) the transitions are starkly
different (with medical imaging showing slowly changing
density gradients versus the sharp lines and color boundaries
of house images).

Further pre-processing steps are independent of the proposed
method and are detailed in Section III.

Model Instantiation. The common FE and first DM are
generated first; to speed up the learning process, we introduce
bootstrapping, by generating 200 random parametrizations and
selecting the model with best validation AUC performance
as our starting point. The random weights are drawn from a
uniform distribution with symmetrical boundaries proportional
to the square root of the number of weights in the layer.

Next, for each of the support datasets, a new independent
head is generated and paired with the common body. This
pairs a trained feature extractor with a random head, which
constitutes an unwanted moving target for the learning. In
order to meaningfully extend the training on top of the features
learned so far, we first train the head alone (keeping the body

“frozen” and unchanged) until it converges on the currently
available features (which, as a reminder, were trained on a
different dataset). This step (DM-only) can be interpreted as
centering the new head on the body’s features.

The following step is to release the freeze on the body,
enable end-to-end training of both the now centered head and
the common body. This process enables a smooth transition of
the FE specialization from one dataset onto the next, gradually
including novel information. The training on the current dataset
is complete and the loop can resume on the next dataset. In
the last round, the target dataset is reintroduced with the aim
of both refining the learned features and training a new head
that specializes on them.

Model Selection. At each epoch, the current model is
evaluated on the corresponding validation set. At the end of
each round (either DM-only or end-to-end), the model with
the best validation result is selected to be used in the next
iteration. In effect, this acts like an early stopping criterion for
progressive model selection, while enabling a full study of the
training trajectory for plotting purposes.



Dataset  Step name L. rate  Dropout Epoch AUC
Prostate  DS1/End-to-end le-8 0.4 527  0.7334
Brain DS2/DM-only le-7 0.3 1999  0.8483
Brain DS2/End-to-end le-8 0.3 166  0.8596
Lung DS3/DM-only le-5 0.3 1852 0.7755
Lung DS3/End-to-end le-8 0.3 167  0.7691
Prostate  DS4/DM-only le-5 0.3 1914 0.7777
Prostate  DS4/End-to-end le-9 0.0 391 0.7749

Table I: Hyperparameters. Values optimized with cross-
validation at each learning step (first dataset, second dataset
with frozen layers, second dataset with end-to-end training...)
for the Hydra algorithm. Column “L. rate” shows learning rates
for the Adam optimizer. Optimal performance was consistently
reached with a batch size of 128 for all steps. The number of
epochs was fixed to 2000 for plot-generation purposes, but the
best model (as per column “AUC”) was found at the epoch
referenced in column “Epoch” for each step. It is interesting to
notice how the DM-only training receives most benefits from
the longer training, while the end-to-end sessions quickly cap
in performance before starting to overfit.

III. EXPERIMENTAL SETUP

As we work with multiple datasets, using a single set of
common hyperparameters is likely suboptimal. To maximize
training efficiency we hence search for a new set of hyperparam-
eters for each dataset using cross-validation. Table I presents
the values found at each step of the experiment.Though the
validation AUCs on Lung CT and Kaggle Brain are promising,
further study (including a proper test split) goes beyond the
goal of this paper, and is better addressed in future work with
a focus on scores optimization.

Our reference implementation is written in PyTorch and
trained with the Adam optimizer. We run our experiments on a
single machine with a 64-core Intel(R) Xeon(R) 6142 CPU at
2.60GHz (with 6GB of RAM per core), and 5 NVidia GeForce
RTX 2080 Ti GPUs at 2.1GHz (with 10GB vVRAM each).
The complete training of the final Hydra model (including
the generation of per-epoch statistics, but excluding the cross-
validation process) took approximately 60 hours. Standard
end-to-end TL in comparison took about 30 hours, as only
one 2000-epoch training is done for each dataset (while Hydra
does two 2000-epoch steps). Classical single-dataset end-to-end
training took 7 hours. All time estimations are based on fixed
full-runs of 2000 epochs. Table I suggests that the adoption of
early stopping would considerably reduce these times.

Model Architecture. The network architecture used in this
work is inspired by Song et al. [14], who specialized the
VGG structure [15] for prostate lesion classification. A detailed
description of our model is available in Figure 3. It is composed
of three convolution-dropout-max-pooling blocks, followed by
three fully-connected-dropout blocks. Each convolutional box
(in blue in the figure) stands for a sequence of three layers,
namely: convolution, batch normalization and exponential linear
unit (ELU). The fully-connected layer box (in orange) is
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Figure 3: Model architecture. While basing our model on the
architecture proposed by Song et al. [14], we split it explicitly
into a feature extractor (top left-hand side) and a decision maker
(top right-hand side), enforcing a well-defined specialization of
roles. The feature extractor is mostly composed of convolutional
layers, which compute increasingly complex features from the
data, topped by an aggregating dense layer with ELU activation.
The decision maker is a succession of fully-connected ELU
layers, ending in a binary layer with softmax activation.

instead composed of a fully-connected layer followed by an
exponential linear unit. The last fully-connected box (in purple)
is again composed of a fully-connected layer, but followed this
time by a softmax function for classification. Our approach
introduces an explicit split of the architecture into two distinct
sub-modules with specialized responsibilities: feature extractor
(FE or body) and decision maker (DM or head). The split point
was chosen empirically through extensive experimentation. The
best performance was achieved by considering all convolutional
layers in the common FE, followed by one fully-connected
layer acting as a “feature composer” of sorts. The DMs are
composed of multiple fully-connected layers topped by softmax
activation, as common in classification applications.

Data processing and augmentation. To enable a smooth
transition across datasets, all images need to be pre-processed
to a common format. We first converted all images into
Numpy arrays (using DICOM normalization information when
available), rescaled to a common resolution, and normalized
with Z-score (using per-patient mean and standard deviation).
Further metadata used in the processing (patient identifier,
lesion coordinates, classification label, etc.) were integrated
in the new filenames. The combination of (i) switching
to a common, numerical data type and (ii) integrating the
metadata into the filename provides a universal format that




simplifies normalization and integration of multiple datasets to
be processed by the same network architecture. For the sake
of uniformity across datasets, the only MRI sequence selected
from the PROSTATEXx data was the DWI images with highest
b-value under the transverse plane. This sequence was selected
through visual inspection, as malignant lesions look the closest
across all three dataset in terms of visual features. This limits of
course the maximum score attainable on that particular dataset,
but enables studying the differences in performance gained by
our method in isolation, which is more in line with the goal
of this paper. Improving the best score on the PROSTATEx
dataset, possibly by training a decision maker on the combined
features from previous work and our approach, is left for future
work. The datasets were then synthetically augmented using a
technique akin to Song et al. [14]. We began by cropping a
relatively larger patch (e.g. 130 x 130 pixels for PROSTATEX)
centered on the lesion. All datasets were augmented using
rotation (-20° to 20°), horizontal flipping (probability of 0.5)
and horizontal shifting (-1px, Opx, 1px). Each patch was then
further resized to its final size of 65 x 65 pixels. Class imbalance
was also addressed in this step, by balancing the class with
fewer elements with augmented data. Finally, we split the target
dataset into train, validation and test sets with a 8-1-1 split.
The lower proportion for validation and test has a double effect
on such a small dataset: more data is available for training, but
at the same time the validation set becomes less representative
of the test set, making the model selection process equivocal.
The support datasets are all split 9-1 into train and validation:
as we focus on one single target, there is no test set.

IV. RESULTS

We compare the performance of Hydra against classical
end-to-end Transfer Learning, maintaining the same sequence
of datasets, pre-processing and augmentation, basically corre-
sponding to Algorithm 1 minus the heads change and body
freeze, which are distinctive of our contribution.

Our final results are given in Table II, which also includes a
short run of Random Weight Guessing [23] on the base model
to offer an estimation of the problem complexity [24] and
further motivates our bootstrapping initialization.

Classical learning reaches 0.73 in AUC for validation: this
network is also used for the first (initialization) step of both
Hydra and TL approaches, to study the direct performance
improvement of the two methods. Hydra training then reaches
an AUC on validation of 0.77, corresponding to a 0.04 increase
(5% relative). While not astounding per se, this is in line
with our expectation for a method whose strength lies in
higher generalization. Transfer Learning here shows the better
performance, with a 0.86 validation AUC. Notably though
results on the validation set are biased, since it is used in
training to select the best model at each step, both for Hydra
and TL.

More meaningful are the results on the test set, as this data
was not utilized at any point during the training process and
is a more correct estimator for the final model’s generalization

and applicability. Here both Classical and end-to-end Transfer
Learning distinctively show overfitting, with an AUC on test
of 0.68 and 0.72 respectively. Hydra by contrast goes from
0.68 to 0.80, a 0.12 increment, which corresponding to an 18%
increase in relative performance. This highlights the higher
resilience of Hydra to overfitting, and the improved robustness
when generalizing to unseen data. Furthermore, the results also
support the following points:

e The AUC of canonical end-to-end training is distinctively
lower on the test set than on the validation set. Together
with the high RWG results, this corroborates how our choice
of dataset and train-test-validation split represent a prime
choice for our study on generalization.

e The AUC of Hydra on both the validation set and test
set are close — actually, looking slightly better on the test.
This underlines and confirms the main strength of Hydra:
improved generalization, thanks to the broader training of
the feature extractor.

e While standard validation-based model selection can be
misleading for classical learning (loss of 0.05) and TL (loss
of 0.14 AUC), the generic features learned by Hydra perform
comparably well on both validation and test (gain of 0.2
AUC).

Figure 4 highlights the training trajectory of Hydra versus

TL. We present in (a) results on the test set of the current

model, for each epoch, as it is trained on the training set. While

TL shows a positive trend in the first epochs, it progressively

suffers from overfitting, which lowers the model performance

at each epoch. Hydra on the other hand shows two distinct
trends. In the first half of training, performance is continuous
improving as the DM is tuned on the features learned by the FE
so far. The second half shows the switch to end-to-end training,
which (akin to TL) after a short but steep improvement phase
immediately begins declining towards overfitting. In this case
though the change is noticeably slower, which hints at higher
robustness and generalization capabilities. The right-hand side

Metric RWG  Classical Transfer Hydra
AUC PROSTATEX Validation 0.80 0.73 0.86 0.77
AUC PROSTATEx Test 0.75 0.68 0.72 0.80

Table II: Final results. Performance comparison between
Random Weight Guessing (RWG; [23]) classical learning,
Transfer Learning and Hydra. RWG is presented here as a
baseline of the problem complexity: these results come from
generating 1000 random networks with standard initialization,
evaluating them on the target validation (no training), and
running the best performing (validation) network again on the
test set. Its performance suggests the task is deceiving towards
overfitting, which makes it hard for classical learning. The
bootstrapping for both classical and Transfer Learning only
uses 200 random initializations, accounting for a lower starting
score.
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Figure 4: (a) Performance comparison. Evolution of model performance (AUC) on the target test set, as training progresses.
While the results on the validation sets are biased (as they are used for model selection), the test set is never accessed during
training and thus represents a better proving ground for the model’s generalization and applicability. The discontinuity (and
peak) of Hydra’s path at the center of the graph corresponds to its switching from DM-only training to end-to-end. This also
means that Hydra’s training took 2000+2000 epochs, while the Transfer Learning only took 2000 (only end-to-end), though
running it for 4000 epochs would be unlikely to improve the final result as the method converges into overfitting. Curves show
moving averages over 100 epochs for smoothing, with standard deviation areas. (b) Hydra learning trajectories. Validation
results for the reference decision maker on the target dataset, as the feature extractor is trained on multiple datasets. This shows
how progressively learning features from the other datasets into the common FE impacts the performance on the prostate lesion
classification dataset. Each training step generates a different training curve. The blue curve corresponds to standard end-to-end
training of the initial model (FE + DM1) on the first dataset (our target: PROSTATEx). DM1 is saved as a reference, and used
to produce all the remaining points in the plot. It remains unchanged until the last iteration, while the common FE is trained on
the support datasets paired with their corresponding DM. This is why every second curve is flat: another DM is being trained
on a support dataset while the FE is “frozen”. Notably, the maximum AUC reached by each trajectory (the height of the crest

of each curve in turn) increases monotonically as the learning sequence progresses.

of the figure (Figure 4 (b)) illustrates the learning trajectory
of our system as it is trained on multiple datasets. The figure
shows how progressively learning features from other datasets
impacts the performance on the prostate lesion classification
dataset.

V. CONCLUSION

Broader Impact. A global shortage has impacted the
profession of radiologist for the past twenty years [2], [3].
Computer-Aided Diagnosis could become a powerful tool to
support the available medical personnel, but the application of
state-of-the-art Deep Learning techniques is currently hampered
by a severe shortage of very large datasets across most medical
imaging domains. While medical image datasets are often
small in size, mostly due to ethical and operational constraints,
thousands of different datasets (though diverse and often
incompatible) have been made publicly available over the
past decades. Aggregating such bountiful information using a
unifying learning framework is however nontrivial, as medical
images span a broad range of imaging techniques, body parts

(hence tasks), and data configurations (e.g. resolution, format,
etc.). End-to-end training on a single dataset is often insufficient,
while standard end-to-end Transfer Learning across a large
number of datasets suffers from catastrophic forgetting due to
the moving target of the varying task.

This work addresses these limitations by providing a new
neural network framework and learning algorithm (Hydra),
capable of supporting both generalization and specialization at
the same time by maintaining a common feature extractor (the
body) and a set of independent decision makers (heads, one per
dataset). This enables the application of established end-to-end
training algorithms, while both specializing multiple decision
makers and sharing a common feature extractor. Given the
widespread lack of training data in the medical domain, we
propose this method as an alternative to (and generalization
of) Transfer Learning, with potentially broad applicability.

Results. We provide experimental results on the widely
used PROSTATEx dataset, where Hydra achieves a test-set
AUC increase of 0.12 from 0.68 to 0.80, which corresponds



to an 18% relative improvement. This result is comparable
to a less-experienced (human) radiologist (0.81) [11], which
we find promising in a proof-of-concept study. By contrast,
standard end-to-end Transfer Learning following the same
training pattern only improves by 0.04 (6% relative).

Future work. We are currently exploring the full potential
of our framework through a series of further experiments,
including sequence optimization (i.e., how to identify the best
training sequence for a given list of datasets), parallel training

(.e.

, randomize at each epoch which dataset/head is trained),

and improved model selection (i.e., how to select the best
model to be used in the next step).
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