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Abstract
Deep reinforcement learning applied to vision-
based problems like Atari games maps pixels di-
rectly to actions; internally, the deep neural net-
work bears the responsibility of both extracting
useful information and making decisions based on
it. By separating image processing from decision-
making, one could better understand the complex-
ity of each task, as well as potentially find smaller
policy representations that are easier for humans to
understand and may generalize better. To this end,
we propose a new method for learning policies and
compact state representations separately but simul-
taneously for policy approximation in reinforce-
ment learning. State representations are gener-
ated by an encoder based on two novel algorithms:
Increasing Dictionary Vector Quantization makes
the encoder capable of growing its dictionary size
over time, to address new observations, and Direct
Residuals Sparse Coding encodes observations by
aiming for highest information inclusion. We test
our system on a selection of Atari games using tiny
neural networks of only 6 to 18 neurons (depend-
ing on the game’s controls). These are still capable
of achieving results comparable—and occasionally
superior—to state-of-the-art techniques which use
two orders of magnitude more neurons.

1 Introduction
In deep reinforcement learning, a large network learns to map
complex, high dimensional input to actions for direct policy
approximation. When a giant network with hundreds of thou-
sands of parameters learns a relatively simple task (such as
playing Qbert) it stands to reason that only a small part of
what is learned is the actual policy.

Separating the representation learning from policy learn-
ing allows in principle for higher component specialization,
enabling smaller networks dedicated to policy learning to ad-
dress problems typically tackled by much larger networks.
Separating the policy network from image parsing also allows
us to better understand how network complexity contributes

∗Original work published at AAMAS 2019 [Cuccu et al., 2019].

to accurately representing the policy. Yet another reason to in-
vestigate how to learn smaller policy networks by addressing
image processing with a separate component is that smaller
networks may offer better generalization.

The key contribution of this paper is a new method for
learning policy and features simultaneously but separately in
a complex reinforcement learning setting. This is achieved
through two novel algorithms: Increasing Dictionary Vec-
tor Quantization (IDVQ) and Direct Residuals Sparse Coding
(DRSC).

IDVQ maintains a dictionary of centroids in the observa-
tion space, which can then be used for encoding. The two
main differences with standard VQ are that the centroids are
(i) trained online by (ii) disregarding reconstruction error.
The dictionary trained by IDVQ is then used by DRSC to
produce a compact code for each observation. This code is
used in turn by the neural network (policy) as input to select
the next action. The code is a binary string: a value of ‘1’ in-
dicates that the corresponding centroid contains information
also present in the image, and a limited number of centroids
are used to represent the totality of the information.

As the training progresses and more sophisticated policies
are learned, complex interactions with the environment result
in increasingly novel observations; the dictionary reflects this
by growing in size, including centroids that account for newly
discovered features.

With the goal of minimizing the network size while main-
taining comparable scores, experimental results show that this
approach can effectively learn both components simultane-
ously, achieving state-of-the-art performance on several ALE
games while using a neural network of only 6 to 18 neurons,
i.e. two orders of magnitude smaller than any known pre-
vious implementation. This extended abstract is based on the
original AAMAS 2019 publication [Cuccu et al., 2019].

2 Related Work
Video games are frequently used for AI research [Yannakakis
and Togelius, 2018]. The Arcade Learning Environment
(ALE), based on an emulation of the Atari 2600, is a very
popular benchmark set [Bellemare et al., 2013]. In the most
common setup, the raw pixel output of the ALE framework is
used as inputs to a neural network, and the outputs are inter-
preted as commands for playing the game. Using this setup,
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Figure 1: System diagram. At each generation the optimizer (1) generates sets of weights (2) for the neural network controller (3). Each
network is evaluated episodically against the environment (4). At each step the environment sends an observation (5) to an external compressor
(6), which produces a compact encoding (7). The network uses that encoding as input. Independently, the compressor selects observations
(8) for its training set (9). At the end of the episode, the environment returns the fitness (cumulative reward; 10) to the optimizer for training
(neuroevolution; 11). Compressor training (12) takes place in between generations.

Mnih et al. reached above human level results on a majority
of 57 Atari games that come with the standard distribution
of ALE [Mnih et al., 2015]. Since then, a number of im-
provements have been suggested that have improved game-
playing strength on most of these games [Hessel et al., 2017;
Justesen et al., 2019].

Neuroevolution uses evolutionary algorithms to train neu-
ral networks [Floreano et al., 2008; Yao, 1999; Igel, 2003;
Risi and Togelius, 2017]. Typically, this means training
the connection weights of a fixed-topology neural network,
though some algorithms evolve the topology as well [Stanley
and Miikkulainen, 2002]. Until recently, reinforcement learn-
ing generally relied on low-dimensional features, either by
using intrinsically low-dimensional sensors (such as infrared
or laser range-finders) or by using hard-coded computer vi-
sion techniques. Such hard mappings generalize badly; in or-
der to create a more general reinforcement learning method,
the mapping must be automatically constructed or learned.

3 Method
Our system is divided into four main components: i) the En-
vironment is an Atari game, taking actions and providing
observations; ii) the Compressor extracts a low-dimensional
code from the observation, while being trained online with
the rest of the system; iii) the Controller is our policy ap-
proximator, i.e. the neural network; finally iv) the Optimizer
is our learning algorithm, improving the performance of the
network over time, in our case an Evolution Strategy. Each
component is described in more detail below.
3.1 Environment
We test our method on the Arcade Learning Environ-
ment (ALE), interfaced through the OpenAI Gym frame-
work [Brockman et al., 2016]. As discussed above, ALE is
built on top of an emulator of the Atari 2600, with all the limi-
tations of that console. In keeping with ALE conventions, the
observation consists of a [210× 180× 3] tensor, representing
the RGB pixels of the screen input.
3.2 Compressor
The role of the compressor is to provide a compact represen-
tation for each observation coming from the environment, en-
abling the neural network to entirely focus on decision mak-
ing. This is done through unsupervised learning on the very

same observations that are obtained by the network interact-
ing with the environment, in an online learning fashion.

We propose a new algorithm based on Vector Quantiza-
tion (VQ) named Increasing Dictionary VQ (IDVQ), coupled
with a new Sparse Coding (SC) method named Direct Resid-
uals SC (DRSC). The following section gives a step-by-step
guide on the application of IDVQ+DRSC. The full deriva-
tions and pseudocode algorithms are available in the main
publication [Cuccu et al., 2019].

Step-by-Step Breakdown of IDVQ and DRSC
IDVQ is used to train a dictionary, which can then be used
by DRSC to encode (i.e. extract features from) an observa-
tion (image). To understand how these two algorithms work
together, let us hypothesize a working starting dictionary and
see how DRSC produces an encoding.

Initialization. Two components need to b initialized: the
code, as an arrays of zeros of the same size as the dictionary,
and the residual information which still needs encoding, ini-
tially the whole original image.

Next centroid. The algorithm then loops to select centroids
to add to the encoding, based on how much of the resid-
ual information they can encode. To select the most simi-
lar centroid, the algorithm computes the differences between
the residual information and each centroid in the dictionary,
aggregating each of these differences by summing all val-
ues. The centroid with the smallest aggregated difference is
thereby the most similar to the residual information, and is
chosen to be included in the encoding.

Encoding. The corresponding bit in the binary code is
flipped to ‘1’, and the residual information is updated by sub-
tracting the new centroid.

Interpreting residual information. The signs of the val-
ues in the updated residual information (old residual minus
new centroid, the order matters) are now significant: (i) val-
ues equal to zero mean a perfect correspondence between the
pixel information in the old residual and the corresponding
value in the new centroid; (ii) positive values correspond to
information that was present in the old residual but not cov-
ered by the new centroid; (iii) negative values correspond to
information present in the new centroid, but absent (or of
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Figure 2: Trained centroids. A few centroids trained with IDVQ during a run of the game Qbert. Notice how the first captures the initial
state of the game (background), while the others build features as subsequent residuals: lit cubes, avatar and enemy. Colors are inverted for
printing purposes.

smaller magnitude) in the old residual. This is crucial to-
wards the goal of fully representing the totality of the original
information, and to this end the algorithm is free to disregard
reconstruction artifacts as found in (iii).

Loop. The algorithm then keeps looping and adding cen-
troids until the (aggregated) residual information is lower
than a threshold, corresponding to an arbitrary precision in
capturing the information in the original image.

Dictionary training. The dictionary is trained with IDVQ
by adding new centroids to minimize leftover residual infor-
mation in the encoding. The training begins by selecting an
image from the training set and encoding it with DRSC, pro-
ducing the binary code as described above. A dot product be-
tween the code and the dictionary (i.e. summing the centroids
selected by the code, since it is binary) produces a reconstruc-
tion of the original image, similarly to other dictionary-based
algorithms.

Residual information. The difference between the training
image and the reconstruction then produces a reconstruction
error (-image), where the sign of the values once again corre-
spond to their origin: positive values are leftover information
from the image which is not encoded in the reconstruction,
while negative values are reconstruction artifacts with no re-
lation to the original image. This reconstruction error image
is then aggregated (with a sum) to estimate the quantity of
information missed by the encoding.

Adding new centroids. If it is above a given threshold,
a new centroid should be added to the dictionary to enable
DRSC to make a more precise reconstruction. But in that case
the residual itself makes for the perfect centroid, as it exactly
captures the information missed by the current encoding, and
is then added to the dictionary.

3.3 Controller
The controller for all experiments is a single-layer fully-
connected recurrent neural network (RNN). The number of
inputs is equal at any given point in time to the size of the
code coming from the compressor. As the compressor’s dic-
tionary grows in size, so does the network’s input. In order
to ensure continuity in training (i.e. the change needs to be
transparent to the training algorithm), it is necessary to define
an invariance across this change, where the network with ex-
panded weights is equivalent to the previous one. This is done

Game HyperNeat OpenAI Ours # n

DemonAttack 3590 1166.5 325 6
FishingDerby -49 -49 -10 18
Frostbite 2260 370 300 18
Kangaroo 800 11200 1200 18
NameThisGame 6742 4503 920 6
Phoenix 1762 4041 4600 8
Qbert 695 147.5 1250 6
Seaquest 716 1390 320 18
SpaceInvaders 1251 678.5 830 6
TimePilot 7340 4970 4600 10

Table 1: Game scores. Scores on a sample of Atari games (sorted al-
phabetically), compared to results from HyperNeat and OpenAI ES.
Column ‘# n’ indicates how many neurons were used in our work,
in a single layer (output), for each game. The number of neurons
corresponds to the number of available actions in each game, i.e. no
neurons are added for performance purpose.

by setting the weights of all new connections to zero, making
the new network mathematically equivalent to the previous
one, as any input on the new connections cancels out.

The number of neurons in the output layer is kept equal
to the dimensionality of the action space for each game, as
defined by the ALE simulator. No hidden layers nor extra
neurons were used in any of the presented results.

3.4 Optimizer
The optimizer used in the experiments is a variation of Expo-
nential Natural Evolution Strategy(XNES; [Glasmachers et
al., 2010]) tailored for evolving networks with dynamic size.

Since the parameters are interpreted as network weights in
direct encoding neuroevolution, changes in the network struc-
ture need to be reflected by the optimizer in order for future
samples to include the new weights.

In order to respect the network’s invariance, the expected
value of the distribution (µ) for the new dimension should be
zero. As for Σ, we need values for the new rows and columns
in correspondence to the new dimensions.

Example. Take for example a one-neuron feed-forward net-
work with 2 inputs plus bias, totaling 3 weights. Let us select
a function mapping the optimizer’s parameters to the weights
in the network structure (i.e. the genotype to phenotype func-
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HN Others Ours
# neurons ˜3034 ˜650 ˜18
# hidden layers 2 3 0
# connections ˜906k ˜436k ˜3k

Table 2: Results. Our proposed approach achieves comparable
scores (sometimes better) using up to two orders of magnitude fewer
neurons, and no hidden layers. The following numbers refer to net-
works for games with the largest action set (18). Column HN is for
HyperNeat, column Others is for OpenAI ES, GA (1B), and NSRA-
ES. Column Ours presents the proposed method of IDVQ, DRSC
and XNES.

tion), as to first fill the values of all input connections, then all
bias connections. Extending the input size to 4 requires the
optimizer to consider two more weights before filling in the
bias:
µ = [µ1 µ2 µb] → [µ1 µ2 0 0 µb]

Σ =

σ2
1 c12 c1b

c21 σ2
2 c2b

cb1 cb2 σ2
b

 →


σ2
1 c12 0 0 c1b

c21 σ2
2 0 0 c2b

0 0 ε 0 0
0 0 0 ε 0
cb1 cb2 0 0 σ2

b


with cij being the covariance between parameters i and j,

σ2
k the variance on parameter k, and ε being arbitrarily small

(0.0001 here). The evolution can pick up from this point on
as if simply resuming, and learn how the new parameters in-
fluence the fitness.

4 Experimental Setup
The following covers the most important choices in our ex-
perimental setup. Please refer to the main paper for a detailed
description [Cuccu et al., 2019].

• Population size and learning rates are dynamically adjusted
based on the number of parameters, based on the XNES
minimal population size and default learning rate [Glas-
machers et al., 2010].
• The average dictionary size by the end of the run is around

30-50 centroids, but games with many small moving parts
tend to grow over 100. In such games there seems to be di-
rect correlation between higher dictionary size and perfor-
mance, but our reference machine performed poorly over
150 centroids.

• Every individual is evaluated on 5 environment initializa-
tions to reduce fitness variance.

• Experiments are allotted a mere 100 generations, which av-
erages to 2 to 3 hours of run time on our reference machine.

These restrictions are extremely tight compared to what is
typically used in studies utilizing the ALE framework. Lim-
ited experimentation indicates that relaxing any of them, i.e.
by accessing the kind of hardware usually dedicated to mod-
ern deep learning, consistently improves the results on the
presented games. The full implementation is available on
GitHub under MIT license1.

1https://github.com/giuse/DNE/tree/six neurons

5 Results
The goal of this work is not to propose a new generic feature
extractor for Atari games, nor a novel approach to beat the
best scores from the literature. Our declared goal is to show
that dividing feature extraction from decision making en-
ables tackling hard problems with less resources, and that
the deep networks typically dedicated to this task can be sub-
stituted for simple encoders and tiny networks while main-
taining comparable performance. Table ?? emphasizes our
findings in this regard. Under these assumptions, Table ??
presents comparative results over a set of 10 Atari games from
the hundreds available on the ALE simulator.

The resulting scores are compared with recent papers that
offer a broad set of results across Atari games on comparable
settings, namely HyperNeat [Hausknecht et al., 2014], Ope-
nAI ES [Salimans et al., 2017], GA (1B) [Such et al., 2017],
and NSRA-ES [Conti et al., 2018], showing comparable re-
sults (and sometimes better). Notably, our setup achieves
high scores on Qbert, arguably one of the harder games for
its requirement of strategic planning.

The real results of the paper are however highlighted in Ta-
ble ??, which compares the number of neurons, hidden layers
and total connections utilized by each approach. Our setup
uses up to two order of magnitude fewer neurons, two or-
ders of magnitude fewer connections, and is the only one us-
ing only one layer (no hidden layer, equivalent to a simple
linear controller).

6 Conclusions
We presented a method to address complex learning tasks,
such as learning to play Atari games, by decoupling policy
learning from feature construction, learning them indepen-
dently but simultaneously to further specializes each role.
Features are extracted from raw pixel observations coming
from the game using a novel and efficient sparse coding al-
gorithm named Direct Residual Sparse Coding. The result-
ing compact code is based on a dictionary trained online with
yet another new algorithm called Increasing Dictionary Vec-
tor Quantization, which uses the observations obtained by the
networks’ interactions with the environment as policy search
progresses. Finally, tiny neural networks are evolved to de-
cide actions based on the encoded observations, achieving
results comparable with the deep neural networks typically
used for these problems while being two orders of magnitude
smaller.

The implication is that feature extraction on some Atari
games is not as complex as often considered. On top of that,
the neural network trained for policy approximation is also
very small in size, showing that the decision making itself can
be done by relatively simple functions. One goal of this paper
is to clear the way for new approaches to learning, and to
call into question a certain orthodoxy in deep reinforcement
learning, namely that image processing and policy should be
learned together (end-to-end).
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