
Typhon: Parallel Transfer on Heterogeneous
Datasets for Cancer Detection in Computer-Aided

Diagnosis
Giuseppe Cuccu
eXascale Infolab

University of Fribourg
Fribourg, Switzerland

giuseppe.cuccu@unifr.ch

Christophe Broillet
eXascale Infolab

University of Fribourg
Fribourg, Switzerland

christophe.broillet@unifr.ch

Carolin Reischauer
Department of Medicine

University of Fribourg
Fribourg, Switzerland

carolin.reischauer@unifr.ch

Harriet Thoeny
Department of Radiology

Cantonal Hospital of Fribourg
Fribourg, Switzerland
harriet.thoeny@h-fr.ch

Philippe Cudré-Mauroux
eXascale Infolab

University of Fribourg
Fribourg, Switzerland

philippe.cudre-mauroux@unifr.ch

Abstract—We present Typhon, a new Deep Learning frame-
work that trains a single model using multiple, heterogeneous
datasets leveraging parallel transfer. This aims to improve the
performance of Deep Learning methods in critical applications
afflicted by data scarcity, such as computer-aided diagnosis for
cancer detection, where large datasets are rare or unfeasible
but many smaller datasets may be available. The key idea is to
assemble sufficient data for training deep models by selecting a
set of multiple, potentially smaller and heterogeneous datasets,
as long as they all exhibit similar visual features, such as
common with medical imaging applications. The Typhon model
architecture is composed of a single Feature Extractor and
multiple Decision Makers, in sequence but explicitly separated.
The Feature Extractor is trained using all datasets with a focus on
producing generic features which are useful across all datasets.
The Decision Makers are each paired with a different dataset,
and specialized to take decisions based on the output of the
Feature Extractor. Our training method is based on the concept
of parallel transfer: on each epoch, we train on just one batch
from each dataset in turn. This is done by pairing the correct
Decision Maker on top of the shared Feature Extractor, then
training the resulting model end-to-end on the data batch using
classical methods. The actual design is inherently more complex,
as we had to overcome a set of major challenges such as dataset
imbalance, moving target, catastrophic forgetting, and issues with
initialization viability. Once made viable, however, this methods
excels at strictly enforcing feature generalization and delaying
or even preventing overfitting. We present our results on the
widely adopted PROSTATEx MRI dataset for prostate cancer
classification, using additional datasets of brain MRI and lung
CT images to boost the model’s performance. Typhon improves
on our previous work based on sequential transfer (Hydra)
by over 7%, which compounds to a 15% improvement over
classical methods and 12% over transfer learning, while only
seeing 54% more samples than classical end-to-end training on
a single dataset.

Index Terms—Data Scarcity, Parallel Transfer, Medical Imag-
ing, Cancer Detection, Overfitting

I. INTRODUCTION AND MOTIVATION

Over the past decade, Deep Learning (DL) has revolu-
tionized entire fields, such as natural language or image
processing. Domains limited by data scarcity, however, still
lag behind, as state-of-the-art method require increasingly
more data to train. Some of these domains are, however,
of crucial importance, such as computer-aided diagnosis of
tumoral masses in medical images.

Creating large datasets in this field comes with significant
challenges, mostly put in place explicitly to protecting patient
privacy: releasing medical data for public usage is both an
ethical and bureaucratic nightmare. Moreover, labeling such
images requires the contribution of expert radiologists, a
resource that is inherently very limited, as clinical work is
typically prioritized over research efforts. Obtaining sufficient
data for classical Deep Learning methods has proven an unre-
solved challenge for many years now. Our approach focuses
instead into constructing a model and a training procedure that
can excel using data that is already available: relatively small
datasets, though potentially in larger numbers.

The first step in this challenge is to understand the root
issue that causes Deep Learning to be so data-hungry: the
vanishing gradient problem. While the last layers of a neural
network are not difficult to train per se, as the errors can be
computed fairly precisely against the labels, the first layers
of the network only receive a residual gradient that has been
back-propagated through all intermediate layers: the deeper
the network, the more the loss of precision of this error signal,978-1-6654-8045-1/22/$31.00 ©2022 IEEE

(a) (b) (c)

Figure 1: Datasets. Our Typhon framework trains a model on multiple, potentially heterogeneous, datasets. We present results
on the PROSTATEx MRI (a) dataset, augmented by adopting the Lung CT (b) and Kaggle Brain (c) datasets for training.

and the more update steps and data points are consequently
necessary to average out the its noise.

In most image processing applications, especially based on
convolutional networks, these first layers have at the same
time a very critical role: to extract increasingly complex
visual features from the input image, eventually creating a
meaningful high-abstraction feature space, on top of which a
smaller set of layers, typically fully-connected feed-forward
layers, can take the final decision. The first and larger part
of the network, even in classic monolithic designs, implicitly
acts as a Feature Extractor (FE), with the smaller fully-
connected section on top defining instead a Decision Maker
(DM). These parts are often clearly distinguishable in most
modern architectures, although the differentiation is rarely
leveraged explicitly.

Training the Decision Maker is typically not overly chal-
lenging: its size is smaller, and the error signal it receives is
of higher quality simply because it is composed of the very last
layers of the network. Training the Feature Extractor layers is
what makes most Deep Learning methods data-hungry. Our
initial inspiration for this work is that, if only there could
be a way to train the Feature Extractor on multiple datasets,
their (single) smaller size would be less of an issue, and the
resulting feature space could be of higher-quality. This would
in turn allow each of the Decision Makers to further improve
their responses, even if trained only on one dataset each.

We started on this path with a framework named Hydra [1],
which tried to address the problem from the perspective of
sequential transfer, akin to Transfer Learning [2]. Hydra also
adopts an architecture with one Feature Extractor and multiple
Decision Makers, but trains on each dataset in turn until
convergence, to then discard the past Decision Maker. The
approach is repeated once for each support dataset, leaving the
actual target dataset for last as a final model specialization.
This approach already improved significantly over standard
Transfer Learning methods; its convoluted training process,
however, while showing the potential of the approach, still
suffered from catastrophic forgetting and early training termi-
nation, due to how easy is for a large model to overfit on small

datasets.
Since then, our team has been focusing on parallel transfer

instead, a radically different approach initially locked behind a
set of significant challenges (see Section II). This work shows
the result of our efforts in this direction, presenting our new
framework named Typhon.

A. Related work

The idea of reusing the feature extraction layers originally
trained for another application is at the core of Transfer
Learning [3], [4]: a model is initially trained on a larger
dataset, then the decision-making layers are re-initialized and
re-trained on a new task, without altering the original feature-
extraction layers. Such a technique is extremely effective
in applications where training a particularly large model on
billions of data points is unfeasible or prohibitively expensive
for most; but if one instance of such a model is trained once
and made publicly available, Transfer Learning allows reusing
its painstakingly well-trained feature extraction layers on a
new application, allowing for producing effective models in a
cost-effective manner.

Abubakar et al. [5] claim that the “Transfer Learning
process is used in two approaches: fine-tuning, where some
modifications are made and as an off-the-shelf feature extractor
where features are extracted in order to train a machine learn-
ing classifier”. Our previous work, Hydra [1], alternated layer-
freezing and fine-tuning steps over each dataset in turn. Hydra
can thereby be seen as an asynchronous multi-task learning
algorithm, where the datasets are provided in turn, switching
between last layers training and whole model training. Samala
et al. [6] showed that “multi-task Transfer Learning may be
an effective approach for training DCNN in medical imaging
applications when training samples from a single modality are
limited”, which is our case. The association of a pre-trained
model with multi-task learning demonstrated its efficacy [7].
Our approach keeps the essence of this architecture, but is
fundamentally different in three ways: (1) we do not use
a pre-trained model coming from another source (they use
ImageNet); (2) we use multiple datasets of different body parts

Algorithm 1 Typhon training process

Inputs:
Σ: Set of n training datasets σi, accessed via a LoopLoader (see Section II-C)
M0: Complete Typhon model (see Section II-A)

This includes one shared Feature Extractor (FE) and n dedicated Decision Makers (DMi).
Initialization is done with our custom bootstrapping using all datasets, see Table I for details.

Main:
M←M0

for each epoch ei do
for σi in Σ do ▷ For each epoch, loop through the datasets

b← getBatch(σi) ▷ Obtain a batch; this re-loads and re-shuffles σi as needed
M⟨FE,DMi⟩ ← train(M⟨FE,DMi⟩, b) ▷ Train on one batch, affecting both FE and DMi

return M

alternatively (multiple steps); and (3) each head of the multi-
task learning is trained at a different step.

Our approach also relates to Multitask Learning [8]. Here
the objective is also to learn a single model to address multiple
tasks, which can correspond to different datasets as well as to
different targets on the same one. However, the key difference
is that Multitask Learning expects to activate the entirety of
the model for each input, on all tasks: the inputs from each
task are concatenated then passed together to the model’s input
as a single item. We adopt a more granular approach in our
work, as we train selective portions of the network (selecting
individual Decision Makers) at each step.

We test the performance of our framework in the context of
Computer-Aided Diagnosis (CAD) of malignant lesions. As
our target dataset, we selected the SPIE-AAPM-NCI Prostate
MR Classification Challenge (PROSTATEx) dataset [9]–[11],
arguably the most well-known publicly available dataset for
prostate lesion classification, initially published in 2017 as part
of the PROSTATEx Grand Challenge [12]. It includes multi-
parametric MRI scans from 204 patients, including multiple
planes and different sew, in DICOM format.

We base our architectural and data augmentation choices
on the work by Song et al. [13], which – to the best of
our knowledge – published the best on technique on the
PROSTATEx datasets so far. Their work builds on the MRI-
as-color-channels stacking intuition from the input data stacks
images from XMasNet, but with a novel network architecture
inspired by VGG [14]. We re-implement their network archi-
tecture and image augmentation procedure exactly to establish
a performance baseline, before adapting it to our framework
to produce our results.

In order to test our multi-dataset approach, we introduce two
more datasets with different imaging modalities (CT scans and
MRIs), body parts (lung and brain) and file types (PNG and
JPEG): the SPIE-AAPM Lung CT Challenge dataset [15]–
[17] (Lung CT), and the “Brain MRI Images for Brain Tumor
Detection” dataset [18] (Kaggle Brain). A discussed above,
state-of-the-art results rely on dedicated architectures (e.g.
multi-channel 2D convolutions) that optimize the performance

based on a single, homogeneous dataset (e.g. multiparametric
MRI scans). We aim instead at leveraging heterogeneous data
types and modalities, to enable selecting candidate datasets
from a broader pool. To this goal, we utilize only one sequence
from the PROSTATEx dataset: the Diffusion-weighted MR
images with the highest b-value. While this choice can be
considered an handicap in principle, it also allows us to
match the visual features of other capture methods, our thesis
being that this advantage will eventually overcome the initial
hindrance, while providing fair comparison across dataset
results.

B. Contributions

This paper presents the Typhon framework, a novel method
to train a multi-headed neural network model on a set of
(potentially heterogeneous and small) datasets, using parallel
transfer. The similarities to our previous Hydra framework are
barely aesthetic, as training the model using parallel trans-
fer brings an entirely different sets of challenges, requiring
the creation of entirely new training and even bootstrapping
methods. This is further detailed in Section II, and led to the
following contributions:

• A new, always-available multi-headed design for our
model;

• A custom bootstrapping technique, without which parallel
transfer was originally non-viable;

• A novel training procedure learning from all datasets in
parallel, which embraces and even leverages catastrophic
forgetting on moving targets, to boost model generaliza-
tion;

• A data loading structure producing an uninterrupted
stream of data batches, which tackles our novel problem
of dataset size imbalance;

• A significant performance improvement over our previous
results: 7% increase in AUC over Hydra, which com-
pounds to 15% over classical learning methods;

• An entirely new open source reference implementation,
professionally designed for ease of reproducibility, adop-

tion and extension1.

II. CHALLENGES AND BREAKTHROUGHS

Algorithm 1 presents the overall training process of Typhon.
Create a viable parallel training method and routine required
significant efforts: the next section highlights the main chal-
lenges we met, and how we addressed them.

A. Moving target: the Typhon model

Our previous work was based on sequential transfer: each
dataset is learned thoroughly (until convergence/overfitting)
before moving on to the next one. This still leaves the model
liable to catastrophic forgetting: training on each subsequent
dataset is a chance to overwrite potentially useful features
learned from previous datasets, without a chance for recovery.
This fundamental issue is side-stepped in this work by switch-
ing to parallel transfer: the datasets are constantly rotated
at each epoch, after a single batch of training. There is
no training of a single dataset until convergence; instead,
after learning a bit from one batch, the learning objective
is abruptly moved on to the next dataset. This escalates the
catastrophic forgetting, into a problem of moving target, where
the learning and convergence are hindered by the learning ob-
jective constantly switching between datasets. This is naturally
expected to delay the learning process, if not grinding it to
a halt altogether; Typhon however, leverages these problems
instead to improve its performance. This begins with its new
network model: at all times, from the very start of the training
process, one “body” (the common Feature Extractor) and all
“heads” (the Decision Makers) are constantly maintained and
kept viable, rather than splitting and matching different parts
sequentially as was done in Hydra.

The Feature Extractor is trained on a different dataset after
each batch. Every time a bit is learned from one specific
dataset, the training immediately switches to the next dataset,
enforcing to forget any learned information that was uniquely
specific to that first dataset. In this case, the second dataset
will generate an error signal that will unlearn that first bit.
But if instead that bit of information is instead sufficiently
generic to be of used also by the second Decision Maker on the
second dataset, it should be expected to improve the model’s
performance, not generating errors, and not being forgotten. In
this case, the bit of learning is not lost but reinforced. Typhon
leverages catastrophic forgetting to fundamentally purge all
single-dataset overfitting from the training process at each
dataset rotation. The only information retained through the
learning is, by necessity, pertaining and useful to all datasets.
This boosts Typhon’s Feature Extractor’s innate focus towards
generalization. The result is a higher-quality feature space,
which in turn supports better learning for the Decision Makers,
and better results overall. We show this experimentally in
Section IV.

1Reference implementation: https://github.com/eXascaleInfolab/typhon

B. Initialization: full-model bootstrapping

Using sequential transfer for Hydra meant that the initial-
ization of the different Decision Makers could be delayed until
the training reached the corresponding dataset. This allowed
bootstrapping both Feature Extractor and one Decision Maker,
as a standard end-to-end model, specifically for the target
dataset. The remaining Decision Makers could then be adapted
to the features that were produced through training on the
previous datasets. The Typhon model, however, requires the
Feature Extractor and all Decision Makers to be available from
the very first epoch, as the whole model is used by the training
process trains on one batch from each dataset in turn at each
epoch. Starting with a completely random initialization was the
biggest problem at the beginning of the project: if the random
initialization does not produce somewhat sensible results from
the first epoch, the moving target problem between randomized
Decision Makers simply tears apart any further attempt to
learn useful features, in turn ensuring that he Decision Makers
themselves will never improve.

We address this problem with a new bootstrapping method
based on Random Weight Guessing (RWG; [19]), where a set
of candidate models are initialized with random weights in
turn, then scored on each dataset’s validation set. The resulting
scores thus depend on the quality of the feature extractor, on
the specific utility of the features for the particular dataset,
and on the quality of the decision maker, as well as the
compatibility of those specific features across all datasets.
Each score measures the model affinity to its own optimization
goal, making the score aggregation overall a complex multi-
optimization problem. Scoring one model by simply averaging
the scores across all datasets typically led to mediocre results,
leading to an iterative process where we examined and ulti-
mately discarded several options. Our best results, as presented
in this paper, still look for a high average across all dataset
scores, but also requires for at least two Decision Makers
to have higher scores than other candidates. The rationale
behind our choice is that, in order to get a meaningful model
to bootstrap our training, the Feature Extractor is the most
crucial part that needs to be of high quality. Having a high
score on a single dataset could be the result of a good Feature
Extractor paired with a good Decision Maker, or it could still
be simply the result of overfitting. To avoid the second case,
we simply look at the scores of the other Decision Makers
over the other datasets: for at least a second score to be high,
the feature space generated by the Feature Extractor needs a
certain ability to generalize across the two datasets, which is
everything we really need from the bootstrapping process to
stave off the initial issues with the moving target. The third
lower score can be attributed to bad luck in the Decision Maker
generation, which will be fixed by the subsequent training.

C. Dataset imbalance: loop-loaders

The next challenge starts as soon as the datasets are loaded.
At each epoch, Typhon requires one batch from each of the
datasets. The smaller dataset will thus be exhausted before
the others are thoroughly processed. Naively, this would either

In
pu

t

Fu
lly

 c
on

ne
ct

ed
 n

eu
ro

ns
 (E

LU
)

D
ro

po
ut

Feature Extractor Decision Maker(s)

Fully connected
 neurons (ELU)

Dropout

Fully connected
 neurons (ELU)

Fully connected
 neurons (Softmax)

Output

C
on

v-
D

ro
p-

M
ax

P
 fi

lte
rs

C
on

v-
D

ro
p-

M
ax

P
 fi

lte
rs

C
on

v-
D

ro
p-

M
ax

P
 fi

lte
rs

CBE
 filters

CBE
 filters

CBE
 filters

Dropout

Max-pooling

Conv-Drop-MaxP

Convolution
 filters

Batch normalization

ELU activation

CBE

Figure 2: Network architecture. For fair comparison with our
previous work [1], the network architecture is unchanged. The
architecture is based on a custom VGG-16 by Song et al. [13];
we then split the layers explicitly into a Feature Extractor (top
left) and three Decision Makers (top right), enforcing roles
specialization.

require the training to stop, or to continue with one less dataset.
Both these approaches are unsatisfactory because (i) useful
information could be found in the remaining data of the larger
datasets, but also (ii) continuing training with one dataset
removed would expose its features to unbalanced catastrophic
forgetting, which we were so careful in managing so far.

The problem is fundamentally comparable to class im-
balance on a single dataset, where the naive mitigation of
removing data from over-represented classes is also avoided
in favor of generating variations of existing data for the under-
represented classes (data augmentation). Still, this approach
risks diluting the quality of the training set, as the synthetic
data generated as variation of the initial data increases the
dataset size without introducing novel information [20]–[24].
Typhon addresses this issue by allowing for the dynamic
and asynchronous reuse of the available data of the smaller-
sized dataset, making the fewer available points show up
proportionally more often as the training progresses.

A special loop-loader data structure wraps each dataset
loader in our reference implementation. A dataset is thus
first loaded, randomly shuffled, and partitioned into batches
of the required size. Each epoch utilizes one batch from
the dataset. Once all batches are exhausted, our loop-loader
triggers a re-shuffling and re-partitioning of the data, then
transparently returns the first batch from this new set. As
a consequence, unlimited new batches are always available
regardless of dataset size.

An important consequence of this approach is that single
data points belonging to smaller datasets will be seen more

times (and more often) than a corresponding data point in their
larger counterparts. This is typically avoided in the literature
because imbalances quickly lead to overfitting on the smaller
subset of data, which is a serious concern in applications
leveraging sequential information transfer, which is the most
common case. In Typhon however, we found out that this issue
was entirely mitigated by our parallel transfer process and its
constantly moving learning target. The smaller dataset remains
relevant until the end of the training process: this ensures fair
representation of the information it uniquely contains, while
also constantly causing catastrophic forgetting on potentially
overfitting features uniquely specific to the larger datasets.

This sums up the main challenges behind the design and
implementation of Typhon, which can be described in more
detail in the following section.

III. METHOD

Typhon is inspired by the same goal behind Hydra: to
enable learning from multiple datasets, by separating feature
extraction and decision making in the model. As discussed
in Section II, however, our new training method based on
parallel transfer prompted a radical overhaul of every single
component of our framework, leading to an entirely different
method, and consequently different results.

Only the data pre-processing is unaffected by the transition
to parallel transfer, which allows us to use exactly the same
data as our previous work [1]. This ensures a fair comparison
of the performance between the two methods. The main as-
sumption carried over remains that all datasets exhibit similar
visual features, which can be expected in medical imaging
even across formats and techniques. This is simply due to
all images having, broadly speaking, the same subject: the
human body internal workings, captured as images of density
differentials, and focused on the detection of abnormal lesions.

A. Model design

Figure 3 shows an instance of the full Typhon model,
with the shared Feature Extractor focusing on generalization,
plus a set of Decision Makers specializing on single datasets,
available at all times. For contrast, Hydra allows access to
only one Decision Maker at a time, requiring a new one to be
initialized and pre-trained when switching target dataset.

From a classic Deep Learning perspective, our separation
of Feature Extractor and Decision Maker(s) is arbitrary. In
principle, deciding which layer belongs to which part mostly
follows convention (convolution plus pooling for feature ex-
traction, fully-connected layers for decision making), though
experimenting with different cut points allowed us to further
improve on this decision. This means that in principle any
desired network architecture available in the literature can
be adapted to Typhon: the user simply needs to decide on
a partition point, and generate multiple copies of the decision
making layers. For fair comparison with our previous results
however, our results are once again based on the same VGG-
16 [14] architecture specialized by Song et al. [13] for prostate
lesion classification, split after all convolution and pooling

Feature
Extractor DM Task 2 on DS2DS2 outfeat

DM Task 3 on DS3 out

DM Task 1 on DS1 outfeat

feat

DS1

DS3

Figure 3: Typhon model. Three optimizers are instantiated for
the training, each seeing only one end-to-end model (shared
Feature Extractor plus one Decision Maker) running on one
dataset (DS). At each activation, only one sample from one
dataset is passed as input, activating the shared Feature Extrac-
tor and only one of the Decision Makers, corresponding to the
specific dataset. For each epoch of training, each optimizers is
used in turn on just one batch from one dataset; compounded
by the tiny batch size favored by Typhon, epochs iterate much
quicker than in classical learning. This is to further exacerbate
the moving target issue coming from using parallel transfer,
which Typhon leverages to further enforce generalization on
the shared Feature Extractor.

plus one more layer of fully-connected neurons. The split
is also kept at the same point as our previous work (see
Figure 2), uniquely for fair comparison. Exploratory work
shows undeniable potential for alternative architectures to
further improve the results presented here (see Section VI-B),
though this is left for future work.

As the Feature Extractor and all Decision Makers need to
work at the same time and in concert from the very first
epoch, naive random initialization may consistently produce
parametrizations that are not viable for parallel transfer, as
they get pulled apart by the moving target. This is ad-
dressed with a bootstrapping process using Random Weight
Guessing (RWG; [19]) and a tailored evaluation function, as
explained in Section II.

B. Training

With the bootstrapping method providing a meaningful
starting point to start the learning process, the training can loop
across all datasets already from epoch one. This drastically
simplifies the Typhon training process with respect to our
previous Hydra, as highlighted in Algorithm 1, which takes
a form closer to classical (end-to-end) training. The two main
differences are: (i) at each epoch, the model is trained on
one batch from each of the datasets, and (ii) this requires the
framework to switch across Decision Makers, based on the
dataset, multiple times for each epoch.

C. Specialization

The whole design of Typhon revolves around maximizing
the generalization capability of the Feature Extractor. Special-

Table I: Hyperparameters

Training phase Specialization phase
Dataset L. rate D. out B. size L. rate D. out B. size

Prostate 5e-7 0.3 8 8e-10 0.3 64
Brain 5e-7 0.3 8 1e-8 0.3 64
Lung 5e-7 0.3 8 1e-8 0.3 64

Hyperparameters used for the Typhon training phase and subsequent
specialization, the latter being an application of classical end-to-end
training aimed at further specializing the model to the target dataset.
Typhon favors particularly small batch sizes, even though it only trains
on one batch from each dataset at each epoch.

ization is in principle entirely relegated to the Decision Mak-
ers, which are smaller in size anyway to prevent overfitting.
Using heterogeneous datasets, features specific to only one
dataset are typically discarded by the Typhon training process.
This is by design also, as it allows squeezing all possible
feature generalization from the datasets combination, but could
as well likely limit the final performance on any one dataset.

To test this assumption, we follow up our training with a
specialization step, akin to the last step in the Hydra training:
the model is trained end-to-end on the target dataset alone, in
principle re-centering the features on what is optimal for the
target even at the cost of losing generality to other datasets.
This step is not required in principle in Typhon, as all Decision
Makers (including the one for the target dataset) are kept up
to date and viable until the very last epoch. We still include
it here to further validate whether such re-centering is still
useful for Typhon, and whether allowing the model to focus on
dataset-specific features brings a measurable advantage over
the standard parallel transfer training.

The hyperparameters for the specialization are necessarily
different, especially since Typhon favors particularly small
batch sizes, which are typically expected to be sub-optimal in
classical training (see Table I for details). The consequences
and the overall viability of this approach are presented below
in Section V.

IV. EXPERIMENTAL SETUP

This section presents the setup used to run our experiments.
For reproducibility and ease of adoption, we also released our
experiments code publicly on GitHub2, separate from the main
Typhon implementation.

A. Hyperparameters

Working with multiple datasets leads to the drawback of
having to optimize the hyperparameters of the model multiple
times. Table I presents the values we used for our experiments
(both training and specialization). The variation is notably
minimal across our very different datasets, suggesting that less
customization is necessary for Typhon than for other classical
applications. Indeed, we found these values empirically by first
using the same value for all datasets until obtaining sensible
results; from there on, only minimal per-dataset fine-tuning led

2Experiments code: https://github.com/eXascaleInfolab/typhon exp

to the values presented here. This shows that, even though the
number of hyperparameters scales with the number of datasets,
the work necessary to optimize them does not.

B. Reference implementation

Our reference implementation is written in Python, using
the PyTorch library for Deep Learning [25]. Specifically, due
to parallel transfer, Typhon maintains a dedicated (Adam)
optimizer for each Decision Maker, which then sees a single
end-to-end network from the corresponding Decision Maker
down into the shared Feature Extractor. Our experiments ran
on our reference server with a 64-core Intel(R) Xeon(R) 6142
CPU at 2.60GHz, 6GB of RAM per core, and eight NVidia
GeForce RTX 2080 Ti GPUs at 2.1GHz with 10GB of GDDR6
vRAM each. To report comparable run times however, each
of our experiments was restricted to only utilize a single CPU
core and a single GPU.

Still, Typhon turned out to be exceptionally data-efficient,
which can be in part linked to favoring a tiny batch size of
8 versus i.e. 128 for Hydra, and often even larger in other
literature methods. By disabling performance tracking, which
evaluates the model on the training, validation and test set
at each epoch to produce our plots, a complete Typhon run
(bootstrap, training and specialization) takes less than three
hours on the single-GPU single-core setup described above,
using our three datasets.

C. Typhon model architecture

The Typhon model used in our experiments is once again
based on a version of VGG-16 [14] proposed by Song et
al. [13] for the classification of cancerous lesions. This choice
was selected uniquely for fair comparison with our previous
results: exploratory follow-up work using alternative archi-
tectures already shows promising results. The Typhon model
splits the architecture between feature extraction and decision
making at the same point found empirically in our previous
work [1], which is past all convolution and pooling layers,
plus one fully-connected feed-forward layer. Further details
are available in our previous work [1].

D. Data pre-processing

Again for fair comparison with our previous results, the
datasets used in our experiments as well as the pre-processing
and augmentation methods are identical to our previous
work [1]: please refer to our previous publication for complete
details. In short, this includes the DWI sequences from the
PROSTATEx MRI dataset [9]–[12], with high b-value and
restricted to the transversal axis (which is but a fraction of
the data available on the PROSTATEx dataset; CT scan from
the Lung CT dataset [15]–[17]; and T2W sequences from the
Brain Tumor Detection MRI dataset [18]. Data augmentation
is also unchanged: a relatively large patch centered on the
lesion (for positive cases) is cropped out and then augmented
by introducing rotation, flipping and shifting. Class imbalance
is also addressed in this step by adjusting the quantity of
synthetic data produced for the different classes in each

Training

Specialization

Figure 4: Training performance. Plot of model performance
computed at each epoch of the training on both the training
set and validation set of the PROSTATEx dataset. The sharp
discontinuity at the end indicates the transition from the
training phase to the specialization phase, which employs
classical end-to-end training on the target dataset alone. Our
original hypothesis was that the specialization would learn
further dataset-specific features, which are expected to be
otherwise lost to catastrophic forgetting when using parallel
transfer. These plots show however that classical learning finds
little to improve, implying that the training phase is already
capable of learning dataset-specific features into the Feature
Extractor, rendering the specialization phase unnecessary. The
duration of the training and specialization phases are not to
scale relatively to each other, only to enhance readability: the
training phase ran for 10’000 epochs versus the 300 epochs of
specialization, as the training uses a tiny batch size and only
sees one batch from each dataset at each epoch. The training
is actually faster in wall-clock time than the specialization.

dataset. We picked once again the PROSTATEx dataset as
our final target, reusing the exact same partition into train,
validation and test sets.

V. RESULTS AND DISCUSSION

We compare the performance of Typhon directly against our
previous Hydra work [1], which includes results from classical
end-to-end training and Transfer Learning. Our results are
summarized in Table II. Typhon significantly improves on our
previous results. Our experiments also highlighted significant
improvements in terms of sample efficiency and overall learn-
ing ability, as discussed below.

Figure 4 shows the performance of the model during the
training and then specialization phases, on both the training
and validation sets of our target dataset PROSTATEx, allow-
ing us to make a set of important observations. Firstly, the
performance on the PROSTATEx training set increases with
the expected logaritmic trend common to most Deep Learning
approaches; in our case however this is not to be taken for

granted, as our training process is fundamentally different,
and a much more noticeable delay was initially expected. At
each epoch, Typhon trains the model on one single batch from
each of the datasets in turn, not solely on PROSTATEx. This
implies that the training objective is varying wildly following
the heterogeneity of the datasets, but this only results in
minor variations (the “thickness” of the line here). This can
be controlled by altering the batch size, and it is what led
us to ultimately favor such a small value. This validates our
hypothesis that the moving target problem does not hinder
our parallel transfer training process, even when observed
from a single-dataset perspective, and can thus be leveraged
for our intended purposes (which is, as a generalization focus)
without loss in performance.

The second point to notice in Figure 4 is that the model
performance on the validation set follows the performance on
the training set for the entire duration of our training. This
is another unexpected observation, as most methods see the
validation curve peak relatively early, then deflate as the model
progressively overfits on the data. This can be seen clearly
in Figure 5 (on the PROSTATEx test set this time), put in
perspective by the performance of Transfer Learning and, to
a lesser extent, also of Hydra.

Overfitting can critically impair Deep Learning methods:
if the model is sufficiently complex w.r.t. the available data,
learning by heart can be simpler and thus preferred over the
complex processing of increasingly more abstract features,
reducing its performance on unseen data (generalization). In
the case of Typhon however, overfitting is staved off if not
entirely combated: the model keeps performing just as well
on the validation set as it does on the training set, even at
the peak of its performance. This has two major implications:
(i) we can expect the test results to also follow the same
trend of constant improvement as the training progresses; and
most importantly (ii) Typhon shows significant potential
to address overfitting, even in tasks not hindered by data
scarcity. Delaying overfitting means that the training can
continue for longer, and more information can be absorbed
from the data, without having to stop the process for fear of
the model losing its generalization capability.

One final deduction from Figure 4 regards the transition
from the training phase to the specialization phase, which is
starkly noticeable in the plot. The specialization is imple-
mented as classical end-to-end training on a single, target
dataset, which can be seen as “initialized” using Typhon’s
parallel transfer training on multiple datasets. As expected, the
variance in AUC is greatly reduced for both curves, as focusing
on a single dataset entirely rids of the moving target problem.
At the same time however, the performance improvement is
minimal, within 1%, which is insignificant given the perfor-
mance fluctuation during Typhon training and reductive with
respect to the jump seen in Hydra’s specialization performance
(Figure 5; on the test set). This means that classical learning
struggles to improve on a model already learned by
Typhon, implying that Typhon eventually learns even dataset-
specific information, to the point that no further improvement

Figure 5: Performance comparison. Evolution of model
performance (AUC) on the target PROSTATEx test set, as the
training progresses. While the results on the validation sets are
biased, as they are used for model selection, the test set is never
accessed by the training and thus represents a better proving
ground for the model’s generalization and applicability. The
results of Typhon are not only better in terms of pure AUC, but
also in terms of the number of samples seen, since the epochs
for the three curves are not represented at the same scale. To
compare the number of samples seen, refer to Table II. Typhon
also shows remarkable consistence in its performance, possibly
due to its custom bootstrapping technique: the line is built from
an average over 5 runs, with variance shown in lighter color.
The boost in performance w.r.t. the validation AUC numbers
is due to the validation set including synthetically augmented
data, making it a more challenging task than the original data
alone as used in the test set.

is possible on the available data. The Typhon learning phase
was fundamentally still able to “overfit” the feature extractor to
dataset-specific features, without hindering the generalization
across the other datasets, at least to the level of making the
specialization phase superfluous. This is against our original
hypothesis that only generic features can survive Typhon’s
combination of moving target and catastrophic forgetting, and
further strengthens its results beyond our original expectations.

This brings us to Figure 5, which depicts the performance
of the model on the PROSTATEx test set as the training
progresses, and compares Typhon with Hydra and Transfer
Learning – and thus implicitly also with classical learning,
as the target dataset is the first target of the Transfer Learn-
ing process (the first clean rise in its plot). As we aim to
compare each method’s capability and potential, beyond the
specific performance on our arbitrary selection of datasets,
the horizontal axis labeled “Epochs” is not re-scaled (i.e., the
number of epoch varies depending on the method). Typhon
uses a much smaller batch size (see Table I), and only trains
on one batch from each dataset at each epoch, which results
in a proportionally higher number of epochs, but a quicker
wall-clock training time.

Here we see Typhon jumping ahead in performance from
a very early stage, and remaining ahead while consistently

Table II: AUC on PROSTATEx validation and test set

Dataset Classical Transfer Hydra Typhon

Samples seen 50M 152M 356M 78M
Validation 0.73 0.86 0.77 0.68
Test 0.68 0.72 0.80 0.87

Columns correspond to classical end-to-end learning (using only the
target dataset), Transfer Learning (using all datasets in turn, the target
being used twice, as first and then again as last), Hydra, and our new
contribution Typhon. Training Typhon on three datasets uses only 56%
more samples than training a classical Deep Learning model on just
one dataset, and 78% fewer samples than what Hydra required on
three datasets.

improving albeit at a slower rate. As these results are on
the test data, which is of course inaccessible to the training:
the continuous improvement defies our reasonable expectation
of overfitting slowly but surely setting in. This validates our
initial interpretation of Figure 4, i.e. that Typhon’s focus on
generalization actively combats and delays overfitting, even
while obtaining the highest results on the target dataset. A
clearer estimation of Typhon’s ability in this sense is left for
future work, with exploratory work already looking promising.

VI. CONCLUSIONS

This paper introduces Typhon, a Deep Learning framework
to train a single model using multiple heterogeneous datasets
leveraging parallel transfer, focused on generalization to the
point of actively combating and delaying overfitting.

Parallel transfer implies training in turn on each dataset at
every epoch, which is challenging to integrate into a learning
method because of the compounding problems of moving
target and catastrophic forgetting. Any information learned
could be quickly overwritten as the learning target constantly
jumps between datasets, unless it generalizes well across all
of them.

Typhon leverages this as a feature rather than a limitation,
by introducing a special architecture which explicitly partitions
the network layers based on their expected role. The first
layers, typically committed to constructing increasingly com-
plex features (such as convolution and pooling) constitute the
Feature Extractor, while the last layers, commonly dedicated
to decision making (typically fully connected) constitute the
Decision Maker. The latter are then duplicated to match one
dedicated Decision Maker with each dataset. The Feature
Extractor is then trained using data from all datasets, with
moving target and catastrophic forgetting allowing only for
generic features to be retained. Meanwhile the dedicated
Decision Makers specialize as far as its smaller architecture
allows, creating full end-to-end models when paired with the
common Feature Extractor.

Designing a training method under such assumptions led
to a set of fundamental challenges rarely encountered outside
parallel transfer, such as dataset imbalance and training di-
vergence following moving targets, particularly on randomly
initialized models. The core of this work discusses our effort
and results in overcoming those problems, ultimately making

the method viable. We kept our experimental setup constant
for fair comparison, including the neural network architecture,
datasets, and data pre-processing, and present here our Typhon
results against classical learning, transfer learning and Hydra.

Typhon shows a 7% increase in AUC over Hydra, which
compounds to 15% over classical learning and 12% over
transfer learning, while showing higher sample efficiency and
a notable resilience to overfitting. We released our reference
implementation open source, paired with our experimental
setup on a dedicated repository, for reproducibility and ease
of adoption.

A. Broader impact

Medical imaging applications, particularly in support to
radiologists in clinical cancer detection applications, has a
direct impact to cancer casualties. Expert radiologists are a
limited and highly-valuable resource, and while early detection
correlates to higher survivability rates, humans performance is
also negatively impacted by long working hours and height-
ened stress levels. Computer-aided diagnostic tools are not
troubled by the long working hours expected of clinical staff,
making them potentially invaluable in supporting the daily
routine of a Radiology department.

Over the past years, the attempts to bridge the gap between
the performance of Deep Learning methods for visual clas-
sification and medical applications have been constantly held
back by the problem of data scarcity. This is of course linked to
patient privacy: creating large datasets of high-quality medical
imaging requires not only considerable effort, but specific
written authorizations from each patient, validation from the
local ethical committee, as well as significant contribution
from expert radiologists required to label the collected data.
Furthermore, the resulting data is always subject to data quality
issues, due to the lack of an objective “golden standard”, and
the inherent subjectivity of human diagnosis.

High-performance Computer Aided Diagnostic (CAD) tools
are among the most impactful tools available in our constant
battle with cancer at the diagnosis stage. We believe that our
new approach, Typhon, allows to side-step the data scarcity
problem that affect these applications, opening the path for
significant advances in Deep Learning applications in this
context.

B. Future work

Creating larger and larger datasets in applications where
obtaining data is often costly or restricted (such as medical
imaging) has proven to be a fundamentally insurmountable
challenge. Year over year however, the number of available
datasets grows constantly. Typhon is designed to leverage this
trend, by allowing utilizing multiple, diverse datasets while
guaranteeing a global, unified improvement in model perfor-
mance. As we work side by side with clinical radiologists
in our team, we are looking forward to put forward and test
a production-ready implementation of our framework as a
support tool for radiologists.

Future work will also include customizing the network
architecture to suit specific applications, the introduction of
newer and larger datasets (including proprietary ones), and
moving beyond classification and into localization and seg-
mentation tasks. Finally, the full extent of Typhon’s ability
to stave off overfitting in very deep models requires further
investigation, as the potential applications for the whole field
of Deep Learning could be significant even in tasks where data
scarcity is not an issue.

ACKNOWLEDGMENTS

This work received support from the Swiss National Science
Foundation under grant number 320038 176229/1.

REFERENCES

[1] G. Cuccu, J. Jobin, J. Clément, A. Bhardwaj, C. Reischauer, H. Thöny,
and P. Cudré-Mauroux, “Hydra: Cancer detection leveraging multiple
heads and heterogeneous datasets,” in 2020 IEEE International Confer-
ence on Big Data, BigData, 2020.

[2] M. T. Rosenstein, Z. Marx, L. P. Kaelbling, and T. G. Dietterich, “To
transfer or not to transfer,” in NIPS 2005 workshop on transfer learning,
vol. 898, 2005, pp. 1–4.

[3] L. Torrey and J. Shavlik, “Transfer Learning,” Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Methods,
and Techniques, 2010.

[4] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[5] A. Abubakar, M. Ajuji, and I. Yahya, “Comparison of deep transfer
learning techniques in human skin burns discrimination,” Applied System
Innovation, vol. 3, p. 20, 04 2020.

[6] R. K. Samala, H.-P. Chan, L. M. Hadjiiski, M. A. Helvie, K. H. Cha, and
C. D. Richter, “Multi-task transfer learning deep convolutional neural
network: application to computer-aided diagnosis of breast cancer on
mammograms,” Physics in Medicine & Biology, vol. 62, no. 23, pp.
8894–8908, nov 2017.

[7] W. Zhang, R. Li, T. Zeng, Q. Sun, S. Kumar, J. Ye, and S. Ji,
“Deep model based transfer and multi-task learning for biological image
analysis,” IEEE Transactions on Big Data, vol. 6, no. 2, pp. 322–333,
2020.

[8] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp.
41–75, 1997.

[9] G. Litjens, O. Debats, J. Barentsz, N. Karssemeijer, and
H. Huisman, “ProstateX Challenge data,” The cancer imaging
archive, 2017. [Online]. Available: https://wiki.cancerimagingarchive.
net/display/Public/SPIE-AAPM-NCI+PROSTATEx+Challenges

[10] ——, “Computer-aided detection of prostate cancer in MRI,” IEEE
Transactions on Medical Imaging, vol. 33, no. 5, pp. 1083–1092, May
2014.

[11] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore,
S. Phillips, D. Maffitt, M. Pringle, L. Tarbox, and F. Prior, “The
Cancer Imaging Archive (TCIA): Maintaining and operating a public
information repository,” Journal of Digital Imaging, vol. 26, no. 6, pp.
1045–1057, Dec. 2013.

[12] S. G. Armato, H. Huisman, K. Drukker, L. Hadjiiski, J. S. Kirby,
N. Petrick, G. Redmond, M. L. Giger, K. Cha, A. Mamonov, J. Kalpathy-
Cramer, and K. Farahani, “PROSTATEx Challenges for computerized
classification of prostate lesions from multiparametric magnetic reso-
nance images,” Journal of Medical Imaging, vol. 5, no. 04, p. 1, Nov.
2018.

[13] Y. Song, Y.-D. Zhang, X. Yan, H. Liu, M. Zhou, B. Hu, and G. Yang,
“Computer-aided diagnosis of prostate cancer using a deep convolutional
neural network from multiparametric MRI: PCa classification using
CNN from mp-MRI,” Journal of Magnetic Resonance Imaging, vol. 48,
no. 6, pp. 1570–1577, Dec. 2018.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556 [cs], Apr. 2015.

[15] S. G. Armato, K. Drukker, F. Li, L. Hadjiiski, G. D. Tourassi, R. M.
Engelmann, M. L. Giger, G. Redmond, K. Farahani, J. S. Kirby,
and L. P. Clarke, “LUNGx Challenge for computerized lung nodule
classification,” Journal of Medical Imaging, vol. 3, no. 4, p. 044506,
Dec. 2016.

[16] S. G. Armato, L. Hadjiiski, G. D. Tourassi, K. Drukker, M. L. Giger,
F. Li, G. Redmond, K. Farahani, J. S. Kirby, and L. P. Clarke, “Guest Ed-
itorial: LUNGx Challenge for computerized lung nodule classification:
reflections and lessons learned,” Journal of Medical Imaging, vol. 2,
no. 2, p. 020103, Jun. 2015.

[17] S. G. Armato, L. Hadjiiski, G. D. Tourassi, M. L. Giger,
F. Li, G. Redmond, K. Farahani, J. Kirby, and L. P.
Clarke, “SPIE-AAPM-NCI Lung Nodule Classification Challenge
Dataset,” The cancer Imaging Archive, 2017. [Online]. Available:
https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM+
Lung+CT+Challenge#b38bc90c1f4c498fbcb2acb3495cd9d8

[18] “Brain MRI images for brain tumor detec-
tion,” 2019. [Online]. Available: https://kaggle.com/navoneel/
brain-mri-images-for-brain-tumor-detection

[19] J. Schmidhuber, S. Hochreiter, and Y. Bengio, “Evaluating benchmark
problems by random guessing,” A Field Guide to Dynamical Recurrent
Networks, ed. J. Kolen and S. Cremer, pp. 231–235, 2001.

[20] A. Gosain and S. Sardana, “Handling class imbalance problem using
oversampling techniques: A review,” in 2017 international conference
on advances in computing, communications and informatics (ICACCI).
IEEE, 2017, pp. 79–85.

[21] G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior
of several methods for balancing machine learning training data,” ACM
SIGKDD explorations newsletter, vol. 6, no. 1, pp. 20–29, 2004.

[22] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Special issue on learning
from imbalanced data sets,” ACM SIGKDD explorations newsletter,
vol. 6, no. 1, pp. 1–6, 2004.

[23] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for
class-imbalance learning,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 539–550, 2008.

[24] G. Cuccu, S. Danafar, P. Cudré-Mauroux, M. Gassner, S. Bernero,
and K. Kryszczuk, “A data-driven approach to predict nox-emissions
of gas turbines,” in 2017 IEEE International Conference on Big
Data, BigData 2017, Boston, MA, USA, December 11-14, 2017,
2017, pp. 1283–1288. [Online]. Available: https://exascale.info/assets/
pdf/cuccu2017bigdata.pdf

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

