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ABSTRACT
DiBB (for Distributing Black-Box) is a meta-algorithm and frame-
work that addresses the decades-old scalability issue of Black-Box
Optimization (BBO), including Evolutionary Computation. Algo-
rithmically, it does so by creating out-of-the-box a Partially Sep-
arable (PS) version of any existing black-box algorithm. This is
done by leveraging expert knowledge about the task at hand to
define blocks of parameters expected to have significant correla-
tion, such as weights entering a same neuron/layer in a neuroevo-
lution application. DiBB distributes the computation to a set of
machines without further customization, while still retaining the
advanced features of the underlying BBO algorithm, such as scale
invariance and step-size adaptation, which are typically lost in
recent distributed ES implementations. This is achieved by instan-
tiating a separate instance of the underlying base algorithm for
each block, running on a dedicated machine, with DiBB handling
communication and constructing complete individuals for evalu-
ation on the original task. DiBB’s performance scales constantly
with the number of parameter-blocks defined, which should allow
for unprecedented applications on large clusters. Our reference
implementation (Python, on GitHub and PyPI) demonstrates a 5x
speed-up on COCO/BBOB using our new PS-CMA-ES. We also
showcase a neuroevolution application (11 590 weights) on the
PyBullet Walker2D with our new PS-LM-MA-ES.
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1 INTRODUCTION
Black Box Optimization (BBO) is a broad class of optimization
algorithms with the distinguishing advantage that they can be
applied, by definition, to any problem, independently of the specific
application [2]. In principle, this provides amethod that is applicable
to problems yet unsolved by the current state of the art.

Unfortunately most of these methods have heavy computational
requirements. Sophisticated implementations, such as modern Evo-
lution Strategies (ES; Hansen and Ostermeier 18, Wierstra et al. 34),
have a high internal computational cost per sample, in exchange for
a wide set of properties (see Section 2) that correspond to a higher
sample efficiency. Simpler black-box solvers, while less demanding
in their performance, conversely suffer from low sample efficiency,
which makes them notably data hungry.

BBO algorithms in the literature address this trade-off across
the whole spectrum. For example, population-based algorithms can
evaluate candidate solutions efficiently using embarrassingly par-
allel computation. More sophisticated implementations however
have their computational performance dominated by the update
costs, rendering the advantage of parallel population evaluation
inconsequential. State-of-the-art algorithms relying on Covariance
Matrix Adaptation (CMA; e.g. CMA-ES by Hansen 13) for example
have at best quadratic complexity [13, 34] in the number of variables
for processing a sample, strictly limiting their application (within a
sensible time frame) to problems of up to a few thousands variables
on today’s hardware. Simpler methods meanwhile struggle travers-
ing complex fitness landscapes, requiring disproportionately more
samples which also offsets their advantage in practical applications.

As a consequence, while BBO algorithms could in principle be
applied to any problem without restriction, their practical appli-
cation is limited to either trivial problems in high dimensions, or
complex problems in very low dimensions.

To fairly evaluate this trade off, this paper distinguishes be-
tween convergence speed, correspondent to high sample efficiency,
and wall-clock speed, which effectively measures the practical ap-
plicability of a method as the dimensionality and computational
complexity grows. In particular we highlight how some algorithms
implement an assumption of separability between the variables
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(e.g. sep-CMA-ES [27] and SNES [29]), trading off significant con-
vergence speed for wall-clock speed by relinquishing covariance
information altogether [18]. Previous work by the authors also cov-
ers a generalization of this trade-off by establishing a block-diagonal
covariancematrix [6], leveraging the fact that the correlation among
variables is not uniform for most complex problems, and that this
information is often available to the user based on the target task.
This provides initial inspiration for this work, as discussed below.

1.1 Intuition and design
BBO algorithms are designed to work in any unknowable (black-
box) environment. By design, BBO algorithms cannot integrate
task knowledge, in order to ensure that no illegitimate assumptions
are made in their design. In most real-world applications however,
some degree of expert knowledge is often available about the end
task, making it rather a gray-box setting. Expert knowledge about
the correlation between variables is often simple to deduce, as it is
task-specific.

For example in neuroevolution, where evolutionary algorithms
learn the parameters of a neural network, weights of connections
entering the same neuron are by necessity highly correlated, as
the network’s equation aggregates them in a linear combination
prior to activation. While weights entering different neurons are
not entirely uncorrelated, the expectation on their covariance is
(relatively) significantly lower. A similar reasoning is easily made
about neurons entering a same layer versus neurons in different
layers, and remains true as the network expands towards deep
networks 1. The assumption of partial correlation, which allows
partitioning the variables into highly intra-correlated blocks, leads
to the blocks being separable between one another, i.e. low inter-
correlation. The corresponding covariance matrix becomes block-
diagonal, as explored in our previous work [6].

This paper extends the concept by leveraging the underlying
assumption of separability between blocks to optimize each block
of variables using a different, independent instance of the same
BBO algorithm. As a consequence, block-wise computation can now
be distributed across multiple machines: not only the individual
fitnesses can be evaluated in an embarrassingly parallel fashion,
but different blocks can be searched asynchronously, and each
BBO instance can be distributed to different nodes in a cluster (see
Figure 1).

Based on the above insights, this paper proposes a new meta-
algorithm and framework for Distributed Black Box optimization,
named DiBB. DiBB is particularly suited for large-scale problems
evidently structured, as not infrequent (arguably common) in real-
world applications. We provide rigorous theoretical arguments for
the sample efficiency of this approach in Section 2, and further
explore the example application of neuroevolution in Section 4.3.

1.2 Challenges
A major challenge comes with solution evaluation: a BBO instance
running on one machine will produce a population of samples that
are incomplete individuals, as the variables constituting a complete
1The fundamental assumption of partial separability across network layers however
does not seem to be very well studied in the literature, despite a considerable body of
work on neural network loss landscapes [10, 31]. This can be partially tracked to the
limited availability of algorithms making use of partial correlation information.

sample are practically scattered across a network. This is addressed
in Section 3, by establishing a sparse communication scheme be-
tween block instances, and running the fitness evaluation locally
on each machine.

This paper notablymakesno assumption or claim on the under-
lying BBO algorithm of choice. While our experiments explore the
applicability of DiBB in the context of modern, sophisticated ESs,
it can in principle be applied to any BBO algorithm with minimal
interfacing. Even in the extreme case of a known fully-separable
problem, a fully-separable BBO [26–29] can still be improved by
DiBB as it maintains the separability hypothesis, while immedi-
ately generating a distributable version of the base BBO, providing
constant scaling in wall-clock speed to even the humblest of algo-
rithms.

We analyze the performance of our framework on the classic
COCO benchmark, both on the BBOB and BBOB-large-scale suites,
using the industry-standard CMA-ES both as a reference and as
a base, block-level optimizer in our new DiBB-derived PS-CMA-
ES. The sample complexity of our approach typically (as expected)
sits in between the full-covariance and the diagonal-covariance
versions of CMA-ES, with few notable exceptions where maintain-
ing extra covariance information is actually deceptive/misleading
due to problem separability. While algorithms derived by DiBB
cannot be in principle superior to the base BBO utilized on low-
dimensional problems, using parallel and distributed hardware the
new PS-derived algorithm will be considerably (even, arbitrarily,
depending on available machines) faster in terms of wall-clock time.

1.3 Contributions
Our key contributions are as follows:

• We provide a novel meta-algorithm, DiBB, that generates a
partially-separable version of any available BBO. Our frame-
work also creates a parallel and distributed computation,
running on a set of available machines.

• We propose a novel way to further parallelize population-
based BBOs such as ESs, going beyond the parallel evaluation
of the population’s candidate solutions, by running multiple
ES instances to optimize approximately separable blocks of
variables.

• DiBB preserves the features of the underlying base BBO al-
gorithm through the parallelization, maintaining covariance
information at low cost in the specific instances where it
provides the largest benefit.

• We derive and introduce two new algorithms to use in our
experiments, as Partially Separable versions of CMA-ES and
LM-MA-ES respectively: PS-CMA-ES and PS-LM-MA-ES.
Creating new algorithms through the DiBB meta-algorithm
is straightforward, requires no additional constraints on the
base BBO algorithm, and maintains the properties of the
latter while enabling distributed computing out of the box.

• We demonstrate experimentally that the wall-clock perfor-
mance scaling is constant (within practical limits), and that
large and deep networks can be trained efficiently on dis-
tributed and parallel hardware.
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Figure 1: Example architecture of DiBB as a framework. This is a sample instantiation on a cluster with 3 nodes: one acts
as the head node, running the main routine, while two worker nodes encapsulate the underlying BBO and host the pools of
Fitness Evaluators. This schema highlights how DiBB leverages Partial Separability in the construction of full samples ready
for evaluation, and how the (potentially expensive) objective function is evaluated locally on the worker nodes.

2 A PRIMER ON EVOLUTION STRATEGIES
DiBB can be applied to any BBO algorithm to great and immediate
advantage: even with methods that already treat the parameters as
separable, DiBB provides a parallel and distributed implementation
at the only cost of minimal overhead (for nontrivial applications).
In this section however, we highlight modern Evolution Strategies
as the state-of-the-art family of continuous black-box optimiza-
tion methods, which we expect to gain the most from this new
approach. The rationale here is that these methods have proven
and popularized the importance of maintaining covariance infor-
mation for search performance, and are thus best positioned to gain
from DiBB’s scalability into distributed computation. This choice
however should not be interpreted as limited to neuroevolution
applications, as DiBB users can adapt the partitioning of variables
into blocks depending on each problem at hand.

ES are direct search methods, which optimize a black-box objec-
tive function 𝑓 : R𝑑 → R by sampling candidate points from an
adaptive Gaussian distribution. We briefly review the types of ES
most relevant for our discussion. The classic variant is the (1+1)-
ES [26]. Its central algorithmic mechanism is step-size adaptation,
i.e. its ability to actively adapt the standard deviation 𝜎 > 0 of its
Gaussian sampling distributionN(𝑚,𝜎2𝐼 ) to the current needs. For
the last 20 years, CMA-ES [18] has been the gold standard in ES
research. Many variants exist, such as Natural Evolution Strategies
(NES; Wierstra et al. 34). Its most important mechanism going be-
yond “simple” step-size adaptive ES is covariance matrix adaptation
(CMA), which means that not only the global step size 𝜎 , but also
the full covariance matrix 𝐶 of the Gaussian N(𝑚,𝜎2𝐶) is adapted
to the problem at hand.

CMA-ES is a powerful optimizer; however, it was not designed
for high-dimensional applications with hundreds of thousands of
variables or more. Its internal parameters are not tuned with such a
regime in mind, and learning a full covariance matrix with 𝑑 (𝑑+1)

2
parameters is inherently slow. Such problems are commonly ad-
dressed by placing specific restrictions on 𝐶 , such as being repre-
sented by a diagonal matrix [27, 29], or a diagonal plus a low-rank
matrix [1, 22, 23], or a block-diagonal matrix [6]. The number of
parameters of the covariance matrix can hence be chosen flexibly

in the range 𝑑 to 𝑑 (𝑑+1)
2 , allowing scaling to higher dimensional

problems by trading off covariance awareness.

2.1 ES for Neuroevolution
The application of ES to machine learning problems and to RL in
particular has a multi-decade history [19, 20]. In 2017, the work
of Salimans et al. [28] sparked a renewed interest in ES by showcas-
ing how to successfully exploit the embarrassingly parallel nature
of individual objective function evaluations in populations-based
algorithms, proposing a considerable speed-up in the learning pro-
cess. This triggered a large body of work on neuroevolution based
on ES over the past few years, see e.g. Chrabaszcz et al. [4], Cuccu
et al. [7], Ha and Schmidhuber [12], Plappert et al. [25], Stanley
et al. [32] and references therein.

2.2 Convergence Rates and Computational
Complexity

Due to Taylor’s theorem, local optima of 𝑑-dimensional C2 func-
tions are well approximated (up to O(∥𝑥 − 𝑥∗∥3)) by convex qua-
dratic functions 𝑓 (𝑥) = 1

2 (𝑥 − 𝑥∗)𝑇𝐻 (𝑥 − 𝑥∗). The computational
complexity of solving this problemwith an ES to a fixed target preci-
sion 𝜀 > 0 is of the form O(𝑑 ·𝜅 (𝐻 ) · log(1/𝜀)), where 𝜅 (𝐻 ) denotes
the condition number of the Hessian 𝐻 [15, 21]. Hence, a step-size
adaptive ES achieves linear convergence with rate O

(
1/(𝑑 ·𝜅 (𝐻 ))

)
.

The linear dependency on 𝑑 is optimal for comparison-based
optimization [11], but the dependency on 𝐻 is sub-optimal. The
advantage of maintaining covariance information is that the factor
𝜅 (𝐻 ) is improved to 𝜅 (𝐻𝐶∗), where 𝐶∗ denotes the optimal co-
variance matrix available to the ES. When approaching 𝐶∗ = 𝐻−1,
methods maintaining full covariance achieve the optimal value
𝜅 (𝐻𝐶∗) = 1. In effect, as expected from a pseudo second order
method, the convergence rate is independent of 𝐻 . A diagonal co-
variance matrix𝐶∗ acts as a diagonal pre-conditioner, with varying
effectiveness depending on the problem. Obviously, block-diagonal
[6] and low-rank [22, 23] covariance matrix representations are
in-between. The block-diagonal case notably generalizes both the
full-covariance and diagonal-covariance implementations when the
size of the blocks is 𝑑 and 1 respectively (corresponding to 1 block
and 𝑑 blocks in turn).
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The OpenAI-ES [28], while being highly distributable, features
neither step-size adaptation nor covariance adaptation. Based on the
NES framework of Wierstra et al. [34], it leverages the ability of ES
to estimate the natural gradient of 𝑓 from samples, and then applies
the ADAM optimizer on top. In effect, this is roughly comparable
to using a diagonal 𝐶 .

CMA has a price in terms of algorithm internal complexity, and
in addition the adaptation process is slow even in terms of sample
complexity—due to large hidden constants in its performance es-
timation. The above convergence rates measure time in terms of
the number of objective function evaluations (sample complexity).
When scaling up CMA to high dimensions however, we need to
take the following concepts into consideration. Algorithm internal
complexity refers to the required (amortized) number of operations
needed for creating a sample and for updating the internal state—
the covariance matrix in particular. This concept will be re-explored
later when introducing distributed computing, as DiBB employs
multiple machines to evaluate proportionally more samples without
impacting wall-clock time. For now, regarding sample complexity,
we distinguish between the number of samples needed to learn the
covariance matrix, and the number of samples needed to solve the
problem.

Learning 𝐶 with up to Θ(𝑑2) parameters is sample-inefficient.
For example, a (small) neural network with 𝑑 = 104 weights results
in 𝑑 (𝑑+1)

2 ≈ 5 · 107 parameters of the covariance matrix. Learning
these takes hundreds of millions of samples, each of which can be
significantly expensive: imagine for example a continuous control
task involving a robot interacting in a physics simulation. This
quickly becomes far too slow for practical use, even without taking
into consideration the (typically expensive) covariance update step
in the underlying algorithm. For larger 𝑑 , even the storage of the
full covariance matrix𝐶 quickly becomes prohibitive. Furthermore,
performing computations with 𝐶 scales at least linear with the
number of its parameters, which amounts to an internal complexity
ofΩ(𝑑2) for full CMA. Since network evaluation scales linearlywith
the number of weights𝑑 (in a direct encoding scheme), CMAquickly
becomes the computational bottleneck. Therefore, a different trade-
off between fast convergence and internal complexity is needed,
which can be realized for example with block-diagonal and low-
rank structures, and combinations thereof. Or, in the case of the
proposed work, by leveraging the partial correlation assumption to
construct a block-diagonal covariance matrix.

2.3 Implications for Neural Network Training
Diagonal, block-diagonal, and low-rank schemes successfully lower
both internal and sample costs of CMA significantly (at the expense
of higher sample complexity for solving the overall problem). There-
fore, they are key to the application of modern ES based on CMA
to real-world problems, especially involving expensive physics sim-
ulations as common in reinforcement learning applications.

In neural network training, weight spaces are often extremely
high-dimensional. However, they also come with a canonical struc-
ture, induced by the network topology. Hence, a block-diagonal
covariance structure with one block per layer (or per neuron) is a
natural choice. It should be noted that there exist approaches for
identifying a problem decomposition automatically [24], if needed,

extending the applicability of DiBB to problems where problem
structure and variable correlation are not initially known to the
user.

If 𝐻 has a block structure (𝑓 is separable), then sequentially
optimizing all blocks in isolation is as fast as optimizing the full
problem. This is a direct consequence of the O(𝑑) scaling of the
sample complexity discussed above, and leads to the following
insight:

Solving 𝑏 independent sub-problems with 𝑘 = 𝑑/𝑏 variables each
in parallel results in a𝑏-fold speed-up over solving the full problem
with 𝑑 variables. Importantly, since 𝑏 and hence 𝑘 is user-defined,
and provided that block remains of constant size while scaling
the dimension, this allows the constant runtime (depending on
communication overhead, thus implementation dependent) that
we see in DiBB’s experimental results.

It is understood that this comes at a cost if the separability as-
sumption is violated. However, the block structure offers a further
benefit:
Solving 𝑏 independent sub-problems with 𝑘 = 𝑑/𝑏 variables each
with an ES featuring CMA results in O(𝑘2) sample and internal
complexity for covariance learning, in contrast to O(𝑑2) for full
CMA. If the number of blocks 𝑏 scales linearly with the problem
size 𝑑 , or 𝑘 ∈ O(1), then CMA becomes feasible for arbitrarily
large problems.

These two insights offer a novel route towards highly parallel and
at the same timemore sample-efficient neuroevolution strategies. In
addition to the embarrassingly parallel evaluation of a population
of candidate points, multiple blocks can be optimized in parallel.
Given enough cores, higher parallelism results in a 𝑏-fold speed-up.
As an additional benefit, CMA can be applied within each block
of variables. Provided that the problem has an (approximately)
separable structure, CMA results in improved sample efficiency,
yielding a further speed-up.

3 METHOD
The DiBB framework is inspired by our previous work with BD-
NES [6] in the sense that we utilize a block-diagonal covariance
matrix and partial separability towards distributing the block com-
putation across dedicated machines. The original design however
was specifically tailored to the NES family of ES, while the meta-
algorithm facet of DiBB makes it applicable not only to any ES
but to any BBO algorithm without restrictions, providing at the
same time a parallel and distributed implementation with limited
overhead.

Here is a short summary of how to use DiBB:
(1) The user defines a partition of the parameters, typically

based on expert knowledge of the application. For example
in neuroevolution, consider weights of connections entering
a same neuron or layer.

(2) The main method, launched on a head node, spawns the run
control routine plus the object store that maintains shared
data and handles communication. This follows modern best
practices in distributed processing [8].

(3) The control routine then launches one BlockWorker (BW) for
each parameter block, one on each of the available machines.
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The BW encapsulates the actual BBO algorithm, and runs
fully asynchronously from the others, though contemporary.
The BWs exchange information by uploading to the head
node the state of their search after each update (i.e. a gen-
eration in ES); updates from the other nodes are also pulled
before generating a new population.

(4) In our implementation, each BW can spawn a pool of Fitness
Evaluators (FE) on the same machine, used to automatically
manage limited computational resources (such as available
CPUs).

(5) Alternatively, the user can request to evaluate trivial opti-
mization functions on the BW directly (either sequentially
or using multithreading), which is useful when the over-
head of maintaining a discrete pool of evaluators would be
significant with respect to the cost of the actual evaluation
task.

The Block Workers communicate with the head node in each
generation, while generation cycles are defined asynchronously and
autonomously by each BW. Consider a problem with 𝑑 variables
𝑥1, . . . , 𝑥𝑑 , and a BW optimizing 𝑏 variables 𝑥𝑎, . . . , 𝑥𝑎+𝑏−1, denoted
as the vector 𝑥𝐵 for short. The head node maintains a reference
solution 𝑥 ∈ R𝑑 , which fulfills a two-fold purpose: it serves as an
anytime-estimate of the state of the search (current optimum), and
it provides a unifying context to the BWs and the FEs.

Intuitively, each BW is only aware of the variables in one block,
and can only generate samples for the corresponding variables.
These incomplete samples however need to be constructed as part
of a complete solution in order to be scored on the task. In our
recurring example of neuroevolution, the sample could correspond
to the weights for a neuron, or layer, while obviously only full
networks can be evaluated on the task. We address this issue by
leveraging once again our assumption of partial separability. After
our hypothesis of the correlation across blocks being negligible, we
can evaluate each block in isolation by inserting it in the context
of the (current) reference solution, as obtained from the head node.

Hypothesize for a moment that there is no correlation inter-
block—we will address the validity of this statement just below.
In this case, each layer can be scored fairly by constructing a full
reference network, then swapping the corresponding weights in
the target layer for the block sample, and finally evaluating the
resulting complete network on the task. Different independent sam-
ples from a same block (individuals) would receive fair evaluation
in this fashion as long as they are evaluated on the same refer-
ence network. This is in fact constructed by assembling the partial
sample into the global reference solutions. Partial samples are con-
structed by aggregating the reference or center sample from each
of the BBO instances running on each block, which as mentioned
is maintained in the head node by each block instance at the end of
each generation.

More formally: at the start of each generation, the BW receives
the current reference solution 𝑥1, . . . , 𝑥𝑑 from the head node.2
The block-level ES samples a population of candidate solutions
𝑦1, . . . 𝑦𝜆 ∈ R𝑏 . If 𝑏 is small, then sampling from a Gaussian with
full covariance matrix N(𝑚,𝜎2𝐶) is feasible. The 𝑏-dimensional

2It would suffice to send 𝑥1, . . . , 𝑥𝑎−1, 𝑥𝑎+𝑏 , . . . , 𝑥𝑑 to the BW, but the difference has
been negligible in our experiments so far up to 30 blocks.

points are injected into the reference solution by constructing the
𝑑-dimensional vectors 𝑥1, . . . 𝑥𝜆 ∈ R𝑑 according to the following
rule:

𝑥
𝑗
𝑖
=

{
𝑦
𝑗
𝑖−𝑎 if 𝑎 ≤ 𝑖 ≤ 𝑎 + 𝑏
𝑥𝑖 otherwise

The vectors 𝑥1, . . . , 𝑥𝜆 are passed to the (thread or node) pool of
Fitness Evaluators for fitness evaluation. Once all are computed,
the ES updates its internal state based on the initially produced
partial candidates and the fitness values obtained from the full-
individual evaluations. This includes updating the sampling mean
𝑚 and optionally further parameters like step size, evolution paths,
and covariance matrix, depending on the base BBO and with no
tampering from DiBB itself. Finally, it sends the updated mean
𝑚 back to the head node, which incorporates it into its reference
solution by overwriting 𝑥𝐵 with𝑚. This makes the update available
for the next cluster node preparing for its next generation.

The last issue remaining is that of course we cannot expect the
weights entering different neurons or layers to be entirely separable;
after all, they do belong to the same network and they are thereby
all contributing to the final output in its equation. Since all blocks
are searched at the same time, this induces a problem of moving
target, where the score of a block sample depends on the global state
of the search (in the form of the current whole reference solution,
as held by the head node), which changes constantly as every BBO
instance asynchronously sends an update to the global reference
state.

Empirically we verify that the impact on the algorithm is how-
ever only minimal: after all, our hypothesis is much stricter than
in fully-separable implementations. While in principle and in the-
ory full-covariance algorithms have better sample efficiency, their
hypothesis is for all parameters to be meaningfully correlated. In
real-world scenarios however it is most common to have complex
applications with high dimensionality and relatively sparse or low
covariance. A full-covariance algorithm still needs to learn the full
covariance matrix each time, at significant computational costs,
which effectively lowers their sample efficiency. DiBB on the other
hand allows for integrating expert knowledge in its blocks construc-
tion, sidestepping the problem of learning covariance information
between blocks that can be considered independent. As a result and
in practice, we have seen no measurable advantage or disadvantage
on either approach from this perspective.

The proposed setup directly reflects the added level of parallelism,
compared to a standard ES. Traditional implementations usually
restrict parallelism to maintaining a pool of evaluators to speed
up the evaluation of independent samples using multiple cores. In
our setup, a second level of parallelism is established in terms of
the Block Workers, which operate independently except for sparse
communication with the head node—itself entirely dedicated to the
task to ensure high responsiveness.

Per generation and BW, 𝑑 real values need to be communicated
to and from the head node, to update the global reference solution
and to obtain a local copy of it respectively. For a constant block
size and a number of nodes linear in 𝑑 , the total network traffic
per generation grows quadratically with 𝑑 . For extremely large
problems, this may eventually limit the effectiveness of the head
node.
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The problem is smartly sidestepped by Salimans et al. [28] by
synchronizing the entropy (random number generation) across the
machines, which makes them generate the same samples, however
at the price of a fully-synchronous implementation (and greatly sim-
plified algorithm). The same method can be implemented into DiBB
to allow a BlockWorker to spawn Fitness Evaluators across multiple
machines, which would immediately improve performance partic-
ularly in the case of large population sizes. With DiBB however,
the actual updates would remain asynchronous, which implies that
the FEs spawned in the cluster could actually be shared between
BWs. Since this communication overhead occurs only once per
(block-wise) generation in DiBB, and not once per fitness evalua-
tion, our implementation has considerable less pronounced network
overhead than in the distribution of fitness evaluation in a plain ES.

4 EXPERIMENTS
This section describes the setup used to empirically assess the
performance of DiBB. With our experiments, we aim to address the
following research questions:
Q1: How well does the block-diagonal approach work, compared

to diagonal- and full-covariance CMA?
Q2: How does DiBB’s performance scale to a large number of

machines and cores?
Q3: Is DiBB well-suited for neuroevolution applications?

We assess the first two questions on the standard COmparing Con-
tinuous Optimizers (COCO) Black Box Optimization Benchmark
(BBOB), using both the standard [17] and the large-scale [9] bench-
mark suites. For answering the third question, we showcase a neu-
roevolution application in the challenging OpenAI Gym 2D Walker
environment.

4.1 Setup and reference implementation
We tested DiBB on a variety of hardware solutions. The COCO-
BBOB experiments were run on a cluster of 24 low-performance
machines, all based on an Intel(R) Core(TM) i7-2600 CPU@ 3.40GHz
(4 cores/8 threads each), and 32 GB of RAM. These machines are
far from state-of-the-art performance, which leaves a significant
margin of improvement for the timings presented in our results.
This decision was taken to encourage interested labs to reproduce
our results on whatever hardware they can put together, without
expectation of dedicating any significant budget.

The cluster setup is simplified by the included managing scripts.
Running on a single machine with a single block and no Fitness
Evaluators roughly corresponds to running the underlying BBO
algorithm alone (plus overhead, andwith parallel fitness evaluation),
and can be achieved without setup with a syntax alike to CMA-
ES. Spawning multiple BWs and FEs automatically scales to the
available resources, as declared in the managing script using a
simple list of network IPs.

The experiments below are based on our reference implementa-
tion of DiBB written in Python, which leverages the Ray distributed
computation library3. The code is released open source on GitHub

3https://www.ray.io/ — a Python framework for distributed computing

Number of
dimensions

Number
of blocks

Block
size Duration

80 16 5 02h 47m 53s
160 16 10 04h 11m 15s
320 16 20 07h 01m 38s
640 16 40 12h 16m 02s

Table 1: Timing results for Experiment 3: BBOB large-scale
suite with a fixed number of blocks. Larger problem dimen-
sions are addressed here with larger block sizes, which leads
to more correlation information being considered in each
block. The duration of the experiments increases linearly
with the block size for small dimension increments.

both for the experiment design4 and framework implementation5,
and collaborations and contributions are encouraged. DiBB is also
available through PyPI6 for ease of adoption, using the standard
pip installer.

4.2 COCO BBOB
COCO provides multiple suites covering a broad range of test cases.
The experiments presented in this work are based on the BBOB
standard large-scale suites. The BBOB standard suite comes with
24 noise-free real-parameter single-objective benchmark functions
in dimensions 𝑑 ∈ {2, 3, 5, 10, 20, 40} [17]. All of the functions have
their global optimum in [−5, 5]𝑑 by design, where 𝑑 is the dimen-
sionality of the problem. The functions are divided into five groups:
separable functions (f1-f5), moderately conditioned functions (f6-f9),
ill-conditioned functions (f10-f14), multi-modal functions (f15-f19),
and weakly structured multi-modal functions (f20-f24). We expect
the performance of DiBB to vary accordingly to the actual validity
of our assumption of partial separability.

The BBOB large-scale suite contains the same 24 same functions
which are found in the standard suite, but scales up the available
number of dimensions to 𝑑 ∈ {20, 40, 80, 160, 320, 640}. This suite
however introduces heuristics to decrease the computational cost
of a selection of functions in a large-scale setting. We refer the
interested reader to Elhara et al. [9] for further details.

The BBOB suite provides a broad range of problems representa-
tive of many use-cases in the spectrum of Black-Box Optimization.
Particularly, and by design, several edge cases are present that are
unlikely to be encountered in real applications but provide com-
pelling insights on the performance and applicability of the tested
algorithm. BBOB problems are specifically designed to be solved
to high precision with the goal to test for scale invariance; there-
fore 𝑑 is not in the thousands, without the lower dimensionality
significantly impacting the problem complexity. Scalability of 𝑑 ,
and the distinction between separable and non-separable problem
classes, allows us to systematically evaluate the effect of DiBB’s
block structure on its performance. COCO greatly facilitates this

4Experiments code to reproduce our BBOB/COCO results: https://github.com/
eXascaleInfolab/dibb_coco
5DiBB reference implementation: https://github.com/giuse/dibb/
6Python Package Index ( pip install dibb ): https://pypi.org/project/dibb/

https://www.ray.io/
https://github.com/eXascaleInfolab/dibb_coco
https://github.com/eXascaleInfolab/dibb_coco
https://github.com/giuse/dibb/
https://pypi.org/project/dibb/
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Figure 2: ECDF plots of the performance of PS-CMA-ES, sep-CMA-ES and standard CMA-ES in dimension 320. From left to
right: f1-f5 with Exp. 1/Exp. 3, Exp. 2/Exp. 4, then f10-f14 with Exp. 1/Exp. 3, Exp. 2/Exp. 4. The curves show the fraction
of precision targets reached over time, measured as number of function evaluations divided by problem dimension, on a
logarithmic scale. For additional information on ECDF plots, please refer to [16].

Number of
dimensions

Number
of blocks

Block
size Duration

40 1 40 25h 13m 47s
80 2 40 43h 26m 57s
160 4 40 40h 21m 01s
320 8 40 44h 53m 29s
640 16 40 61h 20m 11s

Table 2: Timing results for Experiment 4: BBOB large-scale
suite with fixed block size (5× budget). Larger problem di-
mensions are addressed here with increasing the number of
blocks. Since each block is optimized in parallel, the increase
in run time of the experiments is only limited to communi-
cation overhead, thus small as problem dimensions grow.

process by providing publicly available performance data for many
state-of-the-art algorithms.7

We test the scaling of DiBB’s performance as we vary in turn the
problem dimensions and the block size, from the related but radi-
cally different perspectives of sample efficiency (i.e. convergence
speed, how many samples it takes for the algorithm to reach con-
vergence) and effective run time (i.e. wall-clock speed, how long it
actually takes for the algorithm to converge in real time). In the case
of DiBB, run time is significantly (positively) impacted by its inher-
ent distributed implementation, as each BW evaluates the fitness
of its individuals locally in its dedicated machine, asynchronously
from all other BWs.

To this end, we ran the following experiments:
(1) Constant number of blocks, increasing 𝑑 and block size, on

the BBOB suite (bbob_fnb)
(2) Constant block size, increasing 𝑑 and number of blocks on

the BBOB suite (bbob_fbs)
(3) Constant number of blocks, increasing 𝑑 and block size on

the large-scale suite (bbob_ls_fnb)
(4) Constant block size, increasing 𝑑 and number of blocks on

the large-scale suite (bbob_ls_fbs)
(5) Comparison of the wall-clock speed between plain CMA-ES

and PS-CMA-ES using different block sizes
Complete details of the experimental setup for reproducibility pur-
pose are found in Appendix A.1.

7See https://numbbo.github.io/data-archive/bbob/.

We chose to focus on the group of separable (f1-f5) and ill-
conditioned functions (f10-f14). The first group contains problems
that can be solved easily by DiBB, while the second group is ex-
tremely hard since it strongly violates the separability assumption.

Prototypical results of the COCO/BBOB experiments are found
in Figure 2 (full results in Appendix A.1). The Empirical Cumula-
tive Distribution Function (ECDF) plots [17] show the fraction of
reached (precision) targets over dimension-normalized time on a
log-scale, so “higher is better”.

Sample Efficiency. On fully separable problems f1-f5, all algorithms
perform roughly the same in terms of sample complexity. In other
words, covariance terms can be dropped at no cost, and blocks
can be optimized independently. This confirms the theoretical pre-
dictions from Section 2. Interestingly, in some cases PS-CMA-ES
outperforms standard CMA-ES (if only slightly). We expect such
a behavior in this particular (artificial and extreme) case, since ef-
fectively dedicating resources to learn the (initially misleading and
then uninformative) off-diagonal covariance terms can be detrimen-
tal.

For the ill-conditioned non-separable problems f10-f14, the per-
formance of PS-CMA-ES is close to sep-CMA-ES and far worse
than standard CMA-ES, again as expected since the unmodeled
covariance terms (with unrealistic correlations, extremely close to
±1) dominate performance. Yet, unsurprisingly, larger blocks imme-
diately result in better sample complexity. This finding confirms the
theoretical prediction that the assumption of partial separability is
crucial, and that the user can find an ideal trade-off by optimizing
the block hyperparameters.

Taken together, the two results imply that DiBB-derived algo-
rithms applied to a problem with block structure greatly outper-
form an ES with diagonal covariance matrix by simply being more
sample-efficient within each block, while full CMA offers no further
advantage. This answers question Q1.

Timings. Most experiments were run on the low-performance
cluster described above. For three of the experiments however we
tested the flexibility of DiBB by leveraging a new cluster of only
three nodes but with Intel(R) Xeon(R) CPU E5-2620 v4 processors,
with 16 cores (32 threads) @ 2.10GHz and 128 GB RAM. These were
used for the 5d BBOB suite with one block (thus running on a single
machine), the 40d BBOB suite with two blocks (running on three
machines: one head node and two for the Block Workers), and the

https://numbbo.github.io/data-archive/bbob/
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Blocks Duration Relative Time Speed Gain

1 17h 43m 41s 100.00% 0.00%
2 17h 33m 30s 99.04% 0.97%
4 06h 32m 19s 36.88% 171.13%
8 03h 56m 56s 22.27% 348.94%
16 03h 06m 05s 17.49% 471.62%

Table 3: Timing results for Experiment 5: BBOB large-scale
suite in 160 dimensions using different block sizes. The first
row (one block) corresponds to running CMA-ES without
DiBB. When using only two blocks, we observe almost the
same wall-clock time. For larger number of blocks however,
the time is significantly reduced.

40d BBOB large-scale suite with one block (another single-machine
run).

Tables 1 and 2 compare the run times of DiBB with different
numbers of blocks, block sizes, and dimensions on the BBOB large-
scale suite. Several effects come together: in larger dimensions,
function evaluation time and communication overhead grow lin-
early. Due to the fixed budget multiplier used in COCO, the overall
function evaluation budget also grows linearly. On the other hand,
CMA’s computational effort grows quadratically in the block size.
We clearly observe that the runtime grows far more benign when
using a fixed block size, which indicates that CMA overhead indeed
quickly becomes the dominating term. Hence, the block size should
be kept tightly under control. This answers question Q2. Addition-
ally, Table 3 compares the wall-clock speed of PS-CMA-ES using
different block sizes on the 160d BBOB large-scale problems suite.
For one vs. two blocks, there is almost no difference in the duration
of the experiment. However, for four or more blocks, the wall-clock
time diminished drastically, leading to a speed gain of 471%. Note
that for BBOB and most other benchmark problems, evaluations are
unrealistically cheap, so DiBB’s parallelization overhead becomes
relatively significant. For a more realistic function evaluation cost
(i.e. as little as 10ms) the overhead becomes negligible, highlighting
the benefit of parallel evaluations.

4.3 PyBullet Walker 2D
Although DiBB can be applied to any existing BBO and problem,
its value in neuroevolution applications has undeniably been one
of the original inspirations, particularly in relation to neural net-
works of large size. Therefore we present our results on a complex
reinforcement learning control task: the Walker 2D environment
from PyBullet [5], instantiated through the OpenAI Gym [3].

In this task, an agent controls a basic 2D robotic walker using
the PyBullet physics simulator. The observation is a 22-dimensional
reading of the environment (e.g. aperture and angular velocity of
each joint, etc.), while the action is a 6-dimensional torque-control
signal. The goal of the task is for the robot to walk the farthest
distance possible in the allotted time, without toppling, which in
turn requires learning a usable gait.

The policy network is feed-forward and fully connected, com-
posed by two hidden layers of sizes [128, 64], using ReLU activa-
tions. The output layer is composed of six neurons with rescaled
tanh activation normalized to the range of motor commands.

The network, totaling 11 590 weights and 198 neurons, is trained
with DiBB applied to LM-MA-ES [23] to derive PS-LM-MA-ES,
running four blocks on four machines. The first and last block
corresponded to the input layer (2 944 parameters) and output
layer (390 parameters) were run directly on separate machines. As
part of the testing, the output layer block was run on one of the
16-cores machine, together with the main routine (rather than a
dedicated head node), to no noticeable difference in performance.
The connection between the two hidden layers however (accounting
for 8 256 weights) was instead split in two blocks, as the connections
entering two groups of 32 neurons each (4 128 weights), simply
to further test DiBB’s flexibility and substantially reduce run-time.
This setup achieved a score of 1 126 (average over 100 runs, episode
length capped at 1 000 frames) in 25 hours. As a baseline we used
Random Weight Guessing [30], which reached a score of 42 within
1 000 trials. To the authors’ knowledge, these are the first results on
this benchmark that use neuroevolution. This answers question Q3.

5 CONCLUSIONS
This paper introduces DiBB, a meta-algorithm and framework that
addresses the scalability and performance issues of black-box opti-
mization (notably including Evolutionary Computation), by con-
structing a Partially-Separable (PS) version of the underlying BBO
algorithm of choice, and then parallelizing and distributing its com-
putation across a number of available machines. Configuring new
BBO algorithms or adding and removing machines takes literally
minutes in our reference implementation, with no limitation or
requirement on the underlying BBO algorithm nor on the problem.

This allows DiBB to e.g. scale state-of-the-art Evolution Strate-
gies to large-dimensional problemswhile maintaining key advanced
features such as scale invariance and adaptable step-size. This is a
significant step forward over recent large-scale implementations,
which renounced such advanced features as a price for their flavor
of distributed computation. DiBB instead runs multiple instances
of the base algorithm each on a subset of parameters selected for
being highly intra-correlated, each on a separate machine.

The resulting performance scales constantly with the number
of machines available, as the overall computational complexity is
bound not in the total number of variables, but in the (arbitrary, user-
defined) size of the largest block. The algorithm complexity scales
constantly with the number of blocks as long as more machines are
available, but for a limited communication overhead. Our results
on scaling CMA-ES to large dimensions (via our new PS-CMA-ES)
on the COCO BBOB large-scale suite reaches an unprecedented
number of dimensions simply by adding more (but cheap, old, low-
performance) machines, for a significant speed-up.

We also included a neuroevolution demonstration, training a
network of 11 590 weights using PS-LM-MA-ES in 25 hours on
four low-performance machines, learning a complex robotic task
(2D Walker) simulated in PyBullet. Our code is open source and
available on GitHub, and includes out-of-the-box both PS-CMA-ES
and PS-LM-MA-ES.

Future work includes exploring the dynamics of different BBO
algorithms, and scaling to larger models—potentially even non-
differentiable, as smoothness is not a requirement for BBO.
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A APPENDIX
A.1 Details of the COCO/BBOB experiments
For Experiments 1 and 2, a budget multiplier of 105 was chosen and
the IPOP restart mechanism was used in accordance with Hansen
[14]. To compare not only against CMA-ES but also the separable
version, we also ran sep-CMA-ES on the bbob suite with a budget
multiplier of 104.

To compare with CMA-ES and sep-CMA-ES, we ran Experiments
3 and 4 without IPOP and we sampled the initial candidate solutions
uniformly at random from [−4, 4]𝑑 the same way as Varelas [33].
Experiment 3 uses a budget multiplier of 104, and Experiment 4
uses a budget multiplier of 5 · 104. For Experiment 5 we used the
same setup as in Experiment 3. The initial step size sigma0 was set
to two in all of the experiments.

The data for CMA-ES and sep-CMA-ES can be downloaded via
cocopp or using the following links respectively: https://numbbo.
github.io/gforge/data-archive/bbob-largescale/2019/CMA_Varelas_

largescale.tgz and https://numbbo.github.io/gforge/data-archive/
bbob-largescale/2019/sepCMA_Varelas_largescale.tgz.

BBOB 𝑑 = 5 𝑑 = 10 𝑑 = 20 𝑑 = 40

Exp. 1 2 / 2,3 / 250K 2 / 5 / 500K 2 / 10 / 1M 2 / 20 / 2M
Exp. 2 1 / 5 / 500K 2 / 5 / 500K 4 / 5 / 500K 8 / 5 / 500K

large-scale 𝑑 = 80 𝑑 = 160 𝑑 = 320 𝑑 = 640

Exp. 3 16 / 5 / 250K 16 / 10 / 500K 16 / 20 / 1M 16 / 40 / 2M
Exp. 4 2 / 40 / 400K 4 / 40 / 400K 8 / 40 / 400K 16 / 40 / 400K

Table 4: Experimental setup on the BBOB and the BBOB
large-scale suites, in the format “number of blocks / block
size / # objective function evaluations per machine”. Experi-
ments 1 and 3 scale the block size (and correspondingly, the
evaluation budget per compute node), while Experiments 2
and 4 scale the number of blocks.

https://numbbo.github.io/gforge/data-archive/bbob-largescale/2019/CMA_Varelas_largescale.tgz
https://numbbo.github.io/gforge/data-archive/bbob-largescale/2019/CMA_Varelas_largescale.tgz
https://numbbo.github.io/gforge/data-archive/bbob-largescale/2019/CMA_Varelas_largescale.tgz
https://numbbo.github.io/gforge/data-archive/bbob-largescale/2019/sepCMA_Varelas_largescale.tgz
https://numbbo.github.io/gforge/data-archive/bbob-largescale/2019/sepCMA_Varelas_largescale.tgz
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Figure 3: BBOB-COCO results of DiBB, separable and full CMA-ES. Rows correspond to dimensions 5, 10, 20, 40, 80, 160, 320,
and 640. Columns correspond to Exp. 1/Exp. 2 on separable functions, ill-conditioned functions, as well as Exp. 3/Exp. 4 on
separable and ill-conditioned functions.
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