
TRank : Ranking Entity Types
Using the Web of Data

Alberto Tonon1, Michele Catasta2, Gianluca Demartini1,
Philippe Cudré-Mauroux1, and Karl Aberer2

1 eXascale Infolab, University of Fribourg—Switzerland
{firstname.lastname}@unifr.ch
2 EPFL, Lausanne—Switzerland
{firstname.lastname}@epfl.ch

Abstract. Much of Web search and browsing activity is today centered
around entities. For this reason, Search Engine Result Pages (SERPs)
increasingly contain information about the searched entities such as pic-
tures, short summaries, related entities, and factual information. A key
facet that is often displayed on the SERPs and that is instrumental for
many applications is the entity type. However, an entity is usually not
associated to a single generic type in the background knowledge bases
but rather to a set of more specific types, which may be relevant or not
given the document context. For example, one can find on the Linked
Open Data cloud the fact that Tom Hanks is a person, an actor, and a
person from Concord, California. All those types are correct but some
may be too general to be interesting (e.g., person), while other may be
interesting but already known to the user (e.g., actor), or may be ir-
relevant given the current browsing context (e.g., person from Concord,
California). In this paper, we define the new task of ranking entity types
given an entity and its context. We propose and evaluate new methods
to find the most relevant entity type based on collection statistics and
on the graph structure interconnecting entities and types. An extensive
experimental evaluation over several document collections at different
levels of granularity (e.g., sentences, paragraphs, etc.) and different type
hierarchies (including DBPedia, Freebase, and schema.org) shows that
hierarchy-based approaches provide more accurate results when picking
entity types to be displayed to the end-user while still being highly scal-
able.

1 Introduction

Many online queries are about entities [14]. Commercial search engines are in-
creasingly returning rich Search Engine Result Pages (SERPs) that contain not
just ten blue links but also images, videos, news, etc. When searching for a spe-
cific entity, users may be presented in the SERP with a summary of the entity
itself. This search task is known as ad-hoc object retrieval [20], that is, finding
an entity described by a keyword query in a structured knowledge base. After
correctly identifying the entity described by the user query, the subsequent task
is that of deciding what entity information to present on the SERP among all

potential pieces of information available in the knowledge base. It is possible, for
example, to display pictures, a short textual description, and related entities.

One interesting entity facet that can be displayed in the SERP is its type.
In public knowledge bases such as Freebase, entities are associated with several
types. For example, the entity ‘Peter Jackson’ in Freebase3 has 17 types, among
which ‘Person’, ‘Ontology Instance’, ‘Film director’, and ‘Chivalric Order Mem-
ber’ can be found. When deciding what to show on the SERP, it is important to
select the few types the user would find relevant only. Some types are in most
cases not compelling (e.g., ‘Ontology Instance’) while other types (e.g., ‘Film di-
rector’) may be interesting for a user who does not know much about the entity.
Users who already know the entity but are looking for some of its specific facets
might be interested in less obvious types (e.g., ‘Chivalric Order Member’, and
its associated search results).

More than just for search, entity types can be displayed to Web users while
browsing and reading Web pages. In such a case, pop-ups displaying contex-
tual entity summaries (similar to the ones displayed on SERPs like in Google’s
Knowledge Panel) can be shown to the users who want to know more about a
given entity she is reading about. In this case again, picking the types that are
relevant is critical and highly context-dependent.

A third example scenario is to use selected entity types to summarize the
content of Web pages or online articles. For example, one might build a summary
for a given news article by extracting the most important entities in the article
and listing their most relevant types (e.g., ‘this article is about two actors and
the president of Kenya’).

In this paper, we focus on the novel task of ranking available entity types
based on their relevance given a context. We propose several methods exploit-
ing the entity type hierarchy (i.e., types and their subtypes like ‘person’ and
‘politician’), collection statistics such as the popularity of the types or their
co-occurrences, and the graph structure connecting semantically related entities
(potentially through the type hierarchy).

We experimentally evaluate our different approaches using crowdsourced
judgments on real data and extracting different contexts (e.g., word only, sen-
tence, paragraph) for the entities. Our experimental results show that approaches
based on the type hierarchy perform more effectively in selecting the entity types
to be displayed to the user. The combination of the proposed ranking functions
by means of learning to rank models yields the best effectiveness. We also assess
the scalability of our approach by designing and evaluating a Map/Reduce ver-
sion of our system, TRank, over a large sample of the CommonCrawl dataset4

containing schema.org annotations.

In summary, the main contributions of this paper are:

– The definition of the new task of entity type ranking, whose goal is to select
the most relevant types for an entity given some context.

3 http://www.freebase.com/edit/topic/en/peter_jackson
4 http://commoncrawl.org/

– Several type-hierarchy and graph-based approaches that exploit both schema
and instance relations to select the most relevant entity types based on a
query entity and the user browsing context.

– An extensive experimental evaluation of the proposed entity type ranking
techniques over a Web collection and over different entity type hierarchies
including YAGO [23] and DBpedia [1] by means of crowdsourcing relevance
judgements.

– A scalable version of our type ranking approach evaluated over a large an-
notated Web crawl.

The rest of the paper is structured as follows. We start below by describ-
ing related work surveying entity-search and ad-hoc object retrieval techniques.
We formally define our new type ranking task in Section 3 and propose a se-
ries of approaches to solve it based on collection statistics, type hierarchies, and
entity graphs in Section 4. Section 5 presents experimental results comparing
the effectiveness of our various entity ranking approaches over different docu-
ment collections and type hierarchies as well as a scalability validation of our
Map/Reduce implementation over a large corpus. Finally, we conclude in Section
6.

2 Related Work

Entity-centric data management is an emerging area of research at the inter-
section of several fields including Databases, Information Retrieval, and the Se-
mantic Web. In this paper we target the specific problem of assigning types to
entities that have been extracted from a Web page and correctly identified in a
preexisting knowledge base.

Classic approaches to Named Entity Recognition (NER) typically provide as
output some type information about the identified entities; In most cases, such
types consist of a very limited set of entities including Person, Location, and
Organization (see e.g., [4, 5]). While this is useful for applications that need to
focus on one of those generic types, for other applications such as entity-based
faceted search it would be much more valuable to provide specific types that are
also relevant to the user’s browsing context.

In the field of Information Retrieval, entity retrieval has been studied for a few
years. In this context, TREC5 organized an Entity Track where different entity-
centric search tasks have been studied: Four entity types were considered in that
context, i.e., people, products, organizations, and locations. Type information
can also be used for entity search tasks, e.g., by matching the types of the entities
in the query to the types of the retrieved entities (see for instance [7]). In the
NLP field, entity extraction methods are continuously being developed. Here
also, the types that are considered are typically rather limited. For example, in
the method proposed in [9] 18 types are considered. In [19, 18], authors propose
a NER system to recognize 100 entity types using a supervised approach. The

5 http://trec.nist.gov

starting point to define the 100 entity types is the BBN linguistic collection6

which includes 12 top types and 64 subtypes.
The Semantic Web community has been creating large-scale knowledge bases

defining a multitude of entity types. Efforts such as YAGO [23] have assigned
to LOD entities many types by combining Wikipedia categories and Word-
Net senses. More recently, projects such as DBpedia [1] and Freebase [2] have
collected large collections of structured representations of entities along with
their related types. Such knowledge bases hence represent extremely valuable
resources when working on entity type ranking as we do in this paper.

In a recent demo [25], the task of selecting the most relevant types to be
used to summarize an entity has been proposed. However, the focus of this work
was on generating an entity description of a given size, while our focus is to
select the most relevant types given the context in which the entity is described.
Similarly to that work, we build our approaches using large knowledge bases
such as YAGO and DBpedia. Another related approach is Tipalo [10], where
the authors propose an algorithm to extract entity types based on the natural
language description of the entity taken from Wikipedia.

Several applications of our techniques could be based on existing work. For
instance, entity-type ranking could be applied on open-domain Question An-
swering [13], where candidate answers are first generated and later on filtered
based on the expected answer types. For systems like Watson [26], identifying
specific and relevant entity types could potentially significantly improve effec-
tiveness. Another application depending on high-quality entity types is entity
resolution over datasets of different entity types. In [27], the authors evaluate
their approach on top of four entity types (that is, persons, addresses, schools,
and jobs). The availability of more specific entity types would probably be ben-
eficial for this type of task as well.

3 Task Definition

Given a knowledge base containing semi-structured descriptions of entities and
their types, we define the task of entity type ranking for a given entity e appearing
in a document d as the task of ranking all the types Te = {t1, . . . , tn} associated
to e based on their relevance to its textual context ce from d. In RDFS/OWL,
the set Te is typically given by the objects that are related to the URI of e via the
<rdfs:type> predicate. Moreover, we take into consideration entities connected
to e via a <owl:sameAs> to URIs of other selected ontologies and we add to Te

all the types directly attached to them. For example, <dbpedia:Tom Cruise>

has an <owl:sameAs> connection to <freebase:Tom Cruise>, which allows us
to add the new type <freebase:fashion models>.

The context ce of an entity e is defined as the textual content surrounding
the entity taken from the document d in which e is mentioned. This context can
have a direct influence on the rankings. For example, the entity ‘Barack Obama’
can be mentioned in a Gulf War context or in a golf tournament context. The
most relevant type for ‘Barack Obama’ is probably different given one or the

6 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2005T33

other context. The different context types we consider in this paper are: i) three
paragraphs around the entity reference (one paragraph preceding, one following,
and the paragraph containing the entity); ii) one paragraph only, containing
the entity mention; iii) the sentence containing the entity reference; and iv) the
entity mention itself with no further textual context.

To rank the types by their relevance given a context, we exploit hierarchies
of entity types. In RDFS/OWL, a type hierarchy is typically defined based on
the predicate <rdfs:subClassOf>. For example, in DBpedia we observe that
<dbpedia-owl:Politician> is a subclass of <dbpedia-owl:Person>. Knowing
the relations among types and their depth in the hierarchy is often helpful when
automatically ranking entity types. For example, given a type hierarchy related
to a specific entity, we might prefer a more specific type rather than a too general
one.

We evaluate the quality of a given ranking (ti, . . . , tj) by using ground truth
relevance judgements assessing which types are most relevant to an entity e given
a context ce. We discuss rank-based evaluation metrics in Section 5.

4 Approaches to Entity Type Ranking

4.1 TRank System Architecture

Our solution, TRank, automatically selects the most appropriate entity types
for an entity given its context and type information. TRank implements several
components to extract entities and automatically determine relevant types. First,
given a Web page (e.g., a news article), we identify entities mentioned in the tex-
tual content of the document using state-of-the-art NER focusing on persons,
locations, and organizations.7 Next, we use an inverted index constructed over
DBpedia literals attached to its URIs and use the extracted entity as a query
to the index to select the best-matching URI for that entity.8 Then, given an
entity URI, we retrieve (for example, thanks to a SPARQL query to a knowledge
base) all the types attached to the entity. In this way, we obtain types such as
<owl:Thing>, <yago:JapanPrizeLaureates> and <yago:ComputerPioneers>

for the entity <dbpedia:Tim Berners-Lee>. Finally, our system produces a
ranking of the resulting types based on the textual context where the entity
has been mentioned. A summary of the different steps involved is depicted by
Figure 1.

Integrating Different Type Hierarchies. For the purpose of our task, we
require a large, integrated collection of entity types to enable fine-grained
typing of entities. There are several large ontologies available, both manually
constructed [16] as well as based on the widespread success of Wikipedia
combined with information extraction algorithms [1, 23]. However, the lack

7 The current implementation of our system adopts a Conditional Random Field ap-
proach to identify entities [8].

8 This is the same baseline approach used in [6] and in [24] for Entity Linking.

Type ranking
Type ranking

Type ranking

Text
extraction

(BoilerPipe)

Named Entity
Recognition

(Stanford NER)

List of
entity
labels

Entity linking
(inverted index:

DBpedia labels ⟹
resource URIs)

foreach

List of
entity
URIs

Type retrieval
(inverted index:

resource URIs ⟹
 type URIs)

List of
type
URIs

Type rankingRanked
list of
types

Fig. 1. The TRank Architecture.

of alignments among such ontologies hinders the ability of comparing types
belonging to different collections.
In TRank, we exploit pre-existing mappings provided by DBpedia and
PARIS [22] to build a coherent tree of 447, 260 types, rooted on <owl:Thing>

and with a depth of 19. The tree is formed by all the <rdfs:subClassOf>

relationships among DBpedia, YAGO and schema.org types. To eliminate
cycles and to enhance coverage, we exploit <owl:equivalentClass> to create
<rdfs:subClassOf> edges pointing to the parent class (in case one of the
two Classes does not have a direct parent). Considering that the probabilistic
approach employed by PARIS does not provide a complete mapping between
DBpedia and YAGO types, we have manually added 4 <rdfs:subClassOf>

relationships (reviewed by domain experts) to obtain a single type tree rather
than a forest of 5 trees.9 Figure 2 shows a visual representation of the integrated
type hierarchy used by TRank.

Entity Type Retrieval and Ranking. Finally, given the entity URI we retrieve all
its types (from a background RDF corpus or from a previously created inverted
index) and rank them given a context. In this paper, we use the Sindice-2011
RDF dataset10 [3] to retrieve the types, which consists of about 11 billion RDF
triples.

The proposed approaches for entity type ranking can be grouped in entity-
centric, context-aware, and hierarchy-based. Figure 3 shows on which data such
approaches are based. The entity-centric approaches look at the relation of the
entity e with other entities in a background knowledge base following edges such
as <dbpedia-prop:wikiLink> and <owl:sameAs>. Context-aware approaches
exploit the co-occurrence of the entity e with other entities in the same textual
context. Hierarchy-based approaches look at the structure of the type hierarchy
and rank types based on it.

9 The type hierarchy created in this way is available in the form of a small inverted
index that provides for each type the path to the root and its depth in the hierarchy
at http://exascale.info/TRank

10 http://data.sindice.com/trec2011/

<owl:equivalentClass>

<owl:Thing>

Mappings YAGO/DBpedia (PARIS)

type: DBpedia schema.org Yago

subClassOf relationship:
explicit inferred from

<owl:equivalentClass>
manually

added
PARIS ontology

mapping

Fig. 2. The integrated type hierarchy.

(a)

e

wikiLink

wikiLink

Person
Actor
ActorFromCalifornia

Actor

ActorFromNewYork

Actor
Person

Thing
e

(b)

e'

Person
Actor

Actor
AmericanActor

Context

e''

Organization
Thing

e

(c)

Thing

Person Organization

Foundation

Humanitarian
Foundation

Actor

Fig. 3. (a) Entity-centric (b) Context-aware (c) Hierarchy-based type ranking.

4.2 Entity-Centric Ranking Approaches

We now turn to the detailed description of several techniques to rank entity
types. The first group of approaches we describe only considers background
information about a given entity and its types without taking into account the
context in which the entity appears.

Our first basic approach (FREQ) to rank entity types is based solely on the
frequency of those types in the background knowledge base ranking first the most
frequent type of an entity. For example, the type Person has a higher frequency
(and thus is more popular) than EnglishBlogger.

Our second approach (WIKILINK) exploits the relations existing between
the given entity and further entities in the background knowledge base. Hence,
we count the number of neighboring entities that share the same type. This
can be performed by issuing the following SPARQL queries retrieving connected
entities from/to e to rank ti ∈ Te:

SELECT ?x WHERE { <e> <dbpedia-prop:wikilink> ?x . ?x <rdfs:type> <t_i> }
SELECT ?x WHERE { ?x <dbpedia-prop:wikilink> <e> . ?x <rdfs:type> <t_i> }

For example, in Figure 3a to rank types for the entity e we exploit the fact
that linked entities have also the type ‘Actor’ to rank it first.

In a similar way, we exploit the entity graph from the knowledge base by
following <owl:sameAs> connections and observing the types attached to such
URIs (SAMEAS):

SELECT ?x WHERE {<e> <owl:sameAs> ?x . ?x <rdfs:type> <t_i> }

Our next approach (LABEL) adopts text similarity methods. We consider
the label of e and measure its TF-IDF similarity with other labels appearing in
the background knowledge base in order to find related entities.11 At this point,
we inspect the types of the most related entities to rank the types of e. More
specifically, we select the top-10 entities having the most similar labels to e and
rank types based on the frequency of ti ∈ Te for those entities.

4.3 Context-Aware Ranking Approaches

We describe approaches leveraging the entity context below. A first approach
(SAMETYPE) taking into account the context ce in which e appears is based
on counting how many times each type ti ∈ Te appears in the co-occurring
entities e′ ∈ ce also mentioned in the context. In this case, we consider a match
whenever the same type URI is used by e and e′, or when the type of e′ has the
same label as the type from e. For example, in Figure 3b we rank first the type
‘Actor’ for the entity e because it co-occurs with other entities of type Actor in
the same context.

A slightly more complex approach (PATH) leverages both the type
hierarchy and the context in which e appears. Given all entities appearing
in the context e′ ∈ ce, the approach measures how similar the types
are based on the type hierarchy. We measure the degree of similarity
by taking the intersection between the paths from the root of the type
hierarchy (i.e., <owl:Thing>) to ti ∈ Te and to tj ∈ Te′ . For instance,
when ranking types for the entity ‘Tom Hanks’ in a context where also
‘Tom Cruise’ appears, we measure the similarity between the types by
considering the common paths between the root of the type hierarchy and
both types, e.g., “Thing-Agent-Person-Artist-Actor-AmericanTelevisionActors”
and “Thing-Agent-Person-Artist-Actor-ActorsFromNewJersey” would
be considered as highly similar. On the other hand, the ‘Tom Hanks’
type path “Thing-PhysicalEntity-CausalAgent-Person-Intellectual-Scholar-
Alumnus-CaliforniaStateUniversity,SacramentoAlumni” is not very similar
with the previous ‘Tom Cruise’ path. Hence, the approach ranks the
‘AmericanTelevisionActors’ type higher given the context in which it appears.

4.4 Hierarchy-Based Ranking Approaches

The more complex techniques described below make use of the type hierarchy
and measure the depth of an entity type ti attached to e in order to assess its
relevance. We define the DEPTH ranking score of a type ti as the depth of ti
in the type hierarchy. This approach favors types that are more specific (i.e.,
deeper in the type hierarchy).

11 This can be efficiently performed by means of an inverted index over entity labels.

In some cases, the depth of an entity type in the hierarchy may not be enough.
To detect the most relevant entity types, it might also be useful to determine
the branch in the type hierarchy where the most compelling entity types are
defined. In that context, we define a method (ANCESTORS) that takes into
consideration how many ancestors of ti ∈ Te are also a type of e. That is, if
Ancestors(ti) is the set of ancestors of ti in the integrated type hierarchy, then
we define the score of ti as the size of the set {tj |tj ∈ Ancestors(ti) ∧ tj ∈ Te}.
For example, in Figure 3c we rank first the type ‘Actor’ because ‘Person’ is its
ancestor and it is also a type of e. On the other hand, the type ‘Humanitarian
Foundation’ has a bigger depth but no ancestor which is also a type of e.

A variant of this approach (ANC DEPTH) considers not just the number of
such ancestors of ti but also their depth. Thus,

ANC DEPTH(ti) =
∑

tj∈Ancestor(ti)∧tj∈Te

depth(tj). (1)

4.5 Learning to Rank Entity Types

Since TRank ranking approaches cover fairly different types of evidence (based
on the entity-graph, the context, or the type hierarchy) to assess the relevance
of a type, we also propose to combine our different techniques by determining
the best potential combinations using a training set, as it is commonly carried
out by commercial search engines to decide how to rank Web pages (see for
example [15]). Specifically, we use decision trees [11] and linear regression models
to combine the ranking techniques described above into new ranking functions.
The decision tree method we used is M5 [21], which is specifically designed for
regression problems. The effectiveness of this approach is discussed in Section 5.

4.6 Scalable Entity Type Ranking with MapReduce

Ranking types using the above methods for all the entities identified in a large-
scale corpus using a single machine and SPARQL end-points is impractical, given
the latency introduced by the end-point and the intrinsic performance limitations
of a single node. Instead, we propose a self-sufficient and scalable Map/Reduce
architecture for TRank, which does not require to query any SPARQL end-point
and which pre-computes and distributes inverted indices across the worker nodes
to guarantee fast lookups and ranking of entity types. More specifically, we build
an inverted index over the DBpedia 3.8 entity labels for the entity linking step
and an inverted index over the integrated TRank type hierarchy which provides,
for each type URI, its depth in the integrated type hierarchy and the path to
the root of the hierarchy. This enables a fast computation of the hierarchy-based
type ranking methods proposed in Section 4.4.

5 Experiments

5.1 Experimental Setting

We created a ground truth of entity types mentioned in 128 news articles selected
from the top news of each category from the New York Times (NYT) website

during the Feb 21 – Mar 7 2013 period. On average, each article contains 12
entities. After the entity linking step, each entity gets associated with an average
of 10.2 types from our Linked Data collection. We crowdsourced the selection of
the most relevant types by asking the workers to select the most relevant type
given a specific textual context.

Crowdsourced Relevance Judgements. We used paid crowdsourcing to create the
ground truth.12 We decided to ask anonymous Web users rather than creating
the ground truth ourself as they are a real sample of Web user who could benefit
from the envisioned application. Each task, which was assigned to 3 different
workers from the US, consists of asking the most relevant type for 5 different
entities, and was paid $0.10 for entities without context and $0.15 for entities
with a context. Additionally, we allowed the workers to tag entities that were
wrongly extracted, and to add an additional type if the proposed ones were not
satisfactory. Overall, the relevance judgement creation cost $190.

In order to better understand how to obtain the right information from the
crowd, we ran a pilot study where we compared different task designs for the
entity type judgement task. We assessed the approach of asking the crowd to
select all types which are relevant for an entity given its context as compared to
asking which is the best type. Given the results of the pilot study, we selected the
design that asks the worker to pick the best type only as this also best models
the use case of showing one single entity type to a user browsing the Web.
To generate our ground truth out of the crowdsourcing results, we consider as
relevant each type which has been selected by at least one worker, in order to
obtain binary judgements. We take the number of workers who selected a type
as its relevance score in a graded relevance setting.

Evaluation Measures. As the main evaluation measures for comparing different
entity type ranking methods, we use Mean Average Precision (MAP). Average
Precision (AP) for the types Te of an entity e is defined as

AP (Te) =

∑
ti∈Te

rel(ti) · P@i

|Rel(Te)| (2)

where rel(ti) is 1 if ti is a relevant type for the entity e and 0 otherwise, Rel(Te)
is the set of relevant types for e, and P@i indicates Precision at cutoff i. MAP
is defined as the mean of AP over all entities in the collection.

MAP is a standard evaluation measure for ranking tasks which consider bi-
nary relevance: A type ti is either correct or wrong for an entity e. Since the
original relevance judgements are not binary (i.e., more than one worker can
vote for a type and thus have a higher relevance value than a type with just one
vote), we also measure the Normalize Discounted Cumulative Gain (NDCG)
[12], which is a standard evaluation measure for ranking tasks with non-binary
relevance judgements. NDCG is defined based on a gain vector G, that is, a
vector containing the relevance judgements at each rank. Then, the discounted

12 We run our tasks over the Amazon MTurk platform. The collected data and task
designs are available for others to reuse at http://exascale.info/TRank

cumulative gain measures the overall gain obtained by reaching rank k putting

more weight at the top of the ranking: DCG[k] =
∑k

j=1 G[j]/(log2(1 + j)). To
compute the final NDCG, we normalize it by dividing DCG by its optimal value
obtained with the optimal gain vector which puts the most relevant results first.

5.2 Dataset Analysis

Out of the NYT articles we have crawled, we created four different datasets to
evaluate and compare our approaches for the entity type ranking task. First,
we use a collection consisting exclusively of entities and their types as extracted
from the news articles. This collection is composed of 770 distinct entities: out of
the original 990 extracted entities we consider only those with at least two types
and we removed the errors in NER and entity linking which were identified by
the crowd during the relevance judgements.

Sentence Collection. We built a Sentence collection consisting of all the sentences
containing at least two entities. In this and the following collections we asked
the human assessor to judge the relevance of a type given a context (e.g., a
sentence). This collection contains 419 context elements composed of an average
number of 32 words and 2.45 entities each.

Paragraph Collection. We constructed a collection consisting of all the para-
graphs longer than one sentence and containing at least two entities having
more than two types. This collection contains 339 context elements composed of
an average number of 66 words and 2.72 entities each.

3-Paragraphs Collection. The last collection we have constructed contains the
largest context for an entity: the paragraph where it appears together with the
preceding and following paragraphs in the news article. This collection contains
339 context elements which are composed on average of 165 words each. The
entire context contains on average 11.8 entities which support the relevance of
the entities appearing in the central paragraph.

5.3 Experimental Results

Table 1 shows the overall effectiveness obtained by the proposed approaches.
When we compare the results obtained among the different collections (i.e.,
entity-only, sentence, paragraph, and 3 paragraphs) we observe that effectiveness
values obtained without context are generally higher, supporting the conclusion
that the type ranking task for an entity without context is somehow easier than
when we need to consider the story in which it is mentioned. Among the entity
centric approaches, in most of the cases the best approach is WIKILINK-OUT,
that is, the approach that follows the <dbpedia-prop:wikiLink> edges starting
from the entity e and that checks the frequency of its types among its connected
entities. Among the context-aware approaches, the PATH method performs best.
Interestingly, the hierarchy-based approaches clearly outperform the methods

Table 1. Type ranking effectiveness for different textual contexts. Statistically signi-
ficative improvements (t-test p < 0.05) of the regression methods over the best ranking
approach are marked with ∗ and of the best hierarchy-based method over the best
method from the other groups with †.

Entity-only Sentence Paragraph 3-Paragraphs
Approach NDCG MAP NDCG MAP NDCG MAP NDCG MAP

FREQ 0.6284 0.4659 0.5409 0.3758 0.5315 0.3739 0.5250 0.3577
WIKILINK-OUT 0.6874 0.5406 0.6050 0.4521 0.6063 0.4550 0.6059 0.4444
WIKILINK-IN 0.6832 0.5342 0.5907 0.4213 0.5879 0.4254 0.5853 0.4143

SAMEAS 0.6848 0.5328 0.6049 0.4310 0.5990 0.4221 0.6172 0.4417
LABEL 0.6672 0.5067 0.6075 0.4265 0.5883 0.4104 0.5821 0.4034

SAMETYPE - - 0.6024 0.4452 0.5917 0.4327 0.5813 0.4256
PATH - - 0.6507 0.4956 0.6538 0.4974 0.6315 0.4742
DEPTH 0.7432 0.6128 0.6754 0.5385 0.6797 0.5475 0.6741 0.5354

ANCESTORS 0.7424 0.6154 0.6967† 0.5637† 0.6949† 0.5662† 0.6879† 0.5562†

ANC DEPTH 0.7469† 0.6236† 0.6832 0.5488 0.6885 0.5546 0.6796 0.5423

DEC-TREE 0.7614 0.6361 0.7373∗ 0.6079∗ 0.7979∗ 0.7019∗ 0.7943∗ 0.6914∗

LIN-REG 0.7373 0.6079 0.6906 0.5579 0.6987 0.5702 0.6899 0.5529

looking at the context or at the entity itself. The relatively simple DEPTH ap-
proach performs very effectively. The approaches looking at the ancestor of a type
in the integrated hierarchy are the most effective approaches for ranking entity
types among the ones we propose. Nevertheless, there are cases in which context-
aware approaches rank types better than hierarchy-based ones. For example, in
some document “Mali” co-occurs with “Paris”, “Greece”, and “Europe”. The
top-3 results selected by ANCESTORS for “Mali” are “LeastDevelopedCoun-
tries”, “LandlockedCountries”, and “French-speakingCountries”, which are all
non-relevant since they are too specific with respect to the context. In contrast,
the top-3 types selected by PATH: “PopulatedPlace”, “Place”, and “Country”,
are all relevant according to the crowd.

To evaluate the combination of approaches using machine-learning methods,
we run 10-fold cross validation over 7884, 11875, 11279, and 11240 data points in
the four different collections. Out of the ranking approaches we have proposed,
we selected 12 features which cover all the different methodologies (i.e., entity-
centric, context-aware, and hierarchy-based) to train regression models for entity
type ranking. We observe that the best performing method is the one based on
decision trees, which significantly outperforms all other approaches.

Figure 4 shows the evolution of MAP and NDCG values by looking at entities
with a different number of associated types. Generally speaking, we see that
entity having many different types are more difficult to handle. On the other
hand, even for the simple approach FREQ, when few types are assigned to an
entity we obtain effective results. On the right side of Figure 4, we can observe
the robustness of DEC-TREE over entities with an increasing number of types.

Crowd-powered Entity Type Assignment. In some cases the knowledge base may
not contain types that are good enough. For example, some entities have only
<owl:Thing> and <rdfs:Resource> attached to them. In such cases, we asked
the crowd to suggest a new type for the entity they are judging. While extend
existing LOD ontologies with additional schema element is not the focus of this
paper, we observe that this can be easily achieved by means of crowdsourcing.

0.0

0.2

0.4

0.6

0.8

1.0

N
D

C
G

0 10 20 30 40 50 60

Number of Types
0.0

0.2

0.4

0.6

0.8

1.0

M
A

P

0.0

0.2

0.4

0.6

0.8

1.0

N
D

C
G

0 10 20 30 40 50 60

Number of Types
0.0

0.2

0.4

0.6

0.8

1.0

M
A

P

Fig. 4. MAP and NDCG of FREQ (left) and DEC-TREE (right) for entities with
different numbers of types on the 3-paragraphs collection.

The suggestion of new types from the crowd may also suggest an error at the
entity linking step (i.e., a wrong URI has been assigned to the entity mention).
Some examples of crowd-originated entity types are shown in Table 2.

TRank Scalability. We ran the MapReduce TRank pipeline over a sample of
CommonCrawl containing schema.org annotations. Upon writing this paper,
CommonCrawl is formed by 177 valid crawling segments, accounting for 71TB
of compressed Web content. We uniformly sampled 1TB of data over the 177
segments, and kept only the HTML content with schema.org annotations. This
resulted in a corpus of 1, 310, 459 HTML pages, for a total of 23GB (compressed).
Our MapReduce testbed is composed of 8 slave servers, each with 12 cores at
2.33GHz, 32GB of RAM and 3 SATA disks. The relatively small size of the 3
Lucene inverted indices (∼ 600MB) used by the TRank pipeline allowed us to
replicate the indices on each single server (transparently via HDFS). In this way,
no server represented a read hot-spot or, even worse, a single point of failure.We
argue that the good performance of our MapReduce pipeline is in majorly due
to the use of small, pre-computed inverted indices instead of expensive SPARQL
queries.
Processing the corpus on such a testbed takes 25 minutes on average, that is,
each server runs the whole TRank pipeline at 72 documents per second. Table 3
shows a performance breakdown for each component of the pipeline. The value
reported for “Type Ranking” refers to the implementation of ANCESTORS,
but it is comparable for all the other techniques presented in the paper (except

Table 2. Examples of crowd-originated entity types.

Entity Label Existing Types Crowd Suggested Type

David Glassberg
Alumnus, Resource,

New York City policemanNorthwestern University Alumni,
American television journalists

Fox Thing, Eukaryote Television Network

Bowie
Minor league team,

Musical Artist
Minor league sports team

Atlantic Resource, Populated Place Ocean
European Commission Type of profession, Landmark Governmental Organizations

Childress Thing, Resource Locality

Table 3. Efficiency breakdown of the TRank MapReduce pipeline.

Text Extraction NER Entity Linking Type Retrieval Type Ranking
18.9% 35.6% 29.5% 9.8% 6.2%

Table 4. CommonCrawl sample statistics.

Domain % in corpus
youtube.com 39.65
blogspot.com 9.26
over-blog.com 0.67
rhapsody.com 0.54
fotolog.com 0.52

Schema.org type % in corpus
http://schema.org/VideoObject 40.79

http://schema.org/Product 32.66
http://schema.org/Offer 28.92
http://schema.org/Person 20.95

http://schema.org/BlogPosting 18.97

the ones based on the Learning to Rank approach, which we did not test in
MapReduce).

The observed schema.org class distributions almost overlaps with the one
previously found by [17] (see Table 4).13 Table 5 shows the most frequent entity
types selected by TRank for entities contained in our sample of CommonCrawl.
We can observe how TRank types refer to specific entities mentioned in topic-
specific pages as, for example, <yago:InternetCompaniesOfTheUnitedStates>
entities that are contained in <http://schema.org/Product> Web pages.

1	

10	

100	

1000	

10000	

100000	

0	 50	 100	 150	 200	 250	 300	 350	 400	 450	

O
cc
ur
re
nc
es
	 o
f	 D

is
-n

ct
	 T
Ra

nk
	 T
yp
es
	

Rank	 of	 Schema.org	 Type	

Fig. 5. Occurrences of distinct TRank types in CommonCrawl (log scale).

Figure 5 shows the variety of entity types selected by TRank for Web pages
annotated with different schema.org classes. We clearly recognize a power-low
distribution where the top schema.org classes contain very many different entity
types while most of the others have a low diversity of entity types.

6 Conclusions

In this paper, we focused on the new task of ranking types for online entities
given some textual context and links to background knowledge bases. Numerous

13 More statistics can be found at http://exascale.info/TRank

Table 5. Co-occurrences of top Schema.org annotations with entity types.

Schema.org type top-3 most frequent TRank types

http://schema.org/VideoObject
<dbpedia-owl:GivenName>
<dbpedia-owl:Settlement>
<dbpedia-owl:Company>

http://schema.org/Product
<yago:InternetCompaniesOfTheUnitedStates>

<yago:PriceComparisonServices>
<dbpedia-owl:Settlement>

http://schema.org/Offer
<yago:InternetCompaniesOfTheUnitedStates>

<yago:PriceComparisonServices>
<dbpedia-owl:Company>

http://schema.org/Person
<dbpedia-owl:GivenName>
<dbpedia-owl:Company>

<yago:FemalePornographicFilmActors>

applications can be developed once the most relevant entity types are correctly
determined, including SERP enrichment, faceted browsing, and document sum-
marization. We proposed different classes of ranking approaches and evaluated
their effectiveness using crowdsourced relevance judgments. We also evaluated
the efficiency of the proposed approach by taking advantage of inverted indices
for fast access to entity and type hierarchy information and of a MapReduce
pipeline for efficient entity type ranking over a Web crawl.

Our experimental results show that the approaches considering the relations
between entity types in the overall type hierarchy outperform the other classes
of approaches. A regression model learned over training data combining the
different classes of ranking approaches significantly outperforms the individual
ranking approaches, reaching a Mean Average Precision value of 0.70. As future
work, we aim at improving TRank effectiveness by differentiating types and
roles to design new ranking approaches based both on natural types and on
the interaction among entities in the context. In addition, we plan to test the
behavior of our system with different domains and ontologies, and to evaluate
the user impact of entity typing by running a large-scale experiment using a
browser plugin to display contextual entity types while the user is surfing.

7 Acknowledgments

This work was supported by the Swiss National Science Foundation under grant
number PP00P2 128459, and by the Haslerstiftung in the context of the Smart
World 11005 (Mem0r1es) project.

References

1. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-
mann. DBpedia - A crystallization point for the Web of Data. Journal of Web
Semantics, pages 154–165, 2009.

2. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collab-
oratively created graph database for structuring human knowledge. In SIGMOD,
pages 1247–1250, 2008.

3. S. Campinas, D. Ceccarelli, T. E. Perry, R. Delbru, K. Balog, and G. Tummarello.
The Sindice-2011 dataset for entity-oriented search in the web of data. In 1st
International Workshop on Entity-Oriented Search (EOS), pages 26–32, 2011.

4. M. Ciaramita and Y. Altun. Broad-coverage sense disambiguation and information
extraction with a supersense sequence tagger. In EMNLP, pages 594–602, 2006.

5. H. Cunningham, K. Humphreys, R. Gaizauskas, and Y. Wilks. GATE: a general
architecture for text engineering. In ANLC, pages 29–30, 1997.

6. G. Demartini, D. E. Difallah, and P. Cudré-Mauroux. ZenCrowd: leveraging prob-
abilistic reasoning and crowdsourcing techniques for large-scale entity linking. In
WWW, pages 469–478, 2012.

7. Y. Fang, L. Si, Z. Yu, et al. Purdue at TREC 2010 Entity Track: A Probabilistic
Framework for Matching Types Between Candidate and Target Entities. In TREC,
2010.

8. J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local information
into information extraction systems by gibbs sampling. In ACL, pages 363–370,
2005.

9. J. R. Finkel and C. D. Manning. Joint parsing and named entity recognition. In
NAACL, pages 326–334, 2009.

10. A. Gangemi, A. G. Nuzzolese, V. Presutti, F. Draicchio, A. Musetti, and P. Cian-
carini. Automatic typing of dbpedia entities. In ISWC, pages 65–81, 2012.

11. G. Holmes, M. Hall, and E. Frank. Generating rule sets from model trees. In AI,
pages 1–12, 1999.

12. K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques.
TOIS, pages 422–446, 2002.

13. A. Kalyanpur, J. W. Murdock, J. Fan, and C. Welty. Leveraging community-built
knowledge for type coercion in question answering. In ISWC, pages 144–156, 2011.

14. R. Kumar and A. Tomkins. A characterization of online search behavior. IEEE
Data Eng. Bull., 2009.

15. T.-Y. Liu. Learning to rank for information retrieval. FTIR, pages 225–331, 2009.
16. C. Matuszek, J. Cabral, M. Witbrock, and J. DeOliveira. An introduction to the

syntax and content of cyc. In AAAI Spring Symposium, 2006.
17. H. Mühleisen and C. Bizer. Web data commons - extracting structured data from

two large web corpora. In LDOW, 2012.
18. D. Nadeau. Semi-supervised named entity recognition: learning to recognize 100

entity types with little supervision. PhD thesis, 2007.
19. D. Nadeau, P. D. Turney, and S. Matwin. Unsupervised named-entity recognition:

generating gazetteers and resolving ambiguity. In AI, pages 266–277, 2006.
20. J. Pound, P. Mika, and H. Zaragoza. Ad-hoc object retrieval in the web of data.

In WWW, pages 771–780, 2010.
21. J. R. Quinlan. Learning with continuous classes. In AI, pages 343–348, 1992.
22. F. M. Suchanek, S. Abiteboul, and P. Senellart. Paris: Probabilistic alignment of

relations, instances, and schema. PVLDB, pages 157–168, 2011.
23. F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.

In WWW, pages 697–706, 2007.
24. A. Tonon, G. Demartini, and P. Cudré-Mauroux. Combining inverted indices and

structured search for ad-hoc object retrieval. In SIGIR, pages 125–134, 2012.
25. T. Tylenda, M. Sozio, and G. Weikum. Einstein: physicist or vegetarian? summa-

rizing semantic type graphs for knowledge discovery. In WWW, pages 273–276,
2011.

26. C. Welty, J. W. Murdock, A. Kalyanpur, and J. Fan. A comparison of hard filters
and soft evidence for answer typing in watson. In ISWC, pages 243–256, 2012.

27. S. E. Whang and H. Garcia-Molina. Joint Entity Resolution on Multiple Datasets.
The VLDB Journal, 2013.

