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Abstract—Action rules mining aims to provide 
recommendations to analysts seeking to achieve a specific 
change. An action rule is constructed as a series of changes, 
or actions, which can be made to some of the flexible 
characteristics of the information system that ultimately 
triggers a change in the targeted attribute. The existing 
action rules discovery methods consider the input decision 
system as their search domain and are limited to expensive 
and ambiguous strategies. In this paper, we define and 
propose the notion of action table as the ideal search domain 
for actions, and then propose a strategy based on the FP-
Tree structure to achieve high performance in rules 
extraction. 

Keywords- action rules; recommendation; association 
mining; action table; FP-Tree. 

I.  INTRODUCTION 
In association rule mining, the rules extracted from an 

information system are handed to the domain experts who 
need to filter what information is interesting or trivial. 
Action rules were introduced in [3] as a new class of rule 
discovery that provides hints on possible actions a 
business should take to achieve a desired target. 

Mining action rules is defined as the process of 
identifying patterns in a decision system capturing the 
possible changes to certain object attributes that may lead 
to a change in the decision value [3]. Generally, action rule 
mining operates on a decision system [13] with objects 
having three classes of attributes: stable, flexible and 
decision. The stable attributes are attributes that cannot be 
changed or, in some approaches, require a prohibitive high 
cost to change them [4]. Examples of stable attributes are 
the date of birth or weather conditions. Conversely, 
flexible attributes are attributes on which the analysts have 
a certain degree of freedom in manipulating such as color, 
sale’s percentage, and so forth. The decision is the 
attribute that the analyst would like to see changed; an 
example would be the profit of a company. 

Existent action rules discovery methods use a decision 
table as their primary search domain; the employed 
strategies are limited to candidate generation-and-test. In 
our approach, the discovery of action rules is based on a 
domain of actions that we create from the decision system, 
called the action table. The main contribution of this paper 
is to reformulate the action rules mining problem into the 
association-mining problem framework using the action 
table as the new search domain. A particularly suited 
approach is to use an FP-Tree structure to store the action 

table and the FP-Growth algorithm to extract association 
action rules. 

The rest paper is organized as follows. Section 2 
briefly surveys previous works on action rules mining. 
Section 3 reviews the key concepts and definitions. 
Sections 4 and 5 present the action table and our strategy 
through a detailed example. Finally we experimentally 
compare the performance of our solution with existent 
algorithms. 

II. OVERVIEW AND RELATED WORK 
Previous works on action rules assume a generalization 

of an information system S as introduced in [1], where S = 
(X, A, V): 

• X: a nonempty, finite set of objects. 
• A: a nonempty, finite set of attributes. 
• V = {Va : a ∈ A} all the attributes values. 
Additionally, a : X→Va is a function for any a ∈ A, 

that returns the value of the attribute of a given object. The 
attributes are divided into different categories: a stable set 
Ast, flexible set Afl and a decision set D of attributes, 
where A= Ast ∪Afl∪D 

For example, Table I. represents a decision table with 
eight objects: a is stable, b and c are flexible, d is the 
decision attribute. 

TABLE I.  EXAMPLE OF A DECISION TABLE 

 a b c d 
x1 a1 b1 c1 l 
x2 a2 b1 c1 l 
x3 a2 b2 c1 h 
x4 a2 b2 c2 h 
x5 a2 b1 c1 l 
x6 a2 b2 c1 h 
x7 a2 b1 c2 h 
x8 a1 b2 c2 l 

 
In order to extract action rules, [3, 7, 8, 9, 10] were 

based on an existing set of classification rules. Certain 
pairs of these rules were combined to reclassify objects to 
a targeted state. One problem that arose, as argued in [4], 
is “some meaningful action rules should be missed in 
these classification-based techniques and thus existing 
algorithms cannot specify when and how the correct and 
complete underlying action rules are discovered”. Instead, 
they were the first to propose an inductive approach for 
mining directly from the decision system. The approach is 
formulated as a search problem based on a support-
confidence-cost framework and an Apriori-like algorithm 
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[4]. Further work to extract action rules directly from the 
decision system followed.  

In [5], the proposed algorithm, called Action Rules 
Discovery (ARD), builds rules for a given target decision 
using an iterative marking strategy. It considers the change 
in an attribute value as an atomic-action-term of length 
one, and then an action-term is a composition of atomic-
action-terms. ARD starts by generating all atomic-action-
terms for a given set of attribute values and assigning a 
mark (unmarked, positive, negative) based on support and 
confidence measures. The unmarked terms are placed into 
the candidate list. Next, it generates all possible action-
terms of length two by combining terms in the candidate 
list and the atomic terms. The process continues 
iteratively, creating terms of greater length, until the 
candidates’ list is empty. The action-terms marked as 
positive are used to construct the action rules. 

In [6], authors presented an association type of action 
rules and used an Apriori like strategy to find frequent 
action sets to induce action rules. Like ARD, the algorithm 
AAR (Association Action Rule) considers atomic action 
sets being the fine granule used to construct longer rules 
(similar to items and item sets in association mining). The 
Apriori algorithm is directly used with few modifications; 
the main changes are mostly driven (a) by modifications to 
the definition of support and confidence and (b) by the 
calculation of the measures directly from the input 
decision system. 

Although these approaches have different definitions 
for objective measures like support and confidence, they 
use the same idea of atomic-action set, action set and 
Standard Interpretation.  

III. PRINCIPLES OF ACTION RULES 
In this section, we provide a quick overview of the key 

concepts in action rules literature.  We particularly focus 
on [6] as it is the most recent work on the subject and is 
the most related to this work in the sense that both try to 
map association rules mining into action rules mining.  

A. Atomic action set  
Defined as the expression (a, a1�a2) where a is an 

attribute in A and a1, a2 are values of a. If the attribute is 
stable or did not change its value then the atomic action set 
is expressed as (a, a1). The domain of an atomic action set 
is its attribute.  

Dom((a, a1�a2))=a 
Example: Consider Rate a flexible attribute with values 
Vrate={30%, 10%, 50%}. The atomic action set (Rate, 
30%�10%) means changing the value of Rate from 30% 
to 10%. 

B. Action sets 
Constructed as the conjunction of atomic action sets 

with the composition operator (·). If t1, t2 are two atomic 
action sets with different attributes, then t=t1· t2 is an 
action set. The domain of the action set t is the set of 
attributes from all its atomic action sets, here: 

Dom(t)=Dom(t1)∪Dom(t2) 

Example: Consider Age as a stable attribute with values 
Vage={25, 50, 70} and Credit a flexible attribute with 
values Vcredit={good, bad}. An action set could be the 
composition [(Age, 50) · (Rate, 30%�10%) · (Credit, 
bad�good)] which could be read as follows: for 
customers of Age 50, change the Rate from 30% to 10% 
and the Credit from good to bad. 

C. The standard interpretation (noted Ns)   
The introduction of the Standard Interpretation is the 

basis of measures like support and confidence. In 
association mining, the support of an itemset is simply the 
count of objects. For action rules, we need to consider two 
sets. The first set is all the objects with attributes value 
equal to the initial state of the action; the second set, 
respectively, is all the objects having attributes values 
equal to the values of the final state of the action. 
Example: The Standard interpretation of the action set  
Ns[(Age, 50) · (Rate, 30%�10%) · (Credit, bad�good)]= 
[A1,A2]  
Where:  
A1= { x X: age(x) = 50 ∧ rate(x) = 30% ∧ credit(x) = 
bad}. 
A2= { x X: age(x) = 50 ∧ rate(x) = 10% ∧ 
credit(x)=good}. 

D. The support of an action set 
Assume t an action set with standard interpretation 

Ns(t)=[A1, A2] . The support Supp of t is considered in 
AAR as[6] : 

Supp(t)=min{card(A1), card(A2)} 

In ARD as [5]: 

Supp(t)=card(A1) 

Hence, for AAR, for the two states, the support is 
concerned only with the state having the lowest 
occurrences.  For the ARD, it was only in terms of number 
of occurrences of the initial state. It should be noted that 
these definitions lead to very different results.  With 
respect to ARD, a rationale for the definition was not 
provided; however, the definition allows for A2 to be 0 
and/or below minimum support. AAR, however, ensures 
that both A1 and A2 are guaranteed to satisfy the minimum 
support threshold. 

E. Action rule 
An action rules r is expressed as r=[t1 �t2], where t1 and 
t2 are two action sets. Typically t2 is the action comprising 
only the decision attribute.  
Example: [(Age, 50) · (Rate, 30%�10%) · (Credit, 
bad�good)]�[(Profit, low�high)] 
The support is calculated similarly to action sets by 
considering the t1· t2 as an action set itself. 
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F. The confidence measure: 
The confidence of an action rule r=[t1�t2], 

Considering Ns(t1)=[A1, A2] and Ns(t2)=[Z1, Z2], with 
A1 and A2 not empty: 

conf (r) = card(A1∩Z1)
card(A1) × card(A 2∩Z 2)

card(A 2)             (1) 

In AAR, generating action rules is similar to 
association rule mining where frequent item sets are first 
extracted. The algorithm, which is based on Apriori, 
generates actions sets with support that exceeds a specified 
threshold value: minimum support (minSup); any action 
set that meets this criterion is a frequent action set. An 
action rule is constructed and tested as following:  

• If t is a frequent action set and t1 is a subset of t 
then: 

r =[ t − t1� t1] 

• If Conf(r) � minConf, where minConf is the 
minimum confidence specified, r is a valid rule. 

Like Apriori, the AAR method can generate a large 
number of rules.  The process does not constrain what the 
decision attribute may be; in fact, it does not even require 
a decision attribute to be specified.  As a side benefit, 
unlike ARD, the user does not have to supply what the 
targeted decision should be.  For example, ARD would 
require the user to state (Rate, 30%�10%) is the decision 
of interest. 

On the other hand, AAR suffers from two problems.  
First, like Apriori, the number of rules may be 
overwhelming to the user.  Second, if the user is interested 
in a particular change, like (Rate, 30%�10%), there is no 
guarantee that the AAR method will generate the required 
rules.  For instance, if minimum support is 8, and (Rate, 
10%) has a support of 5, then no rules containing (Rate, 
10%) would be generated. 

As an aside, a justification of the defined confidence 
measure was provided for the ARD method.  In [5], the 
authors indicated that the definition of confidence should 
be considered as an optimistic confidence.  It requires that 
the card(A1) �0, card(A2) �0, card(A1 ∩  Z1) � 0 and 
card(A2 ∩  Z2) � 0.  In effect, this definition was required 
due to ARD’s definition of support.  Without it, action 
rules could be generated that for cases in which A2 ∩  Z2 
never occurred. 

Interestingly, for AAR, a similar claim was made.  In 
[6], the definition was declared optimistic, because 
card(A1) �0 and card(A2) �0.  However, since AAR uses 
minSup, as long as minSup is greater than 0, it is 
guaranteed that card(A1) �0 and card(A2) �0.  

IV. THE ACTION TABLE 
As mentioned previously, the AAR and ARD methods 

operate within the search space represented by the decision 
table; we refer to this as the information space.  As a 
result, the creation (and tracking) of the various flexible 

atomic action sets is intertwined with the action set 
generation. Hence, one would need to calculate the support 
of (Rate, 30%) and (Rate, 10%) first in order to obtain the 
support of (Rate, 30%�10%). This operation needs to be 
performed for all k iterations.  The first iteration generates 
frequent action sets composed of 1 element, the second 
iteration generated action sets composed of 2 elements and 
so forth.  For instance, assume you have stable attribute 
Gender with values {m,f}.  Then, to calculate the action 
set [(Gender, f)·(Rate,10%�30%)], one would first need 
to calculate the support of [(Gender, f), Rate(10%)] and 
[(Gender, f), (Rate, 30%)]. 

However, this could be avoided if, instead of working 
within the information space, we were able to work within 
an ‘action space’, where the possible flexible action 
mappings are already known and represented.  In this 
paper, this is done via the introduction of the action table. 

The key idea is explicitly enumerating how each object 
in S can be converted from the undesired, or initial, state to 
the desired one, or final. That information can be captured 
as a set of action sets within a table called the action table. 
This creates a limitation, compared to the AAR approach, 
by requiring the targeted decision to be known before 
hand; this limitation, however, is similar to that required 
by the ARD approach. 

For example, if we consider Table I as our decision 
table and the targeted decision is (d, l h), then: 

• L={x X: d(x)=l}, i.e. all the objects with 
decision value l. 

• H={x X: d(x)=h}, i.e all the objects with 
decision value h. 

The action table will contain the necessary action sets 
to move every object in L to an object in H. The action 
table will contain exactly card(L)*card(H) action sets. 

Each row in the action table reflects the necessary 
action sets for transforming an object from low (l) to high 
(h). This operation is formalized as following: 

∀x∈L, y∈H: x�y is a possible transition describing a 
new action set t, and ∀a∈A: 

• If a is flexible and a(x) � a(y): a(t)=a(x)�a(y) 
• If a is stable and a(x) � a(y), then a(t) is 

contradicting and is therefore discarded. 
• If  a(x) = a(y), then a(t)= a(x) 

Example: To generate the action table we start from the 
decision Table I and organize it into two subtables, as 
shown in table II, with respect to the decision attribute d.  

TABLE II.  THE DECISION TABLE ORGANIZED WITH RESPECT TO 
THE DECISION ATTRIBUTE D. 

 a b c d 

L 

x1 a1 b1 c2 l 
x2 a2 b1 c1 l 
x5 a2 b1 c1 l 
x8 a1 b2 c2 l 

H 

x3 a2 b2 c1 h 
x4 a2 b2 c2 h 
x6 a2 b2 c1 h 
x7 a2 b1 c2 h 
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Then we make a cross product from L into H and construct 
the action sets for each transition. If there is a change in 
the stable attribute we simply discard it. This process 
results in table III. 

TABLE III.  THE ACTION TABLE FOR THE TARGET (D, L�H) 

 a b c 
x1�x3 - b1�b2 c2�c1 
x1�x4 - b1�b2 c2 
x1�x6 - b1�b2 c2�c1 
x1�x7 - b1 c2 
x2�x3 a2 b1�b2 c1 
x2�x4 a2 b1�b2 c1�c2 
 x2�x6 a2 b1�b2 c1 
x2�x7 a2 b1 c1�c2 
x5�x3 a2 b1�b2 c1 
x5�x4 a2 b1�b2 c1�c2 
x5�x6 a2 b1�b2 c1 
x5�x7 a2 b1 c1�c2 
x8�x3 - b2 c2�c1 
x8�x4 - b2 c2 
x8�x6 - b2 c2�c1 
x8�x7 - b2�b1 c2 
 
Note: the atomic action set with the decision attribute d 
will always be (d, l�h) and therefore would be redundant 
in the action table. 

A. Implications of the Action Table 
First, unlike the original decision table, the action table 

now explicitly includes change values as part of the 
attribute definition. Second, the decision cardinality 
card({d, l h}) is equal to the number of rows in the 
action table. Third, the action table does not allow us to 
recover the individual counts of Z1 or Z2; nor, for that 
matter, the individual counts of A1 or A2.  This 
information is not needed, then support for t, where 
t=t1·t2 and t2 = {d, l h}, is given by: 

Supp(t) = card(A1∩ Z1) × card(A2 ∩ Z2)        (2) 

This calculation can take place by performing a count 
count operation on the action table.   

What is attractive about this definition is it is the same 
support measure used in the traditional Association 
Mining [14].  

Now, if we look at the confidence measure used in 
traditional Association Mining [14], we see: 

conf (r) = Supp(r )
Supp( t1)                         (3) 

One potential problem arises if the traditional 
association mining confidence measure is utilized. While 
the support of the rule can be directly calculated from the 
action table, the Supp(t1) cannot be calculated from the 
action table. This is because the action table does not 
contain all occurrences of A1 and A2.  However, the 
support for A1 and A2 can be easily calculated from the 

decision table; a simple pass through the table, performing 
a basic count operation is required. More formally, the 
support of an action set t1 with standard interpretation 
Ns(t1)=[A1, A2]: 

Supp(t1) = card(A1) × card(A2)               (4) 

V.       THE FAARM STRATEGY: 
Using the concept of action table and the resulting 

changes to support and confidence, we believe that any 
association-mining algorithm can be used to generate 
action rules. Here, we demonstrate the use of the FP-
Growth algorithm [2] to generate the action rules. We call 
the resultant approach FAARM (Frequent Association 
Action Rule Mining). 

The FP-Growth algorithm is a divide–and–conquer 
approach that is considered to be an order of magnitude 
faster than Apriori[2]. It relies on a special tree data 
structure called FP-Tree[2] which is obtained by ordering 
the transaction attributes values by their frequency, 
pruning those that do not meet a given minimum support, 
and then inserting the transaction, or action sets in our 
case, into a tree. The result is a condensed data structure 
that avoids expensive database scans and is especially 
tailored for dense datasets [2]. 

The same concepts of atomic action set, action set and 
Standard Interpretation are borrowed from previous work. 
However, the definitions of support and confidence used 
are those introduce in section IV.A. 

Now, we present FAARM, the proposed process of 
extracting action rules from: 

 
FAARM METHOD 

1) Specify the decision target. 
2) Generate all the atomic action sets from A. 
3) Calculate the frequency of each atomic set. 
4) Build the action table. 
5) Prune and reorder the action table. 
6) Build the FP-Tree from the action table. 
7) Run FP-Growth on the FP-tree. 

a) Extract frequent action sets. 
b) Build and test the action rules. 

 
To better explain our proposed FAARM strategy, we go 
through the example on the decision table described in 
Table I. We use minSup=4 and the minConf=80%. 

 
1) Set the targeted decision: [d, l h]. 
2) Generate the atomic sets: The atomic sets are all the 

possible transitions for every attribute.  
Atomic sets={(a,a1), (a,a2), (b,b1), (b,b2), (b,b1 b2), 
(b,b2 b1), (c,c1), (c,c2), (c,c1 c2), (c,c2 c1)} 

 
3) Calculate the frequency of each atomic set: In order 

to calculate the support of each atomic action set with 
regard to a decision target, it is sufficient to scan the 
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decision table once and count the occurrence of each 
attribute with respect to decision's left and right values, 
here l and h (Table IV). Then, using the support formula 
(4) and the minimum support criteria, we can calculate the 
exact support of all the possible atomic action sets (Table 
V). 

TABLE IV.  THE FREQUENCY OF ATTRIBUTES IN V FOR THE ACTION 
(d, l h) FROM THE DECISION TABLE IN ONE PASS  

 l h 
a1 2 0 
a2 2 4 
b1 3 1 
b2 1 3 
c1 2 2 
c2 2 2 

TABLE V.  SUPPORT OF ALL ATOMIC ACTION SETS (MINSUP= 4)  

Atomic action set Support with regards to (d, l�h) 
(a,a1) 0 (Does not meet min support) 
(a,a2) 8 
(b,b1) 3 (Does not meet min support) 
(b,b2) 3 (Does not meet min support) 
(b,b1�b2) 9 
(b,b2�b1) 1 (Does not meet min support) 
(c,c1) 4 
(c,c2) 4 
(c,c1�c2) 4 
(c,c2�c1) 4 

 
For a later use, the list of atomic action sets is ordered 

by descending support: 
List= {(b1 b2), (a2), (c1),(c2), (c1 c2), (c2 c1)} 

4) Generate the action table: (see section IV for the 
example).  

5) Prune and reorder the action table: Once the action 
table is generated, we can use List to order action sets by 
descending support and remove atomic sets that does not 
meet the minimum support. This operation facilitates the 
creation of the FP-Tree. 

6) Build the FP-Tree from the action table: Generating 
the action table and storing it in memory is expensive 
(time and space complexity is O(n2)), where n is the 
number of transactions; to alleviate the space complexity, 
we propose to use the FP-Tree to store the table. To build 
the FP-Tree we insert each action set, from the ordered and 
pruned action table, into the tree using the atomic action 
sets as the nodes. Each time a node is inserted or reused 
we increment its local count. If the node has been inserted 
somewhere else in the tree we create a link to the last 
inserted one (Figure 1).  

7a) Extract Frequent action sets: FP-Growth receives 
an FP-Tree as an input and does its traditional job for 
extracting frequent patterns given minimum support 
criterion. 

7b) Generating Association Action Rules: The 
following frequent action sets are extracted from the FP-
Tree using the FP-Growth algorithm [2]: 
t1= (a,a2) · (b, b1�b2) · (c, c1) · (d, l�h) 

Supp(t1)= 4=minSup 

t2= (a,a2) · (c, c1�c2) · (d, l�h) 
Supp(t2)=4=minSup 
Finally, we can easily construct the association action 

rules and check their confidence. This operation takes 
exactly one scan of the Table 1 for each frequent action 
set: 
r1= (a,a2) · (b, b1�b2) · (c, c1) � (d, l�h)  

supp(r1)= 4=minSup, conf(r1)= 4/4 >minConf 
r2= (a,a2) · (c, c1�c2) � (d, l�h) 

 supp(r2)=4=minSup, conf(r2)=4/8<minConf 
Only r1 meets the minimum confidence for a valid 

association action rule extracted from S. 
 

 
Figure 1.  FP-Tree generated from the action table. 

VI. EXPERIMENTS 
The experimental goal is to compare the performances 

of our algorithm FAARM to other action rules discovery 
algorithms that do not use pre-existing classification; the 
ones selected are AAR and ARD. We also considered 
datasets used in previous action rules discovery literature, 
namely Hepatitis [9] and Nursery [12]; the datasets can be 
obtained from the UCI Machine Learning Repository [11]. 
Finally, we used the same classification (Stable, Flexible, 
Decision) for the attributes as used in [9, 12]. 

A. Description of the datasets 
A brief description of each dataset is provided in this 

section. 
1) Hepatitis dataset 

This dataset contains clinical data of patients affected 
by the Hepatitis disease. It has 155 records and 19 
attributes, not including the decision attribute.  The 
attributes are decomposed into 2 stable attributes and 17 
flexible attributes.  Each flexible attributes is composed 9 
values or less; the majority are composed of only 2. The 
patients are classified into: Die, Live. Our target is to find 
rules to change the likelihood of this classification i.e. 
targeted decision effect is:  

[class, die live] 
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2) Nursery dataset 
This dataset is composed of the evaluation forms of 

applications to nursery schools. The dataset has 12960 
records and 8 attributes, not including the decision 
attribute. The attributes are decomposed into 4 stable 
attributes and 4 flexible attributes.  Each flexible attributes 
is composed of 3 values or less. Our target is to find rules 
to enhance the chances of having an application go from 
being not recommended to priority i.e. targeted decision 
effect is:  

[rank, not_recom priority] 

B. Experimental Methodology 
In order to achieve fair performance comparison, we 

have implemented a version of ARD and AAR with the 
following modifications: 

• The same definition of support is used as in 
FAARM: using different definition led to different 
set of rules, which is expected, as using different 
definitions would results in different action sets to 
be discarded/kept. 

• AAR: First, we initially prune atomic-sets of the 
class attribute that are different from our targeted 
decision. Second, we stop the Apriori iterations if 
none of the frequent action sets contains the 
targeted decision. 

• Because the search space is different in the three 
algorithms (N in AAR and ARD, N2 in FAARM), 
the final support value for an action set in AAR 
and ARD must be squared. 

With these modifications, the three algorithms will 
now produce the same rules.  Thus, the purpose of this 
comparison is to determine which method, if any, is faster.  
In particular, as action set generation is more expensive 
than rule generation, we examined the impact of changing 
the support value.  For this study, we use a minimum 
confidence threshold of 80% for all experiments. 

C. Results 
The results in Figure 2 show that FAARM achieves 

better performances on both Hepatitis and Nursery datasets 
with both high and low support values. With FAARM, 
generating the action table from the Nursery would take 
(4320)*(4266) operations, these values are the number of 
records with status=not_recom and status=priority, 
respectively. This operation is expensive, but once 
generated and encoded, the FP-Tree could be mined 
quickly.  

AAR performs better on Hepatitis, mainly because of 
the lower number of candidates. ARD, on the other hand, 
showed the worst performance. During the experiments, 
we noticed that ARD was fast when finding shortest rules 
and slower finding longer rules.  Furthermore, ARD is 
very poor at finding a good stopping point; in fact, it 
actually goes through all the iteration phases (the 
maximum number of iteration being the length of the 
transaction). The reason is that, for each generation, there 

are always some candidates to test, even if a positive mark 
isn’t achievable. 

An interesting aspect is the extent of FP-Tree 
compression over the action table. Figure 4 shows the size 
of the FP-Tree constructed from the action table in the 
Nursery experiment with varying minimum support 
values. While the action table size is always 250Mb, the 
size of the FP-Tree is 3.5Mb even for very small minimum 
support. The size of the FP-Tree shrinks even further for 
increasing minimum support values and this is due to the 
pruning at this level.  

 

 
Figure 2.  Speed comparison of FAARM, AAR and ARD extracting 

action rules on Hepatitis dataset with varying minimum support 
threshold 

 
Figure 3.  Speed comparison of FAARM, AAR and ARD extracting 

action rules on Nursery dataset with varying minimum support threshold 
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Figure 4.  Compression of the action table from Nursery dataset of size 

250Mb into FP-Tree with varying minimum support values 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we propose the action table as the ideal 

search domain for action rules mining. The action table 
transforms the complex problem of finding action rules 
from a plain decision table, into finding action rules from 
an action table. As a result, the problem of action rules 
mining is reformulated into association-mining. 

In practice, we applied FAARM on the Hepatitis and 
Nursery datasets and compared the results and 
performances with AAR and ARD. Although the space 
and time complexity associated with generating the action 
table are O(n2), experiments show that FAARM has a 
better execution time on relatively small dataset, over 
ARD and AAR. 

Generating the action table directly into the FP-Tree 
could mitigate the space complexity associated with action 
table. As a future work, we propose to look at parallel 
implementation of Apriori and FP-Growth to test the 
scalability of using the action table with large datasets. 
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