
FAARM: Frequent association action rules mining using FP-Tree

Djellel Eddine Difallah
eXascale Infolab

University of Fribourg
Switzerland

djelleleddine.difallah@unifr.ch

Ryan G. Benton, Vijay Raghavan
Center for Advanced Computer Studies

University of Louisiana at
Lafayette, LA

{rbenton,vijay}@cacs.louisiana.edu

Tom Johnsten
Computer & Information Sciences

Univ. of South Alabama
Mobile, AL

tjohnsten@usouthal.edu

Abstract—Action rules mining aims to provide
recommendations to analysts seeking to achieve a specific
change. An action rule is constructed as a series of changes,
or actions, which can be made to some of the flexible
characteristics of the information system that ultimately
triggers a change in the targeted attribute. The existing
action rules discovery methods consider the input decision
system as their search domain and are limited to expensive
and ambiguous strategies. In this paper, we define and
propose the notion of action table as the ideal search domain
for actions, and then propose a strategy based on the FP-
Tree structure to achieve high performance in rules
extraction.

Keywords- action rules; recommendation; association
mining; action table; FP-Tree.

I. INTRODUCTION
In association rule mining, the rules extracted from an

information system are handed to the domain experts who
need to filter what information is interesting or trivial.
Action rules were introduced in [3] as a new class of rule
discovery that provides hints on possible actions a
business should take to achieve a desired target.

Mining action rules is defined as the process of
identifying patterns in a decision system capturing the
possible changes to certain object attributes that may lead
to a change in the decision value [3]. Generally, action rule
mining operates on a decision system [13] with objects
having three classes of attributes: stable, flexible and
decision. The stable attributes are attributes that cannot be
changed or, in some approaches, require a prohibitive high
cost to change them [4]. Examples of stable attributes are
the date of birth or weather conditions. Conversely,
flexible attributes are attributes on which the analysts have
a certain degree of freedom in manipulating such as color,
sale’s percentage, and so forth. The decision is the
attribute that the analyst would like to see changed; an
example would be the profit of a company.

Existent action rules discovery methods use a decision
table as their primary search domain; the employed
strategies are limited to candidate generation-and-test. In
our approach, the discovery of action rules is based on a
domain of actions that we create from the decision system,
called the action table. The main contribution of this paper
is to reformulate the action rules mining problem into the
association-mining problem framework using the action
table as the new search domain. A particularly suited
approach is to use an FP-Tree structure to store the action

table and the FP-Growth algorithm to extract association
action rules.

The rest paper is organized as follows. Section 2
briefly surveys previous works on action rules mining.
Section 3 reviews the key concepts and definitions.
Sections 4 and 5 present the action table and our strategy
through a detailed example. Finally we experimentally
compare the performance of our solution with existent
algorithms.

II. OVERVIEW AND RELATED WORK
Previous works on action rules assume a generalization

of an information system S as introduced in [1], where S =
(X, A, V):

• X: a nonempty, finite set of objects.
• A: a nonempty, finite set of attributes.
• V = {Va : a ∈ A} all the attributes values.
Additionally, a : X→Va is a function for any a ∈ A,

that returns the value of the attribute of a given object. The
attributes are divided into different categories: a stable set
Ast, flexible set Afl and a decision set D of attributes,
where A= Ast ∪Afl∪D

For example, Table I. represents a decision table with
eight objects: a is stable, b and c are flexible, d is the
decision attribute.

TABLE I. EXAMPLE OF A DECISION TABLE

 a b c d
x1 a1 b1 c1 l
x2 a2 b1 c1 l
x3 a2 b2 c1 h
x4 a2 b2 c2 h
x5 a2 b1 c1 l
x6 a2 b2 c1 h
x7 a2 b1 c2 h
x8 a1 b2 c2 l

In order to extract action rules, [3, 7, 8, 9, 10] were

based on an existing set of classification rules. Certain
pairs of these rules were combined to reclassify objects to
a targeted state. One problem that arose, as argued in [4],
is “some meaningful action rules should be missed in
these classification-based techniques and thus existing
algorithms cannot specify when and how the correct and
complete underlying action rules are discovered”. Instead,
they were the first to propose an inductive approach for
mining directly from the decision system. The approach is
formulated as a search problem based on a support-
confidence-cost framework and an Apriori-like algorithm

2011 11th IEEE International Conference on Data Mining Workshops

978-0-7695-4409-0/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDMW.2011.82

398

[4]. Further work to extract action rules directly from the
decision system followed.

In [5], the proposed algorithm, called Action Rules
Discovery (ARD), builds rules for a given target decision
using an iterative marking strategy. It considers the change
in an attribute value as an atomic-action-term of length
one, and then an action-term is a composition of atomic-
action-terms. ARD starts by generating all atomic-action-
terms for a given set of attribute values and assigning a
mark (unmarked, positive, negative) based on support and
confidence measures. The unmarked terms are placed into
the candidate list. Next, it generates all possible action-
terms of length two by combining terms in the candidate
list and the atomic terms. The process continues
iteratively, creating terms of greater length, until the
candidates’ list is empty. The action-terms marked as
positive are used to construct the action rules.

In [6], authors presented an association type of action
rules and used an Apriori like strategy to find frequent
action sets to induce action rules. Like ARD, the algorithm
AAR (Association Action Rule) considers atomic action
sets being the fine granule used to construct longer rules
(similar to items and item sets in association mining). The
Apriori algorithm is directly used with few modifications;
the main changes are mostly driven (a) by modifications to
the definition of support and confidence and (b) by the
calculation of the measures directly from the input
decision system.

Although these approaches have different definitions
for objective measures like support and confidence, they
use the same idea of atomic-action set, action set and
Standard Interpretation.

III. PRINCIPLES OF ACTION RULES
In this section, we provide a quick overview of the key

concepts in action rules literature. We particularly focus
on [6] as it is the most recent work on the subject and is
the most related to this work in the sense that both try to
map association rules mining into action rules mining.

A. Atomic action set
Defined as the expression (a, a1�a2) where a is an

attribute in A and a1, a2 are values of a. If the attribute is
stable or did not change its value then the atomic action set
is expressed as (a, a1). The domain of an atomic action set
is its attribute.

Dom((a, a1�a2))=a
Example: Consider Rate a flexible attribute with values
Vrate={30%, 10%, 50%}. The atomic action set (Rate,
30%�10%) means changing the value of Rate from 30%
to 10%.

B. Action sets
Constructed as the conjunction of atomic action sets

with the composition operator (·). If t1, t2 are two atomic
action sets with different attributes, then t=t1· t2 is an
action set. The domain of the action set t is the set of
attributes from all its atomic action sets, here:

Dom(t)=Dom(t1)∪Dom(t2)

Example: Consider Age as a stable attribute with values
Vage={25, 50, 70} and Credit a flexible attribute with
values Vcredit={good, bad}. An action set could be the
composition [(Age, 50) · (Rate, 30%�10%) · (Credit,
bad�good)] which could be read as follows: for
customers of Age 50, change the Rate from 30% to 10%
and the Credit from good to bad.

C. The standard interpretation (noted Ns)
The introduction of the Standard Interpretation is the

basis of measures like support and confidence. In
association mining, the support of an itemset is simply the
count of objects. For action rules, we need to consider two
sets. The first set is all the objects with attributes value
equal to the initial state of the action; the second set,
respectively, is all the objects having attributes values
equal to the values of the final state of the action.
Example: The Standard interpretation of the action set
Ns[(Age, 50) · (Rate, 30%�10%) · (Credit, bad�good)]=
[A1,A2]
Where:
A1= { x X: age(x) = 50 ∧ rate(x) = 30% ∧ credit(x) =
bad}.
A2= { x X: age(x) = 50 ∧ rate(x) = 10% ∧
credit(x)=good}.

D. The support of an action set
Assume t an action set with standard interpretation

Ns(t)=[A1, A2] . The support Supp of t is considered in
AAR as[6] :

Supp(t)=min{card(A1), card(A2)}

In ARD as [5]:

Supp(t)=card(A1)

Hence, for AAR, for the two states, the support is
concerned only with the state having the lowest
occurrences. For the ARD, it was only in terms of number
of occurrences of the initial state. It should be noted that
these definitions lead to very different results. With
respect to ARD, a rationale for the definition was not
provided; however, the definition allows for A2 to be 0
and/or below minimum support. AAR, however, ensures
that both A1 and A2 are guaranteed to satisfy the minimum
support threshold.

E. Action rule
An action rules r is expressed as r=[t1 �t2], where t1 and
t2 are two action sets. Typically t2 is the action comprising
only the decision attribute.
Example: [(Age, 50) · (Rate, 30%�10%) · (Credit,
bad�good)]�[(Profit, low�high)]
The support is calculated similarly to action sets by
considering the t1· t2 as an action set itself.

399

F. The confidence measure:
The confidence of an action rule r=[t1�t2],

Considering Ns(t1)=[A1, A2] and Ns(t2)=[Z1, Z2], with
A1 and A2 not empty:

conf (r) = card(A1∩Z1)
card(A1) × card(A 2∩Z 2)

card(A 2) (1)

In AAR, generating action rules is similar to
association rule mining where frequent item sets are first
extracted. The algorithm, which is based on Apriori,
generates actions sets with support that exceeds a specified
threshold value: minimum support (minSup); any action
set that meets this criterion is a frequent action set. An
action rule is constructed and tested as following:

• If t is a frequent action set and t1 is a subset of t
then:

r =[t − t1� t1]

• If Conf(r) � minConf, where minConf is the
minimum confidence specified, r is a valid rule.

Like Apriori, the AAR method can generate a large
number of rules. The process does not constrain what the
decision attribute may be; in fact, it does not even require
a decision attribute to be specified. As a side benefit,
unlike ARD, the user does not have to supply what the
targeted decision should be. For example, ARD would
require the user to state (Rate, 30%�10%) is the decision
of interest.

On the other hand, AAR suffers from two problems.
First, like Apriori, the number of rules may be
overwhelming to the user. Second, if the user is interested
in a particular change, like (Rate, 30%�10%), there is no
guarantee that the AAR method will generate the required
rules. For instance, if minimum support is 8, and (Rate,
10%) has a support of 5, then no rules containing (Rate,
10%) would be generated.

As an aside, a justification of the defined confidence
measure was provided for the ARD method. In [5], the
authors indicated that the definition of confidence should
be considered as an optimistic confidence. It requires that
the card(A1) �0, card(A2) �0, card(A1 ∩ Z1) � 0 and
card(A2 ∩ Z2) � 0. In effect, this definition was required
due to ARD’s definition of support. Without it, action
rules could be generated that for cases in which A2 ∩ Z2
never occurred.

Interestingly, for AAR, a similar claim was made. In
[6], the definition was declared optimistic, because
card(A1) �0 and card(A2) �0. However, since AAR uses
minSup, as long as minSup is greater than 0, it is
guaranteed that card(A1) �0 and card(A2) �0.

IV. THE ACTION TABLE
As mentioned previously, the AAR and ARD methods

operate within the search space represented by the decision
table; we refer to this as the information space. As a
result, the creation (and tracking) of the various flexible

atomic action sets is intertwined with the action set
generation. Hence, one would need to calculate the support
of (Rate, 30%) and (Rate, 10%) first in order to obtain the
support of (Rate, 30%�10%). This operation needs to be
performed for all k iterations. The first iteration generates
frequent action sets composed of 1 element, the second
iteration generated action sets composed of 2 elements and
so forth. For instance, assume you have stable attribute
Gender with values {m,f}. Then, to calculate the action
set [(Gender, f)·(Rate,10%�30%)], one would first need
to calculate the support of [(Gender, f), Rate(10%)] and
[(Gender, f), (Rate, 30%)].

However, this could be avoided if, instead of working
within the information space, we were able to work within
an ‘action space’, where the possible flexible action
mappings are already known and represented. In this
paper, this is done via the introduction of the action table.

The key idea is explicitly enumerating how each object
in S can be converted from the undesired, or initial, state to
the desired one, or final. That information can be captured
as a set of action sets within a table called the action table.
This creates a limitation, compared to the AAR approach,
by requiring the targeted decision to be known before
hand; this limitation, however, is similar to that required
by the ARD approach.

For example, if we consider Table I as our decision
table and the targeted decision is (d, l h), then:

• L={x X: d(x)=l}, i.e. all the objects with
decision value l.

• H={x X: d(x)=h}, i.e all the objects with
decision value h.

The action table will contain the necessary action sets
to move every object in L to an object in H. The action
table will contain exactly card(L)*card(H) action sets.

Each row in the action table reflects the necessary
action sets for transforming an object from low (l) to high
(h). This operation is formalized as following:

∀x∈L, y∈H: x�y is a possible transition describing a
new action set t, and ∀a∈A:

• If a is flexible and a(x) � a(y): a(t)=a(x)�a(y)
• If a is stable and a(x) � a(y), then a(t) is

contradicting and is therefore discarded.
• If a(x) = a(y), then a(t)= a(x)

Example: To generate the action table we start from the
decision Table I and organize it into two subtables, as
shown in table II, with respect to the decision attribute d.

TABLE II. THE DECISION TABLE ORGANIZED WITH RESPECT TO
THE DECISION ATTRIBUTE D.

 a b c d

L

x1 a1 b1 c2 l
x2 a2 b1 c1 l
x5 a2 b1 c1 l
x8 a1 b2 c2 l

H

x3 a2 b2 c1 h
x4 a2 b2 c2 h
x6 a2 b2 c1 h
x7 a2 b1 c2 h

400

Then we make a cross product from L into H and construct
the action sets for each transition. If there is a change in
the stable attribute we simply discard it. This process
results in table III.

TABLE III. THE ACTION TABLE FOR THE TARGET (D, L�H)

 a b c
x1�x3 - b1�b2 c2�c1
x1�x4 - b1�b2 c2
x1�x6 - b1�b2 c2�c1
x1�x7 - b1 c2
x2�x3 a2 b1�b2 c1
x2�x4 a2 b1�b2 c1�c2
 x2�x6 a2 b1�b2 c1
x2�x7 a2 b1 c1�c2
x5�x3 a2 b1�b2 c1
x5�x4 a2 b1�b2 c1�c2
x5�x6 a2 b1�b2 c1
x5�x7 a2 b1 c1�c2
x8�x3 - b2 c2�c1
x8�x4 - b2 c2
x8�x6 - b2 c2�c1
x8�x7 - b2�b1 c2

Note: the atomic action set with the decision attribute d
will always be (d, l�h) and therefore would be redundant
in the action table.

A. Implications of the Action Table
First, unlike the original decision table, the action table

now explicitly includes change values as part of the
attribute definition. Second, the decision cardinality
card({d, l h}) is equal to the number of rows in the
action table. Third, the action table does not allow us to
recover the individual counts of Z1 or Z2; nor, for that
matter, the individual counts of A1 or A2. This
information is not needed, then support for t, where
t=t1·t2 and t2 = {d, l h}, is given by:

Supp(t) = card(A1∩ Z1) × card(A2 ∩ Z2) (2)

This calculation can take place by performing a count
count operation on the action table.

What is attractive about this definition is it is the same
support measure used in the traditional Association
Mining [14].

Now, if we look at the confidence measure used in
traditional Association Mining [14], we see:

conf (r) = Supp(r)
Supp(t1) (3)

One potential problem arises if the traditional
association mining confidence measure is utilized. While
the support of the rule can be directly calculated from the
action table, the Supp(t1) cannot be calculated from the
action table. This is because the action table does not
contain all occurrences of A1 and A2. However, the
support for A1 and A2 can be easily calculated from the

decision table; a simple pass through the table, performing
a basic count operation is required. More formally, the
support of an action set t1 with standard interpretation
Ns(t1)=[A1, A2]:

Supp(t1) = card(A1) × card(A2) (4)

V. THE FAARM STRATEGY:
Using the concept of action table and the resulting

changes to support and confidence, we believe that any
association-mining algorithm can be used to generate
action rules. Here, we demonstrate the use of the FP-
Growth algorithm [2] to generate the action rules. We call
the resultant approach FAARM (Frequent Association
Action Rule Mining).

The FP-Growth algorithm is a divide–and–conquer
approach that is considered to be an order of magnitude
faster than Apriori[2]. It relies on a special tree data
structure called FP-Tree[2] which is obtained by ordering
the transaction attributes values by their frequency,
pruning those that do not meet a given minimum support,
and then inserting the transaction, or action sets in our
case, into a tree. The result is a condensed data structure
that avoids expensive database scans and is especially
tailored for dense datasets [2].

The same concepts of atomic action set, action set and
Standard Interpretation are borrowed from previous work.
However, the definitions of support and confidence used
are those introduce in section IV.A.

Now, we present FAARM, the proposed process of
extracting action rules from:

FAARM METHOD

1) Specify the decision target.
2) Generate all the atomic action sets from A.
3) Calculate the frequency of each atomic set.
4) Build the action table.
5) Prune and reorder the action table.
6) Build the FP-Tree from the action table.
7) Run FP-Growth on the FP-tree.

a) Extract frequent action sets.
b) Build and test the action rules.

To better explain our proposed FAARM strategy, we go
through the example on the decision table described in
Table I. We use minSup=4 and the minConf=80%.

1) Set the targeted decision: [d, l h].
2) Generate the atomic sets: The atomic sets are all the

possible transitions for every attribute.
Atomic sets={(a,a1), (a,a2), (b,b1), (b,b2), (b,b1 b2),
(b,b2 b1), (c,c1), (c,c2), (c,c1 c2), (c,c2 c1)}

3) Calculate the frequency of each atomic set: In order

to calculate the support of each atomic action set with
regard to a decision target, it is sufficient to scan the

401

decision table once and count the occurrence of each
attribute with respect to decision's left and right values,
here l and h (Table IV). Then, using the support formula
(4) and the minimum support criteria, we can calculate the
exact support of all the possible atomic action sets (Table
V).

TABLE IV. THE FREQUENCY OF ATTRIBUTES IN V FOR THE ACTION
(d, l h) FROM THE DECISION TABLE IN ONE PASS

 l h
a1 2 0
a2 2 4
b1 3 1
b2 1 3
c1 2 2
c2 2 2

TABLE V. SUPPORT OF ALL ATOMIC ACTION SETS (MINSUP= 4)

Atomic action set Support with regards to (d, l�h)
(a,a1) 0 (Does not meet min support)
(a,a2) 8
(b,b1) 3 (Does not meet min support)
(b,b2) 3 (Does not meet min support)
(b,b1�b2) 9
(b,b2�b1) 1 (Does not meet min support)
(c,c1) 4
(c,c2) 4
(c,c1�c2) 4
(c,c2�c1) 4

For a later use, the list of atomic action sets is ordered

by descending support:
List= {(b1 b2), (a2), (c1),(c2), (c1 c2), (c2 c1)}

4) Generate the action table: (see section IV for the
example).

5) Prune and reorder the action table: Once the action
table is generated, we can use List to order action sets by
descending support and remove atomic sets that does not
meet the minimum support. This operation facilitates the
creation of the FP-Tree.

6) Build the FP-Tree from the action table: Generating
the action table and storing it in memory is expensive
(time and space complexity is O(n2)), where n is the
number of transactions; to alleviate the space complexity,
we propose to use the FP-Tree to store the table. To build
the FP-Tree we insert each action set, from the ordered and
pruned action table, into the tree using the atomic action
sets as the nodes. Each time a node is inserted or reused
we increment its local count. If the node has been inserted
somewhere else in the tree we create a link to the last
inserted one (Figure 1).

7a) Extract Frequent action sets: FP-Growth receives
an FP-Tree as an input and does its traditional job for
extracting frequent patterns given minimum support
criterion.

7b) Generating Association Action Rules: The
following frequent action sets are extracted from the FP-
Tree using the FP-Growth algorithm [2]:
t1= (a,a2) · (b, b1�b2) · (c, c1) · (d, l�h)

Supp(t1)= 4=minSup

t2= (a,a2) · (c, c1�c2) · (d, l�h)
Supp(t2)=4=minSup
Finally, we can easily construct the association action

rules and check their confidence. This operation takes
exactly one scan of the Table 1 for each frequent action
set:
r1= (a,a2) · (b, b1�b2) · (c, c1) � (d, l�h)

supp(r1)= 4=minSup, conf(r1)= 4/4 >minConf
r2= (a,a2) · (c, c1�c2) � (d, l�h)

 supp(r2)=4=minSup, conf(r2)=4/8<minConf
Only r1 meets the minimum confidence for a valid

association action rule extracted from S.

Figure 1. FP-Tree generated from the action table.

VI. EXPERIMENTS
The experimental goal is to compare the performances

of our algorithm FAARM to other action rules discovery
algorithms that do not use pre-existing classification; the
ones selected are AAR and ARD. We also considered
datasets used in previous action rules discovery literature,
namely Hepatitis [9] and Nursery [12]; the datasets can be
obtained from the UCI Machine Learning Repository [11].
Finally, we used the same classification (Stable, Flexible,
Decision) for the attributes as used in [9, 12].

A. Description of the datasets
A brief description of each dataset is provided in this

section.
1) Hepatitis dataset

This dataset contains clinical data of patients affected
by the Hepatitis disease. It has 155 records and 19
attributes, not including the decision attribute. The
attributes are decomposed into 2 stable attributes and 17
flexible attributes. Each flexible attributes is composed 9
values or less; the majority are composed of only 2. The
patients are classified into: Die, Live. Our target is to find
rules to change the likelihood of this classification i.e.
targeted decision effect is:

[class, die live]

402

2) Nursery dataset
This dataset is composed of the evaluation forms of

applications to nursery schools. The dataset has 12960
records and 8 attributes, not including the decision
attribute. The attributes are decomposed into 4 stable
attributes and 4 flexible attributes. Each flexible attributes
is composed of 3 values or less. Our target is to find rules
to enhance the chances of having an application go from
being not recommended to priority i.e. targeted decision
effect is:

[rank, not_recom priority]

B. Experimental Methodology
In order to achieve fair performance comparison, we

have implemented a version of ARD and AAR with the
following modifications:

• The same definition of support is used as in
FAARM: using different definition led to different
set of rules, which is expected, as using different
definitions would results in different action sets to
be discarded/kept.

• AAR: First, we initially prune atomic-sets of the
class attribute that are different from our targeted
decision. Second, we stop the Apriori iterations if
none of the frequent action sets contains the
targeted decision.

• Because the search space is different in the three
algorithms (N in AAR and ARD, N2 in FAARM),
the final support value for an action set in AAR
and ARD must be squared.

With these modifications, the three algorithms will
now produce the same rules. Thus, the purpose of this
comparison is to determine which method, if any, is faster.
In particular, as action set generation is more expensive
than rule generation, we examined the impact of changing
the support value. For this study, we use a minimum
confidence threshold of 80% for all experiments.

C. Results
The results in Figure 2 show that FAARM achieves

better performances on both Hepatitis and Nursery datasets
with both high and low support values. With FAARM,
generating the action table from the Nursery would take
(4320)*(4266) operations, these values are the number of
records with status=not_recom and status=priority,
respectively. This operation is expensive, but once
generated and encoded, the FP-Tree could be mined
quickly.

AAR performs better on Hepatitis, mainly because of
the lower number of candidates. ARD, on the other hand,
showed the worst performance. During the experiments,
we noticed that ARD was fast when finding shortest rules
and slower finding longer rules. Furthermore, ARD is
very poor at finding a good stopping point; in fact, it
actually goes through all the iteration phases (the
maximum number of iteration being the length of the
transaction). The reason is that, for each generation, there

are always some candidates to test, even if a positive mark
isn’t achievable.

An interesting aspect is the extent of FP-Tree
compression over the action table. Figure 4 shows the size
of the FP-Tree constructed from the action table in the
Nursery experiment with varying minimum support
values. While the action table size is always 250Mb, the
size of the FP-Tree is 3.5Mb even for very small minimum
support. The size of the FP-Tree shrinks even further for
increasing minimum support values and this is due to the
pruning at this level.

Figure 2. Speed comparison of FAARM, AAR and ARD extracting

action rules on Hepatitis dataset with varying minimum support
threshold

Figure 3. Speed comparison of FAARM, AAR and ARD extracting

action rules on Nursery dataset with varying minimum support threshold

403

Figure 4. Compression of the action table from Nursery dataset of size

250Mb into FP-Tree with varying minimum support values

VII. CONCLUSION AND FUTURE WORK
In this paper, we propose the action table as the ideal

search domain for action rules mining. The action table
transforms the complex problem of finding action rules
from a plain decision table, into finding action rules from
an action table. As a result, the problem of action rules
mining is reformulated into association-mining.

In practice, we applied FAARM on the Hepatitis and
Nursery datasets and compared the results and
performances with AAR and ARD. Although the space
and time complexity associated with generating the action
table are O(n2), experiments show that FAARM has a
better execution time on relatively small dataset, over
ARD and AAR.

Generating the action table directly into the FP-Tree
could mitigate the space complexity associated with action
table. As a future work, we propose to look at parallel
implementation of Apriori and FP-Growth to test the
scalability of using the action table with large datasets.

REFERENCES
[1] Z. Pawlak, “Information systems - theoretical

foundations”, Information Systems Journal, Elsevier, Vol.
6, 1981, 205-218.

[2] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns
without candidate generation”, ACM SIGMOD
International Conference on Management of Data, 2000, 1–
12.

[3] Z.W. Ras and A. Wieczorkowska, "Action-Rules: How to
Increase Profit of a Company", The Fourth European
Conference on Principles and Practice of Knowledge
Discovery in Databases, 587-592.

[4] Z. He, X. Xu, S. Deng, R. Ma, “Mining action rules from
scratch”, Expert Systems with Applications, Elsevier, Vol.
29, No. 3, 2005, 691-699.

[5] Z.W. Ras and A. Dardzinska, "Action Rules Discovery
without Pre-existing Classification Rules", The Sixth
International Conference on Rough Sets and Current
Trends in Computing, 2008, 181-190.

[6] Z.W. Ras, A. Dardzinska, L. Tsay, and H. Wasyluk,
"Association Action Rules", IEEE International
Conference on Data Mining Workshops, 2008, 283-290.

[7] Qiang Yan, Jie Yin, Charles Ling, Tielin
Chen,"Postprocessing Decision Trees to Extract Actionable
Knowledge", IEEE International Conference on Data
Mining, 2003, 685-688.

[8] Z.W. Ras and L. Tsay, "Discovering Extended Action-
Rules (System DEAR)", International IIS IIPWM'03
Conference, 2003, 293-300.

[9] L. Tsay and Z.W. Ras, "Action rules discovery: system
DEAR2, method and experiments", Journal of
Experimental & Theoretical Artificial Intelligence, 2005,
119-128.

[10] Z.W. Ras, E. Wyrzykowska, and H. Wasyluk, "ARAS:
Action Rules Discovery Based on Agglomerative
Strategy", Third International Workshop on Mining
Complex Data, 2007, 196-208.

[11] http://archive.ics.uci.edu/ml/datasets/
[12] S. Im and Z.W. Ras, "Action Rule Extraction from a

Decision Table: ARED", International Syposium on
Methodologies for Intelligent Systems, 2008, 160-168.

[13] J. S. Deogun, V. V. Raghavan, and H. Sever, “Rough set
based classification methods and extended decision tables”,
International Workshop on Rough Sets and Soft
Computing, 1994, 302-309.

[14] R. Agrawl and R. Srikant, “Fast algorithm for mining
assocation rules,” International Conference on Very Large
Data Bases, 1993, 487-499.

404

