
Pick-A-Crowd: Tell Me What You Like,
and I’ll Tell You What to Do

A Crowdsourcing Platform for Personalized
Human Intelligence Task Assignment Based on Social Networks

Djellel Eddine Difallah, Gianluca Demartini, and Philippe Cudré-Mauroux
eXascale Infolab

U. of Fribourg—Switzerland
{firstname.lastname}@unifr.ch

ABSTRACT
Crowdsourcing allows to build hybrid online platforms that
combine scalable information systems with the power of hu-
man intelligence to complete tasks that are difficult to tackle
for current algorithms. Examples include hybrid database
systems that use the crowd to fill missing values or to sort
items according to subjective dimensions such as picture at-
tractiveness. Current approaches to Crowdsourcing adopt a
pull methodology where tasks are published on specialized
Web platforms where workers can pick their preferred tasks
on a first-come-first-served basis. While this approach has
many advantages, such as simplicity and short completion
times, it does not guarantee that the task is performed by the
most suitable worker. In this paper, we propose and exten-
sively evaluate a different Crowdsourcing approach based on
a push methodology. Our proposed system carefully selects
which workers should perform a given task based on worker
profiles extracted from social networks. Workers and tasks
are automatically matched using an underlying categoriza-
tion structure that exploits entities extracted from the task
descriptions on one hand, and categories liked by the user
on social platforms on the other hand. We experimentally
evaluate our approach on tasks of varying complexity and
show that our push methodology consistently yield better
results than usual pull strategies.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Design, Experimentation, Human Factors.

Keywords
Crowdsourcing, Social Network, Expert Profiling

1. INTRODUCTION
Crowdsourcing techniques have recently gained in pop-

ularity as they allow to build hybrid human-machine in-

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

formation systems that combine scalable algorithms with
the power of human intelligence to complete tasks that are
difficult to tackle for current machines. Examples of such
systems include hybrid database systems [12] that use the
crowd to answer SQL queries with subjective ranking criteria
such as picture attractiveness, hybrid linking approaches to
relate unstructured text to structured entities [10], or data
integration systems [21]. Crowdsourcing approaches must
provide incentive schemes to motivate the crowd to perform
a given Human Intelligence Task (HIT). While crowdsourc-
ing games (also known as games with a purpose) exploit
the fun incentive (see, for example, the ESP Game [25]),
the most widely adopted incentive is financial, that is, to
grant a small economic reward to each human worker that
completes a task on the crowdsourcing platform.

Paid crowdsourcing is commonly run on top of platforms
such as Amazon Mechanical Turk1 (AMT), which provides
programmatic APIs as well as a Web interface for requesters
to design and deploy online tasks. Such platforms adopt a
pull methodology where tasks published by requesters are
available on specialized Web sites where workers can pick
their preferred tasks on a first-come-first-served basis. This
approach has several advantages including simplicity and
minimization of task completion times, since any available
worker from the crowd can pick and perform any HIT. How-
ever, this mechanism does not guarantee that the worker
who performs the task is the best fit: More knowledgeable
workers may be available in the crowd but they might be
unable to pick the HIT if they were not quick enough.

In this paper, we propose and extensively evaluate Pick-A-
Crowd, a software architecture to crowdsource micro-tasks
based on pushing tasks to specific workers. Our system con-
structs user models for each worker in the crowd in order to
assign HITs to the most suitable available worker. We build
such worker profiles based on information available on social
networks using, for instance, information about the worker
personal interests. The underlying assumption is that if a
potential worker is interested in several specific categories
(e.g., movies), he/she will be more competent at tackling
HITs related to that category (e.g., movie genre classifica-
tion). In our system, workers and HITs are matched based
on an underlying taxonomy that is defined on categories
extracted both from the tasks at hand and from the work-

1http://www.mturk.com

ers’ interests. Entities appearing in the users’ social profiles
are linked to the Linked Open Data (LOD) cloud2, where
they are then matched to related tasks that are available
on the crowdsourcing platform. We experimentally evalu-
ate our pull methodology and compare it against traditional
crowdsourcing approaches using tasks of varying types and
complexity. Results show that the quality of the answers is
significantly higher when using a push methodology.

In summary, the contributions of this paper are:

• a novel Crowdsourcing framework that focuses on push-
ing HITs to the crowd;

• a software architecture that implements the newly pro-
posed push crowdsourcing methodology;

• category-based, text-based, and graph-based approaches
to assign HITs to workers based on links in the LOD
cloud;

• an empirical evaluation of our method in a real deploy-
ment over different crowds showing that our Pick-A-
Crowd system is on average 29% more effective than
traditional pull crowdsourcing platforms over a variety
of HITs.

The rest of this paper is structured as follows: We review
the state of the art in Crowdsourcing, Recommender Sys-
tems, and Expert Finding in Section 2. Section 3 gives an
overview of the architecture of our system, including its HIT
publishing interface, its crowd profiling engine, and its HIT
assignment and reward estimation components. We intro-
duce our formal model to match human workers to HITs us-
ing category-based, text-based, and graph-based approaches
in Section 4. We describe our evaluation methodology and
discuss results we obtained from a real deployment of our
system in Section 5, before concluding in Section 6.

2. RELATED WORK

Crowdsourcing.
Crowdsourcing has recently gained much attention from

different research communities. In the database commu-
nity, hybrid human-machine database systems have been
proposed [12, 23]. In those systems, crowdsourcing is for
example used to explain null values in returned results, or
to define subjective ‘ORDER BY’ operators that allow to ex-
press queries such as ‘I want pictures for motivational slides’.
In the Information Retrieval community, crowdsourcing has
been mainly used for effectiveness evaluation purposes. Rel-
evance judgements used to evaluate the results of a search
engine can now be created by asking the crowd about the
relevance of a document or, more generally, of a retrieved
resource. Crowdsourcing can be used to produce relevance
judgements for documents [2], books [16, 17], or entities [5].
In the Semantic Web community, crowdsourcing has also
been recently considered, for instance to link [10] or map [21]
entities. In both cases, the use of crowdsourcing can signif-
icantly improve the quality of generated links or mappings
as compared to purely automatic approaches. In the con-
text of Natural Language Processing, games to crowdsource
the Word Sense Disambiguation task[22] have recently been
proposed.

2http://linkeddata.org/

An incentive that if often leveraged to get input from the
crowd is fun. Games with a purpose have studied how to de-
sign entertaining applications that can generate useful data
to be processed by further algorithms. An example of a
successful game that at the same time generates meaningful
data is the ESP game [25] where two human players have
to agree on the words to use to tag a picture. An extension
of this game is Peekaboom: a game that asks the player to
detect and annotate specific objects within an image [26].
A successful crowdsourcing application is Recaptcha [27],
which generates captcha codes that human users have to
type on their machines and which contain scanned words
(from books) that would be otherwise complex to identify
by means of automated OCR approaches. Thus, by entering
valid captcha codes, human users help to digitalize a large
amount of textual content only available on paper.

Designing such games makes high-quality data available
at no cost. Another incentive that is often simpler to put in
place is the financial incentive: A small monetary reward is
granted to workers who perform a simple task online. While
in this way it gets easier to recruit a larger crowd, this raises
questions about the quality of the results. Indeed, quality
control is a common issue of paid crowdsourcing platforms,
given the presence of malicious workers whose intent is to
game the system to obtain the monetary reward without
properly completing the task. Approaches to control qual-
ity by identifying low-quality workers and, thus, stopping
them from performing further work have already been pro-
posed [16, 10]. Such approaches use either majority agree-
ment or a set of known answers to check for errors and to
identify workers who make many mistakes. However, such
approaches require workers to complete several tasks in or-
der to be evaluated. Instead, our system is able to model
workers before they complete any HIT on the platform and
thus assign tasks exclusively to those who are known to show
interest in the task.

A first attempt to crowdsource micro-tasks on top of social
networks has been proposed by [11], where authors describe
a framework to post questions as tweets that users can solve
by tweeting back an answer. As compared to this early
approach, we propose a more controlled environment where
workers are known and profiled in order to push tasks to
selected social network users.

Crowdsourcing over social networks is also used by Crowd-
Searcher [6, 7, 8], which improves automatic search sys-
tems by means of asking questions to personal contacts.
The crowdsourcing architecture proposed in [9] considers the
problem of assigning tasks to selected workers. However, au-
thors do not evaluate automatic assignment approaches but
only let the requesters manually select individual workers,
which they want to push the task to. In this paper instead,
we assess the feasibility and effectiveness of automatically
mapping HITs to workers based on their social network pro-
files.

Also related to our system is the study of trust in so-
cial networks. Golbeck [13], for instance, proposes different
models to rank social network users based on trust and ap-
plies them to recommender systems as well as other end-user
applications.

Recommender Systems.
Assigning HITs to workers is similar to the task performed

by recommender systems (e.g., recommending movies to buy

Figure 1: Pick-A-Crowd Component Architecture. Task descriptions, Input Data, and a Monetary Budget are
taken as input by the system, which creates HITs, estimates their difficulty and suggests a fair reward based
on the skills of the crowd. HITs are then pushed to selected workers and results get collected, aggregated,
and finally returned back to the requester.

to potential customers). We can categorize recommender
systems into content-based and collaborative filtering ap-
proaches. The former approaches exploit the resources con-
tents and match them to user interests. The latter ones only
use similarity between user profiles constructed out of their
interests (see [19] for a survey). Recommended resources
are those already consumed by similar users. Our systems
adopts techniques from the field of recommender systems as
it aims at matching HITs (i.e., tasks) to human workers (i.e.,
users) by constructing profiles that describe worker interests
and skills. Such profiles are then matched to HIT descrip-
tions that are either provided by the task requester or by
analyzing the questions and potential answers included in
the task itself (see Section 4). Recommender systems built
on top of social networks already exits. For example, in [1],
authors propose a news recommendation system for social
network groups based on community descriptions.

Expert Finding.
In order to push tasks to the right worker in the crowd,

our system aims at identifying the most suitable person for
a given task. To do so, our Worker Profile Selector compo-
nent generates a ranking of candidate workers who can be
contacted for the HIT. This is highly related to the task of
Expert Finding studied in Information Retrieval. The En-
terprise track at the TREC evaluation initiative3 has con-
structed evaluation collections for the task of expert finding
within an organizational setting [4]. The studied task is
that of ranking candidate experts (i.e., employees of a com-
pany) given a keyword query describing the required exper-
tise. Many approaches have been proposed for such tasks

3http://trec.nist.gov

(see [3] for a comprehensive survey). We can classify most
of them as either document-based, when document ranking
is performed before identifying the experts, or as candidate-
based, when expert profiles are first constructed before be-
ing ranked given a query. Our system follows the former
approach by ranking online social network pages and using
them to assign work to the best matching person.

3. SYSTEM ARCHITECTURE
In this section, we describe the Pick-A-Crowd framework

and provide details on each of its components.

3.1 System Overview
Figure 1 gives a simplified overview of our system. Pick-a-

Crowd receives as input tasks that need to be completed by
the crowd. The tasks are composed of a textual description,
which can be used to automatically select the right crowd
for the task, actual data on which to run the task (e.g., a
Web form and set of images with candidate labels), as well
as a monetary budget to be spent to get the task completed.
The system then creates the HITs, and predicts the difficulty
of each micro-task based on the crowd profiles and on the
task description. The monetary budget is split among the
generated micro-tasks according to their expected difficulty
(i.e., a more difficult task will be given a higher reward).
The HITs are then assigned to selected workers from the
crowd and published on the social network application. Fi-
nally, answers are processed as a stream from the crowd,
aggregated and sent back to the requester.

We detail the functionalities provided by each component
of the system in the following.

3.2 HIT Generation, Difficulty Assessment, and
Reward Estimation

The first pipeline in the system is responsible for gen-
erating the HITs given some input data provided by the
requester. HITs can for instance be generated from i) a
Web template to classify images in pre-defined categories,
together with ii) a set of images and iii) a list of pre-defined
categories. The HIT Generator component dynamically cre-
ates as many tasks as required (e.g., one task per image to
categorize) by combining those three pieces of information.

Next, the HIT Difficulty Assessor takes each HIT and de-
termines a complexity score for it. This score is computed
based on both the specific HIT (i.e., description, keywords,
candidate answers, etc.) and on the worker profiles (see Sec-
tion 4 for more detail on how such profiles are constructed).
Different algorithms can be implemented to assess the dif-
ficulty of the tasks in our framework. For example, a text-
based approach can compare the textual description of the
task with the skill description of each worker and compute
a score based on how many workers in the crowd could per-
form well on such HITs.

An alternative a more advanced prediction method can
exploit entities involved in the task and known by the crowd.
Entities are extracted from the textual descriptions of the
tasks and disambiguated to LOD entities. The same can
be performed on the worker profiles: each Facebook page
that is liked by the workers can be linked to its respective
LOD entities. Then the set of entities representing the HITs
and the set of entities representing the interests of the crowd
can be directly compared. The task is classified as difficult
when the entities involved in the task heavily differ from the
entities liked by the crowd.

A third example of task difficulty prediction method is
based on Machine Learning. A classifier assessing the task
difficulty is trained by means of previously completed tasks,
their description and their result accuracy. Then, the de-
scription of a new task is given as a test vector to the classi-
fier, which returns the predicted difficulty for the new task.

Finally, the Reward Estimation component takes as input
a monetary budget B and the results of the HIT assessment
to determine a reward value for each HIT hi.

A simple way to redistribute the available monetary bud-
get is simply by rewarding the same amount of money for
each task of the same type. An second example of reward
estimation function is:

reward(hi) =
B · d(hi)∑

j d(hj)
(1)

which takes into account the difficulty d() of the HIT hi as
compared to the others and assigns a higher reward to more
difficult tasks.

A third approach computes a reward based on both the
specific HIT as well as the worker who performs it. In or-
der to do this, we can exploit the HIT assignment models
adopted by our system. These models generate a ranking
of workers by means of computing a function match(wj , hi)
for each worker wj and HIT hi (see Section 4). Given such
a function, we can assign a higher reward to better suited
workers by

reward(hi, wj) =
B ·match(wj , hi)∑

k,l match(wk, hl)
(2)

More advanced reward schemes can be applied as well. For

example, in [15], authors propose game theoretic based ap-
proaches to compute the optimal reward for paid crowd-
sourcing incentives in the presence of workers who collude
in order to game the system.

Exploring and evaluating different difficulty prediction and
reward estimation approaches is not the focus of this paper
and is left as future work.

3.3 Crowd Profiler
The task of the Crowd Profiler component is to collect

information about each available worker in the crowd. Pick-
A-Crowd uses contents available on the social network plat-
form as well as previously completed HITs to construct the
workers’ profiles. Those profiles contain information about
the skills and interests of the workers and are used to match
HITs with available workers in the crowd.

In detail, this module generates a set of worker profiles
C = {w1, .., wn} where wi = {P, T}, P is the set of worker
interests (e.g., when applied on top of the Facebook platform
pi ∈ P are the Facebook pages the worker likes) and Ti =
{t1..tn} is the set of tasks previously completed by wi. Each
Facebook page pi belongs to a category in the Facebook
Open Graph4.

3.4 Worker Profile Linker
This component is responsible for linking each Facebook

page liked by some worker to the corresponding entity in the
LOD cloud. Given the page name and, possibly, a textual
description of the page, the task is defined as identifying the
correct URI among all the ones present in the LOD graph
using, for example, a similarity measure based on adjacent
nodes in the graph. This is a well studied problem where
both automatic [14] or crowdsourcing-based techniques [10]
can be used.

3.5 Worker Profile Selector
HITs and workers are matched based on the profiles de-

scribed above. Intuitively, a worker who only likes many
music bands will not be assigned a task that asks him/her
to identify who is the movie actor depicted in the displayed
picture. The similarity measure used for matching work-
ers to tasks takes into account the entities included in the
workers’ profiles but is also based on the Facebook cate-
gories their liked pages belong to. For example, it is pos-
sible to use the corresponding DBPedia entities and their
YAGO type. The YAGO knowledge-base provides a fine-
grained high-accuracy entity type categorization which has
been constructed by combining Wikipedia category assign-
ments with WordNet synset information. The YAGO type
hierarchy can help the system better understand which type
of entity correlates with the skills required to effectively
complete a HIT (see also Section 4 for a formal definition
of such methods). For instance, our graph-based approach
concludes that for our music related task, the top Facebook
pages that indicate expertise on the topic are ‘MTV’ and
‘Music & top artists’.

A generic similarity measure to match workers and task

4https://developers.facebook.com/docs/opengraph/

is in equation 3

sim(wj = {P, T}, hi = {t, d, A,Cat}) =

∑
k,l sim(pk, al)

|P | · |A|
∀pk ∈ P, al ∈ A

(3)

where A is the set of candidate answers for task hi and sim()
measures the similarity between the worker profile and the
task description.

3.6 HIT Assigner and Facebook App
The HIT Assigner component takes as input the final HITs

with the defined reward and publishes them onto the Face-
book App. We developed a dedicated, native Facebook App
called OpenTurk5 to implement this final component of the
Pick-A-Crowd platform. Figure 2 shows a few screenshots of
OpenTurk. As any other application on the Facebook plat-
form, it has access to several pieces of information about the
users that accept to use it. We follow a non-intrusive ap-
proach; In our case, the liked pages for each user are stored
in an external database that is used to create a worker profile
containing his/her interests. The application we developed
also adopts crowdsourcing incentive schemes different than
the pure financial one. For example, we use the fan incentive
where a competition involving several workers competing on
trivia questions on their favorite topic can be organized. The
app also allows to directly challenge other social network
contacts by sharing the task, which is also helpful to enlarge
the application user base. While from the worker point of
view this represents a friendly challenge, from a platform
point of view this means that the HIT will be pushed to an-
other expert worker, following the assumption that a worker
would challenge someone who is also knowledgeable about
the topic addressed by the task.

3.7 HIT Result Collector and Aggregator
The final pipeline is composed of stream processing mod-

ules, where the Facebook App answers are being streamed
from the crowd to the answer creation pipeline. The first
component collects the answers from the crowd and is re-
sponsible for a first quality check based on potentially avail-
able gold answers for a small set of training questions. Then,
answers that are considered to be valid (based on available
ground-truth data) are forwarded to the HIT Result Aggre-
gator component, which collects and aggregates them in the
final answer for the HIT. When a given number of answers
has been collected (e.g., five answers), then the component
outputs the partial aggregated answer (e.g., based on major-
ity vote) back to the requester. As more answers reach the
aggregation component, the aggregated answer presented to
the requester gets updated. Additionally, as answers are col-
lected, the workers’ profiles get updated and the reward gets
granted to the workers who performed the task through the
Facebook App.

4. HIT ASSIGNMENT MODELS
In this section, we define the HIT assignment tasks and

describe several approaches for assigning workers to such
tasks. We focus on HIT assignment rather than on other

5http://apps.facebook.com/openturk/

Figure 2: Screenshots of the OpenTurk Facebook
App. Above, the dashboard displaying HITs as-
signed to a specific worker. Below, a HIT about
actor identification assigned to a worker who likes
several actors.

system components as the ability to assign tasks automati-
cally is the most original feature of our system as compared
to other crowdsourcing platforms.

Given a HIT hi = {ti, di, Ai, Cati} from the requester,
the task of assigning it to some workers is defined as rank-
ing all available workers C = {w1, .., wn} on the platform
and selecting the top-n ranked workers. A HIT consists of a
textual description ti (e.g., the task instruction which is be-
ing provided to the workers)6, a data field di that is used to
provide the context for the task to the worker (e.g., the con-
tainer for an image to be labelled), and, optionally, the set of
candidate answers Ai = {a1, .., an} for the multiple-choices
tasks (e.g, a list of music genres used to categorize a singer)
and a list of target Facebook categories Cati = {c1, ..cn}.
A worker profile wj = {P, T} is assigned a score based on
which it is ranked for the task hi. This score is determined
based on the likelihood of matching wj to hi. Thus, the
goal is to define a scoring function match(wj , hi) based on
the worker profile, the task description and, possibly, exter-
nal resources such as the LOD datasets or a taxonomy.

4.1 Category-based Assignment Model
The first approach we define to assign HITs to workers is

based on the same idea that Facebook uses to target adver-

6When applied to hybrid human-machine systems ti can
be defined as the data context of the HIT. For example, in
crowdsourced databases ti can be the name of the column,
table, etc. the HIT is about.

Figure 3: An example of the Expert Finding Voting Model. The final ranking identifies worker A as the top
worker as he likes the most pages related to the query.

tisements to its users. A requester has to select the target
community of users who should perform the task by means
of selecting one or more Facebook pages or page categories
(in the same way as someone who wants to place an ad).
Such categories are defined in a 2 levels structure with 6
top levels (e.g., “Entertainment”, “Company”), each of them
having several sub-categories (e.g., “Movie”, “Book”, “Song”,
etc. are sub-categories of “Entertainment”).

Once some second-level categories are selected by the re-
quester, the platform can generate a ranking of users based
on the pages they like. More formally, given a set of tar-
get categories Cat = {c1, ..cn} from the requester, we define
P (ci) = {p1, .., pn} as the set of pages belonging to category
ci. Then, for each worker wj ∈ C we take the set of pages
he/she likes P (wj) and measure its intersection with the
pages belonging to any category selected by the requester
RelP = ∪iP (ci). Thus, we can assign a score to the worker
based on the overlap between the likes and the target cat-
egory |P (wj) ∩ RelP | and rank all wj ∈ C based on such
scores.

4.2 Expert Profiling Assignment Model
A second approach we propose to rank workers given a

HIT hi is to follow an expert finding approach. Specifically,
we define a scoring function based on the Voting Model for
expert finding [18]. For the HIT we want to assign, we take
the set of its candidate answers Ai, when available. Then,
we define a disjunctive keyword query based on all the terms
composing the answers q = ∧iai. In case Ai is not available,
for example because the task is asking an open-ended ques-
tion, then q can be extracted out of ti by mining entities
mentioned in its content. The query q is then used to rank
Facebook pages using an inverted index built over the collec-
tion of documents ∪iPi ∀wj ∈ C. We consider each ranked
page as a vote for the workers who like them on Facebook
and rank workers accordingly. That is, if RetrP is the set of
pages retrieved with q, we can define a worker ranking func-
tion as |P (wj) ∩ RetrP |. More interestingly, we can take
into account the ranking generated by q and give a higher
score to workers liking pages that were ranked higher. An

example of how to rank workers following the voting model
is depicted in Figure 3.

4.3 Semantic-Based Assignment Model
The third approach we propose is based on third-party in-

formation. Specifically, we first link candidate answers and
pages to an external knowledge base (e.g., DBPedia) and
exploit its structure to better assign HITs to workers. For
a given HIT hi, the first step is to identify the entity corre-
sponding to each aj ∈ Ai (if Ai is not available, entities in
ti can be used instead). This task is related to entity linking
[10] and ad-hoc object retrieval [20, 24] where the goal is to
find the correct URI for a description of the entity using key-
words. In this paper, we take advantage of state-of-the-art
techniques for this task but do not focus on improving over
such techniques. Then, we identify the entity that repre-
sents each page liked by the crowd whenever it exists in the
knowledge base. Once both answers and pages are linked to
their corresponding entity in the knowledge base, we exploit
the underlying graph structure to determine the extent to
which entities that describe the HIT and entities that de-
scribe the interests of the worker are similar. Specifically,
we define two scoring methods based on the graph.

The first scoring method takes into account the vicinity
of the entities in the entity graph. We measure how many
worker entities are directly connected to HIT entities using
SPARQL queries over the knowledge base as follows:

SELECT ?x

WHERE { <uri(a_i)> ?x <uri(p_i)> }.

This follows the assumption that a worker who likes a page is
able to answer questions about related entities. For example,
if a worker likes the page ‘FC Barcelona’, then he/she might
be a good candidate worker to answer a question about ‘Li-
onel Messi’ who is a player of the soccer team liked by the
worker.

Our second scoring function is based on the type of enti-
ties. We measure how many worker entities have the same
type as the HIT entity using SPARQL queries over the
knowledge base as follows:

SELECT ?x

WHERE { <uri(a_i)> <rdf:type> ?x .

<uri(p_i)> <rdf:type> ?x

}.

The underlying assumption in that case is that a worker who
likes a page is able to answer questions about entities of the
same type. For example, if a worker likes the pages ‘Tom
Hanks’ and ‘Julia Roberts’, then he/she might be a good
candidate worker to answer a question about ‘Meg Ryan’ as
it is another entity of the same type (i.e., actor).

5. EXPERIMENTAL EVALUATION
Given that the main innovation of Pick-A-Crowd as com-

pared to classic crowdsourcing platforms such as AMT is
the ability to push HITs to workers instead of letting the
workers select the HITs they wish to work on, we focus in
the following on the evaluation and comparison of different
HIT assignment techniques and compare them in terms of
work quality against a classic crowdsourcing platform.

5.1 Experimental Setting
The Facebook app OpenTurk we have implemented within

the Pick-A-Crowd framework currently counts more than
170 workers who perform HITs requiring to label images con-
taining popular or less popular entities and to answer open-
ended questions. Overall, more than 12K distinct Facebook
pages liked by the workers have been crawled over the Face-
book Open Graph. OpenTurk is implemented using cloud-
based storage and processing back-end to ensure scalability
with an increasing number of workers and requesters. Open-
Turk workers have been recruited via AMT, thus making
a direct experimental comparison to standard AMT tech-
niques more meaningful.

The type of task categories we evaluate our approaches on
are: actors, soccer players, anime characters, movie actors,
movie scenes, music bands, and questions related to cricket.
Our experiments cover both multiple answer questions as
well as open-ended questions: Each task category includes
50 images for which the worker either has to select the right
answer among 5 candidate answers or to answer 20 open-
ended questions related to the topic. Each type of question
can be skipped by the worker in case he/she has no idea
about that particular topic.

In order to analyze the performance of workers in the
crowd, we measure Precision, Recall (as the worker is al-
lowed to skip questions when he/she does not know the an-
swer), and Accuracy of their answers for each HIT obtained
via majority vote over 3 and 5 workers7.

5.2 Motivation Examples
As we can see from Figure 4, the HITs that asks questions

about cricket clearly show how workers can perform differ-
ently in terms of accuracy. There are 13 workers out of 35
who were not able to provide any correct answer while the
others spread over the Precision/Recall spectrum, with the
best worker performing at 0.9 Precision and 0.9 Recall. This
example motivates the need to selectively assign the HIT to
the most appropriate worker and not following a first-come-
first-served approach as proposed, for example, by AMT.

7The set of HITs and correct answers we used in our ex-
periments are available for comparative studies online at:
http://exascale.info/PickACrowd

Figure 4: Crowd performance on the cricket task.
Square points indicate the 5 workers selected by our
graph-based model that exploits entity type infor-
mation.

Figure 5: Crowd performance on the movie scene
recognition task as compared to movie popularity.

Thus, the goal of Pick-A-Crowd is to adopt HIT assignment
models that are able to identify the workers in the top-right
area of Figure 4, based solely on their social network profile.
As an anecdotal observation, a worker from AMT provided
as feedback to the cricket task in the available comment
field the following comment “I had no idea what to answer
to most questions...” which clearly demonstrates that for
the tasks requiring background knowledge, not all workers
are a good fit.

An interesting observation is the impact of the popularity
of a question. Figure 5 shows the correlation between task
accuracy on the movie scene recognition task and the popu-
larity of the movie based on the overall number of Facebook
likes on the IMDB movie page. We can observe that when
a movie is popular, then workers easily recognize it. On the
other hand, when a movie is not so popular it becomes more
difficult to find knowledgeable workers for the task.

5.3 OpenTurk Crowd Analysis
Figure 6 shows some statistics about the user base of

OpenTurk. The majority of workers are in the age inter-

Figure 6: OpenTurk Crowd age distribution.

val 25-34 and are from the United States.
Another interesting observation can be made about the

Facebook Notification click rate. Once the Pick-A-Crowd
system selects a worker for a HIT, the Facebook app Open-
Turk sends a notification to the worker with information
about the newly available task and its reward. Figure 7
shows a snapshot of the notifications clicked by workers as
compared to the notification sent by OpenTurk over a few
days. We observe an average rate of 57% clicks per notifica-
tion sent.

Figure 7: OpenTurk Notification click rate.

A third analysis looks on how the relevant likes of a worker
correlates with his/her accuracy for the task. Figure 8 shows
a distribution of worker accuracy over the relevant pages
liked using the category-based HIT assignment model to de-
fine the relevance of pages. In a first look, we do not see
a perfect correlation between the number of likes and the
worker accuracy for any task. On the other hand, we ob-
serve that when many relevant pages are in the worker profile
(e.g., >30), then accuracy tends to be high (i.e., the bottom-
right part of the plot is empty). However, when only a few
relevant pages belong to the worker profile, then it becomes
difficult to predict his/her accuracy. Note that not-liking
relevant pages is not an indication of being unsuitable for
a task: Having an incomplete profile just does not allow to
model the worker and to assign him/her the right tasks (i.e.,
the top-left part of the plot contains high-accuracy workers
with incomplete profiles). Having worker profiles containing
several relevant pages is not problematic when the crowd is
large enough (as it is on Facebook).

Figure 8: OpenTurk Crowd Accuracy as compared
to the number of relevant Pages a worker likes.

Table 1: A comparison of the task accuracy for the
AMT HIT assignment model assigning each HIT to
the first 3 and 5 workers and to Amazon MTurk
Masters.

Task AMT 3 AMT 5 AMT Masters 3
Soccer 0.8 0.8 0.1
Actors 0.82 0.82 0.9
Music 0.76 0.7 0.7

Book Authors 0.7 0.5 0.58
Movies 0.6 0.64 0.66
Anime 0.94 0.86 0.1
Cricket 0.004 0 0.72

5.4 Evaluation of HIT Assignment Models
In the literature, common crowdsourcing tasks usually

adopt 3 or 5 assignments of the same HIT in order to ag-
gregate the answers from the crowd, for example by major-
ity vote. In the following, we compare different assignment
models evaluating both the cases where 3 and 5 assignments
are considered for a given HIT. As a baseline, we compare
against the AMT model that assigns the HIT to the first n
workers performing the task. We also compare against AMT
Masters who are workers being awarded a special status by
Amazon based on their past performances8. Our proposed
models first rank workers in the crowd based on their es-
timated accuracy and then assign the task to the top-3 or
top-5 workers.

Table 1 presents an overview of the performances of the
assignment model used by AMT. We observe that while on
average there is not a significant difference between using
3 or 5 workers, Masters perform better than the rest of the
AMT crowd on some tasks but do not outperform the crowd
on average (0.54 versus 0.66 Accuracy). A per-task analysis
shows that some tasks are easier than others: While tasks
about identifying pictures of popular actors obtain high ac-
curacy for all three experiments, topic-specific tasks such as
cricket questions may lead to a very low accuracy.

Table 2 gives the results we obtained by assigning tasks
based on the Facebook Open Graph categories manually se-
lected by the requester. We observe that the Soccer and

8Note that to be able to recruit enough Masters for our
tasks we had to reward $1.00 per task as compared to $0.25
granted to standard workers.

Table 2: A comparison of the effectiveness for the category-based HIT assignment models assigning each HIT
to 3 and 5 workers with manually selected categories.

Task Requester Selected Categories Category-based 3 Category-based 5
Soccer Sport,Athlete,Public figure 0.94 0.98
Actors Tv show, Comedian, Movie, Artist, Actor/director 0.94 0.96
Music Musician/band,Music 0.96 0.96

Book Authors Author,Writer,Book 0.98 0.94
Movies Movie,Movie general,Movies/music 0.44 0.74
Anime Games/toys,Entertainment 0.62 0.7
Cricket Sport,Athlete,Public figure 0.63 0.54

Table 3: Effectiveness for different HIT assignments based on the Voting Model assigning each HIT to 3 and
5 workers and querying the Facebook Page index with the task description q = ti and with candidate answers
q = Ai respectively.

Task VotingModel q = ti 3 VotingModel q = ti 5 VotingModel q = Ai 3 VotingModel q = Ai 5
Soccer 0.92 0.92 0.86 0.86
Actors 0.92 0.94 0.92 0.88
Music 0.96 0.96 0.76 0.78

Book Authors 0.94 0.96 0.3 0.84
Movies 0.70 0.60 0.70 0.42
Anime 0.54 0.84 0.56 0.54
Cricket 0.63 0.72 0.72 0.72

Table 4: Effectiveness for different HIT assignments
based on the entity graph in the DBPedia knowledge
base assigning each HIT to 3 and 5 workers.

Task En. type 3 En. type 5 1-step 3 1-step 5
Soccer 0.98 0.92 0.86 0.86
Actors 0.92 0.92 0.92 0.90
Music 0.62 0.68 0.64 0.54

Book Authors 0.28 0.50 0.50 0.82
Movies 0.70 0.78 0.46 0.62
Anime 0.46 0.90 0.62 0.62
Cricket 0.63 0.82 0.63 0.63

Cricket tasks have been assigned to the same Facebook cat-
egory which does not distinguish between different types of
sports. Anyhow, we can see that for the cricket task the
category-based method does not perform well, as the pages
contained into the categories cover many different sports
and, according to our crowd at least, soccer-related tasks
are simpler than cricket-related tasks.

Table 3 presents the results when assigning HITs following
the Voting Model for expert finding.

We observe that in the majority of cases, assigning each
task to 5 different workers selected using the Facebook Page
indexing the task description as query leads to the best re-
sults.

Table 4 shows the results of our graph-based approaches.
We observe that in the majority of these cases, the graph-
based approach that follows the entity type (“En. type”)
edges and selects workers who like Pages of the same type
as the entities involved in the HIT outperforms the approach

Table 5: Average Accuracy for different HIT assign-
ment models assigning each HIT to 3 and 5 workers.

Assignment Method Average Accuracy
AMT 3 0.66
AMT 5 0.62

AMT Masters 3 0.54
Category-based 3 0.79
Category-based 5 0.83
Voting Model ti 3 0.80
Voting Model ti 5 0.85
Voting Model Ai 3 0.69
Voting Model Ai 5 0.72

En. type 3 0.66
En. type 5 0.79

1-step 3 0.66
1-step 5 0.71

that considers the directly-related entities within one step in
the graph (“1-step”).

5.5 Comparison of HIT Assignment Models
Table 5 presents the average Accuracy obtained over all

the HITs in our experiments (which makes a total of 320
questions) by each HIT assignment model. As we can see,
our proposed HIT assignment models outperform the stan-
dard first-come-first-served model adopted by classic crowd-
sourcing platforms such as Amazon MTurk. On average
over the evaluated tasks, the best performing model is the
one based on the Voting Model defined for the expert find-
ing problem where pages relevant to the task are seen as
votes for the expertise of the workers. Such an approach ob-

tains on average a 29% relative improvement over the best
accuracy obtained by the AMT model.

6. CONCLUSIONS
Crowdsourcing is a popular new means of performing large-

scale, high-quality Human Intelligence tasks. The long-term
vision of current crowdsourcing research is to create hy-
brid human-machine systems capable of chimeric function-
alities, which were not conceivable just few years ago. One
of the key impediments towards that vision is to obtain
high-quality answers from the crowd. This is currently an
open-issue, given the way crowdsourcing tasks are commonly
advertised and run today: Tasks are posted on simple plat-
forms where the first worker who is available will perform the
task. This simplistic task allocation procedure represents
a clear threat towards more qualitative results, especially
when we consider paid crowdsourcing tasks where the mon-
etary reward granted to workers who complete tasks attracts
malicious people willing to earn money without spending too
much time and efforts on the actual task.

For all these reasons, we proposed in this paper Pick-A-
Crowd, a system exploiting a novel crowdsourcing scheme
focusing on pushing tasks to the right worker rather than
letting the workers pull the tasks they wished to work on.
We proposed a novel crowdsourcing architecture that builds
worker profiles based on their online social network activi-
ties and tries to understand the skills and interests of each
worker. Thanks to such profiles, Pick-A-Crowd is able to
assign each task to the right worker dynamically.

To demonstrate and evaluate our proposed architecture,
we have developed an deployed OpenTurk, a native Face-
book application that pushes crowdsourced tasks to selected
workers and collects the resulting answers. We additionally
proposed and extensively evaluated HIT assignment models
based on 1) Facebook categories manually selected by the
task requester, 2) methods adapted from an expert finding
scenario in an enterprise setting, and 3) methods based on
graph structures borrowed from external knowledge bases.
Experimental results over the OpenTurk user-base show that
all of the proposed models outperform the classic first-come-
first-served approach used by standard crowdsourcing plat-
forms such as Amazon Mechanical Turk. Our best approach
provides on average 29% better results than the Amazon
MTurk model.

A potential limitation of our approach is that it may lead
to longer task completion times: While on pull crowdsourc-
ing platforms the tasks gets completed quickly (since any
available worker can perform the task), following a push
methodology may lead to delays in the completion of the
tasks. We anyway believe that this would be an acceptable
tradeoff, as crowdsourcing focuses on obtaining high-quality
answers rather than real-time data from the crowd.

As future steps, we would like to test various HIT assign-
ment models based on Machine Learning techniques where,
given a few tasks with known answers used as training data,
specific worker features (e.g., education level) could be learnt
and leveraged to match tasks to workers with a high accu-
racy.

Acknowledgments.
We thank the anonymous reviewers for their helpful com-

ments. This work was supported by the Swiss National Sci-
ence Foundation under grant number PP00P2 128459.

7. REFERENCES
[1] M. Agrawal, M. Karimzadehgan, and C. Zhai. An

online news recommender system for social networks.
In Proceedings of ACM SIGIR workshop on Search in
Social Media, 2009.

[2] O. Alonso and R. A. Baeza-Yates. Design and
Implementation of Relevance Assessments Using
Crowdsourcing. In ECIR, pages 153–164, 2011.

[3] K. Balog, Y. Fang, M. de Rijke, P. Serdyukov, and
L. Si. Expertise retrieval. Foundations and Trends in
Information Retrieval, 6(2-3):127–256, 2012.

[4] K. Balog, P. Thomas, N. Craswell, I. Soboroff,
P. Bailey, and A. De Vries. Overview of the trec 2008
enterprise track. Technical report, DTIC Document,
2008.

[5] R. Blanco, H. Halpin, D. Herzig, P. Mika, J. Pound,
H. S. Thompson, and D. T. Tran. Repeatable and
reliable search system evaluation using crowdsourcing.
In SIGIR, pages 923–932, 2011.

[6] A. Bozzon, M. Brambilla, and S. Ceri. Answering
search queries with CrowdSearcher. In WWW, pages
1009–1018, New York, NY, USA, 2012. ACM.

[7] A. Bozzon, M. Brambilla, S. Ceri, and A. Mauri.
Extending search to crowds: A model-driven
approach. In SeCO Book, pages 207–222. 2012.

[8] A. Bozzon, M. Brambilla, and A. Mauri. A
model-driven approach for crowdsourcing search. In
CrowdSearch, pages 31–35, 2012.

[9] A. Bozzon, I. Catallo, E. Ciceri, P. Fraternali,
D. Martinenghi, and M. Tagliasacchi. A framework for
crowdsourced multimedia processing and querying. In
CrowdSearch, pages 42–47, 2012.

[10] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux.
ZenCrowd: leveraging probabilistic reasoning and
crowdsourcing techniques for large-scale entity linking.
In WWW, pages 469–478, New York, NY, USA, 2012.

[11] E. Diaz-Aviles and R. Kawase. Exploiting twitter as a
social channel for human computation. In
CrowdSearch, pages 15–19, 2012.

[12] A. Feng, M. J. Franklin, D. Kossmann, T. Kraska,
S. Madden, S. Ramesh, A. Wang, and R. Xin.
CrowdDB: Query Processing with the VLDB Crowd.
PVLDB, 4(11):1387–1390, 2011.

[13] J. A. Golbeck. Computing and applying trust in
web-based social networks. PhD thesis, College Park,
MD, USA, 2005. AAI3178583.

[14] X. Han, L. Sun, and J. Zhao. Collective entity linking
in web text: a graph-based method. In SIGIR, pages
765–774, New York, NY, USA, 2011. ACM.

[15] R. Jurca and B. Faltings. Mechanisms for making
crowds truthful. J. Artif. Intell. Res. (JAIR),
34:209–253, 2009.

[16] G. Kazai. In Search of Quality in Crowdsourcing for
Search Engine Evaluation. In ECIR, pages 165–176,
2011.

[17] G. Kazai, J. Kamps, M. Koolen, and
N. Milic-Frayling. Crowdsourcing for book search
evaluation: impact of hit design on comparative
system ranking. In SIGIR, pages 205–214, 2011.

[18] C. Macdonald and I. Ounis. Voting techniques for
expert search. Knowl. Inf. Syst., 16(3):259–280, 2008.

[19] S. Perugini, M. A. Gonçalves, and E. A. Fox.
Recommender systems research: A connection-centric
survey. J. Intell. Inf. Syst., 23(2):107–143, Sept. 2004.

[20] J. Pound, P. Mika, and H. Zaragoza. Ad-hoc object
retrieval in the web of data. In WWW, pages 771–780,
2010.

[21] C. Sarasua, E. Simperl, and N. F. Noy. Crowdmap:
Crowdsourcing ontology alignment with microtasks. In
ISWC, pages 525–541, 2012.

[22] N. Seemakurty, J. Chu, L. von Ahn, and A. Tomasic.
Word sense disambiguation via human computation.
In Proceedings of the ACM SIGKDD Workshop on
Human Computation, HCOMP ’10, pages 60–63, New
York, NY, USA, 2010. ACM.

[23] J. Selke, C. Lofi, and W.-T. Balke. Pushing the
boundaries of crowd-enabled databases with
query-driven schema expansion. Proc. VLDB Endow.,
5(6):538–549, Feb. 2012.

[24] A. Tonon, G. Demartini, and P. Cudre-Mauroux.
Combining inverted indices and structured search for
ad-hoc object retrieval. In SIGIR, pages 125–134,
2012.

[25] L. von Ahn and L. Dabbish. Designing games with a
purpose. Commun. ACM, 51(8):58–67, Aug. 2008.

[26] L. von Ahn, R. Liu, and M. Blum. Peekaboom: a
game for locating objects in images. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’06, pages 55–64, New York,
NY, USA, 2006. ACM.

[27] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham,
and M. Blum. recaptcha: Human-based character
recognition via web security measures. Science,
321(5895):1465–1468, 2008.

