
184

GraphINC: Graph Pattern Mining at Network Speed

RANA HUSSEIN, University of Fribourg, Switzerland
ALBERTO LERNER, University of Fribourg, Switzerland
ANDRÉ RYSER, University of Fribourg, Switzerland
LUCAS DAVID BÜRGI

∗
, ETH Zürich, Switzerland

ALBERT BLARER, ArmaSuisse, Switzerland
PHILIPPE CUDRÉ-MAUROUX, University of Fribourg, Switzerland

Graph Pattern Mining (GPM) is a class of algorithms that identifies given shapes within a graph, e.g., cliques of
a certain size. Any area of a graph can contain a shape of interest, but in real-world graphs, these shapes tend
to be concentrated in areas deemed skewed. Because mining skewed areas can dominate GPM computations,
the overwhelming majority of state-of-the-art GPM techniques break such areas into many small parts and
load balance them across servers. This paper takes a diametrically opposite approach: we suggest a framework
that concentrates rather than divides the skewed areas.

Our framework, calledGraphINC, relies on two key innovations. First, it introduces a new graph partitioning
scheme capable of separating the skewed area from the rest of the graph. Second, it offloads the skewed part
onto a new class of hardware accelerator, a programmable network switch. We implemented our framework to
leverage a commercial 100 Gbps switch and obtained results 6.5 to 52.4× faster thanks to our novel offloading
technique.

CCS Concepts: • Information systems→Databasemanagement system engines; Storage architectures;
Data management systems.

Additional Key Words and Phrases: graph pattern mining, in-network computing

ACM Reference Format:
Rana Hussein, Alberto Lerner, André Ryser, Lucas David Bürgi, Albert Blarer, and Philippe Cudré-Mauroux.
2023. GraphINC: Graph Pattern Mining at Network Speed. Proc. ACM Manag. Data 1, 2, Article 184 (June 2023),
28 pages. https://doi.org/10.1145/3589329

1 INTRODUCTION
The mining of graph patterns such as cliques, motifs, and frequent subgraphs is an essential
primitive in several classes of computation. For instance, finding cliques is used in discovering
communities in social networks [4, 21, 24], motif counting is used in bioinformatics for extracting
patterns from gene networks [1, 55], frequent subgraph mining is used in finding patterns in
chemical compounds [22], to mention a few.

Pattern mining tasks as the above require significant computing resources [8]. Often, the resource
in demand is not memory; machines nowadays can support multi-terabyte graphs with large DRAM
pools [36]. The work involved in enumerating all the candidate subgraphs and testing them for a
pattern is what is computationally intensive. Consider, for instance, the k-clique listing task [14],
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Fig. 1. (Top) GPM tasks can be performed entirely by a cluster of servers interconnected by a switch. (Bottom)

With increasingly common programmable switches, this equipment can participate in a GPM computation,

relieving the servers from processing the heavier portions of the graph.

where a k-clique is a fully interconnected subgraph with k nodes. Consider further the Mico
dataset [25], which contains a graph with authors as nodes and co-authorship information as edges.
With around 100k vertices and 1M edges, Mico is relatively small but contains approximately 984M
subgraphs of size 4, and a staggering 36B subgraphs of size 5. To deal with such demands, GPM
systems partition the graph across a clusters of servers using what is called a subgraph-centric
processing model [71]. Figure 1 (Top) depicts this scenario.
This processing model has two salient characteristics. First, it looks for the desired patterns

iteratively. For example, consider the k-cliques task again, now assuming 𝑘 = 5. An algorithm could
start with 2-node subgraphs (edges) and extend each with an additional neighbor node, forming
subgraphs of size 3. The algorithm could then extend the 3-node subgraphs by one node, forming
subgraphs of size 4—and so on. At every iteration, the algorithm would discard subgraphs that
are not cliques. An iteration in this model is called a super-step and is usually implemented in a
BSP-like style, i.e., the servers rendez-vous at the end of each super-step [74]. The rendez-vous
brings us to the second hallmark of subgraph-centric algorithms: servers may exchange subgraphs
at that point. This feature is critical to load balance work across servers, as the servers working on
denser areas of the graph would invariably produce more subgraphs than the servers working in
sparser areas.
This phenomenon is called skew and it occurs systematically in real-world graphs. GPM algo-

rithms deploy techniques to deal with skew, such as load balancing and work stealing [10, 23, 77].
However, these redistribution techniques require costly subgraphs reshuffling. Ultimately, to load
balance is better than to leave skew untreated, but it increases the algorithm’s total runtime.
We claim that a more efficient method to handle skew in distributed GPM algorithms is to

offload it to the switch that interconnects the servers. As we will discuss shortly, the switch is a
powerful computational device, and with the recent advent of In-Network Computing (INC), it
became programmable [7, 48, 62]. This means that the switch can, hypothetically, be assigned a
portion of the graph to mine and be taught (via software) to do so, as Figure 1 (Bottom) depicts.
We emphasize, however, that shifting work to the switch requires much more than simply porting
software. The switch adopts a unique computational model that makes expressing many traditional
data structures and stateful computations challenging [28].
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In this paper, we show that, thanks to an innovative set of data structures and especially-designed
switch algorithms, GPM skew processing is a task a programmable switch can handle. To the best
of our knowledge, this is the first piece of work demonstrating that graph mining is viable and
can benefit from in-network computing’s potential. The advantage of moving computations to
the switch is that this device is designed to be as performant – in terms of packet processing –
as all the servers connected to it combined. If a computation can be expressed in terms of packet
processing, it will likely run faster on the switch than on the servers.

We packaged our solution as an easy-to-use framework that we call GraphINC. The framework
divides a GPM task among servers and the programmable switch to which they are connected and
coordinates the task’s execution. We implemented the k-cliques and k-motifs finding tasks on the
framework, which can be easily extended to accommodate other tasks.

The performance improvements that the GraphINC framework delivers are sizable. For instance,
in our experiments using an actual 100 Gbps programmable switch [38], the k-cliques finding
task runs 6.5 to 52.4× faster when assisted by the switch than with a state-of-the-art, server-only
algorithm. These results do not include an advanced implementation technique we call super-linear
pipelines that are on the verge of becoming more feasible with the next generation of 400 Gbps
switches that are entering the market [3, 16]. Moreover, we note that the 800 Gbps standard was
already ratified [18] and that our advanced techniques will leverage that speed difference.

In summary, the paper makes the following contributions:
• We introduce the GraphINC framework, which pairs a server-based GPM algorithm with a
switch-based counterpart (§ 3, § 4).

• We propose a new graph cut algorithm that identifies the adequate size and portion of the graph
to assign to the switch (§ 5).

• We suggest INC-friendly graph representations that allow a programmable switch to explore
skewed areas (§ 6).

• We implement and evaluate the GraphINC framework in a distributed, high-speed platform and
conduct extensive experiments using an actual programmable hardware switch (§ 7).

This paper also discusses the related work (§ 8) and states our conclusions (§ 9). We start by
introducing some necessary background on programmable switches and our motivation.

2 BACKGROUND ANDMOTIVATION
A programmable hardware switch is a computing platform unlike any other. It is divided into two
semi-independent units, a control plane and a data plane, as Figure 2 (Top) depicts. The control plane
is responsible for management tasks, e.g., bringing switch ports up or down. It usually consists
of an x86 machine, an Intel Xeon in our case, and it can run a common Linux distribution. The
control plane functionality is available through C and Python libraries provided by the switch
manufacturer.

The data plane is the component that receives packets from the network ports and forwards them
back to their destination ports. The forwarding decision is the result of a computation—a networking
protocol. In a programmable switch, the networking protocols are expressed as programs. These
switches come with SDKs that can compile such programs into binaries they can run.
To explain how to program the data plane, we need to introduce a few concepts. The reason

is that the programming model the switch supports is quite unique. The data plane consists of
shared-nothing units called Match-Action Units (MAUs or, interchangeably, stages) arranged in a
pipeline [7]. An MAU is for a switch what a core is for a general-purpose x86 CPU. MAUs, however,
have many constraints. Chief among them is that they can only send their results to the next MAU
in the pipeline and can only receive input from the previous one.
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Fig. 2. (Top) The switch is composed of a control plane and a data plane. The data plane has a pipeline of

Match-Action Units (MAUs) with two types of storage: Match-Action Tables (MATs) and Registers (REGs).

(Bottom) A MAT can read and alter a packet by: (1) selecting the field(s) to match; (2) performing the match,

e.g., via equality comparison, and if an entry is found; (3) executing the matched entry’s action, altering the

packet’s contents. A register works similarly, although the access to registers is positional.

Each MAU can locally implement an abstraction called Match-Action Tables (MATs). A MAT is
where packet processing takes place. It can execute a function consisting of a lookup operation
(the match) against a locally stored table and the application of a side-effect (the action) associated
with the matched value. Figure 2 (Bottom, Left) shows how the operation works.

MATs can be programmed by deciding (a) which packet value(s) to use in the lookup operation,
(b) what calculation to perform as the action, and (c) where to store the result. For instance, a
switch must decrement the TTL (time-to-live) field of an IP packet while forwarding it [17]. It can
recognize IP packets via the EtherType field. Therefore, the table would have an entry that would
match when the EtherType is 0x0800, i.e., an IP packet. When matched, the table would trigger a
TTL decrement. In Figure 2’s MAT, 𝑥 would be 0x0800, 𝑦 would be TTL, and 𝑓 would be TTL − 1.
The TTL field would be overwritten with the new value in this example.

One important aspect of MATs is that their contents cannot be updated as part of an action.
However, another construct called a Register (REG) allows updates. For instance, Figure 2 (Bottom,
Right) shows a register updating an entry using a value lifted from a packet and copying the old
entry’s value back into the packet.

A program on the switch consists of a sequence of match-action tables and registers configura-
tions. Such programs can be written using a language such as P4 [6], an open standard, or using
proprietary languages such as Broadcom’s NPL [57], Huawei’s POF [68], or Xilinx’s PX [9]. One
advantage of P4 is its wide support, for instance, in switches from different manufacturers [2, 15],
network interface cards (NICs) [56], and even in software switches [59].
The switch executes a program by moving each incoming packet through that program’s

MAU/REG pipeline, invoking all MATs and REGs along the way. Because packets can only move
into one direction—the next stage on the pipeline—this computing paradigm is sometimes called
feed-forward model [67].
One interesting property of commercial programmable switches is that they impose a strict

pipelining discipline, i.e., each MAU/REG takes the same amount of time with every packet. This
is possible because the P4 compiler can cap the actions’ length to a given maximum set of steps.
Programs with actions of longer durations simply fail to compile. This uniformity allows the switch
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to move all packets traversing the switch to their respective next MAU/REG in lock-step. In other
words, forwarding a packet through a pipeline incurs latency but does not affect bandwidth. If a
series of packets arrive at the maximum bandwidth (called line rate), they will be forwarded at
the same rate. Therefore, the programs that compile successfully will handle packets at network
speed1.

Think Like a Packet. Networking protocols can be added or modified in a programmable switch
simply by describing these protocols as a sequence of matches and actions. Researchers and
developers quickly realized that this computing model could express logic beyond networking
protocols, allowing them to use the switch as an application platform. In particular, several examples
exist of switches supporting data-intensive systems (§ 8). However, converting algorithms from
general-purpose machines to this computing model requires a paradigm change. The computations
now have to be described as side-effects of forwarding a packet. We call this mindset informally as
“think like a packet.”

We argue that the subgraph-centric model that is commonly used to implement GPM systems can
be expressed this way–but not without significant challenges in algorithm and data structure design
for the feed-forward computing model. In the rest of the paper, we describe how we overcame
these challenges.

3 GRAPHINC FRAMEWORK OVERVIEW
The GraphINC framework is designed to run a GPM task efficiently across a set of servers and the
switch that interconnects them. To understand how it does so, it helps to show the execution flow
the framework adopts. This flow is depicted in Figure 3.

Servers

Control Plane

!"#"$%&"'(

1

2

3

4
1

2

3

4

Fig. 3. The GraphINC framework’s main workflow. The servers and the switch operate independently but

request work in a similar way. (1) A server or the switch’s data plane becomes available and (2) is assigned

a specific graph fragment by a component running on the switch’s control plane. (3) The servers or the

switch access their assigned portion of the graph (a copy of which is held by any server) and enumerate their

subgraphs. (4) The subgraphs that present the desired patterns are emitted.

At first, a graph is partitioned into fragments, i.e., a subset of graph nodes from which to start
looking for patterns. We discuss the partitioning shortly (§ 5.1), but for now we note that the
dense regions of the graph are separated from sparse ones. 1 An available server solicits a graph
fragment on which to work (§ 4.1). 2 The requesting server is assigned a new fragment, 3 and it
starts processing that fragment (§ 4.4). 4 The resulting patterns are output by the server.

The workflow on the switch is somewhat similar, even though the individual steps are performed
differently. 1 The switch’s control plane detects that the data plane has finished processing
a fragment. 2 It then instructs a random server to transmit the next fragment (via a RDMA2

operation) to the switch (§ 4.3). For each edge in the assigned fragment, 3 the switch enumerates

1Hence the title of the paper.
2Remote Direct Memory Access is a fast networking technology in which data is transmitted and received without CPU
intervention.
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its derived subgraphs and tests the latter for the desired patterns (§ 4.2). Lastly, 4 the switch emits
each subgraph presenting a desired pattern as an individual packet. The packets are received by
some pre-assigned servers that add the subgraph to their result set.

Design Discussion. The flow above is the result of several design decisions adopted by the
GraphINC framework. We now present these decisions and the rationales behind them.

• The GraphINC framework embraces two different computing models and provides facili-

ties to each of them as well as mechanisms to bridge both. The first issue we faced concerns
how specialized the switch’s computing model is w.r.t. the computing model implemented by an
x86 machine. Rather than try to unify the models, we decided very early in the design process
that we would support both. In practice, this means that the GraphINC framework operates
with two implementations of a GPM task: one that is structured to run on regular servers and
one written for feed-forward processing. The framework coordinates the two implementations
seamlessly.

• The switch should operate independently from the servers. The next issue we encountered
was the disparity between the processing power of the servers and the switch. By construction,
the switch is as powerful in terms of packet processing as all the servers combined. If the switch
were to wait for any server to synchronize about work to do, this might cause some relatively
long idle time on the switch. The GraphINC framework avoids any such wait by having work
ready for the switch and the servers independently.

• The fragment allocation decisions are done by a centralized, global entity located on the

switch’s control plane. This was a somewhat opportunistic decision since the switch’s control
plane presents an exceptionally well-placed site from which to interact with the entire platform.
The control plane can monitor the data plane (via an API) without incurring any overhead to
packet forwarding and can be directly accessed by any server since they are connected.

• The fragment size decisions are made dynamically and the switch is always assigned

computationally heavy fragments.The granularity of the tasks varies throughout the execution
in such way that the servers and the switch finish roughly simultaneously. The fragments coming
from dense areas of the graph are given to the switch, since it can perform computationally-
intensive work faster than any server.

4 FRAMEWORK’S COMPONENTS
The GraphINC framework relies on many components, but four of them stand out. Two of these
components are task-agnostic, i.e., they remain the same independent of the GPM task being
executed (§ 4.1, § 4.3). The other two contain some customizable areas that are task-sensitive (§ 4.2,
§ 4.4). New tasks can be supported by theGraphINC framework simply by adjusting the latter (§ 4.5).

4.1 Algorithm Control
The Algorithm Control is responsible for selecting the next graph fragment to be processed. It
does so without holding the actual graph. Instead, it maintains a list of graph nodes ordered by ID
and keeps track of which nodes were already processed, as Figure 4 depicts. As we discuss shortly,
fragment assignment is task agnostic but the servers’ requests are treated differently than switch
ones.

Upon a server request, the Algorithm Control chooses the next unprocessed fragment by travers-
ing the nodes list backwards. Because of how the nodeIDs are assigned (§ 5.1), this means that
servers get sparse areas of the graph. The fragment size is measured in number of vertices and is
determined heuristically. Smaller fragments create some overhead because of the more frequent
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subgraph contains the desired pattern (e.g., a clique) and is emitted.

fragment requests. Larger fragments risk overwhelming a server and making it lag behind, slowing
down the other servers.
Upon a switch request, the Algorithm Control selects the subsequently available nodes by

traversing the nodes list forwards. This means that the switch receives the densest areas of the
graph. The sizing of a switch fragment requires some explanations, as follows. The switch is unlikely
to be able to hold an entire graph, but it does not need so to process a single fragment. All it needs is
to hold the areas of the graph reachable by the assigned fragment (§ 6.2). The sizes of these areas are
known because the switch fragments are pre-processed in advance; the GraphINC framework uses
a small number of designated cores for that (§ 5.4). Therefore, by the time of fragment assignment,
the Algorithm Control knows how many unprocessed nodes can be given at once to the switch.

4.2 Graph Transport and Processing Protocol
The GraphINC framework performs a GPM task on the switch by encoding the task’s logic into a
series of MATs and REGs—a networking protocol of sorts. The logic is roughly divided into two
blocks: subgraph enumeration and pattern analysis. Figure 5 depicts how the MATs and REGs are
divided according to the role they play in the GPM logic. We call this protocol Graph TRansport
and Processing protocol, or GTRP (“gee-trip”). It is worth noting that the GTRP protocol can co-exist
with other networking protocols, i.e., a switch running GTRP is still capable of executing all the
usual networking protocols.
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The GTRP protocol presupposes that the graph areas necessary to process a given fragment are
loaded onto the switch (§ 6.1). The graph is represented by two data structures: a neighbor map,
which supports the subgraph enumerating process, and an edge list, which supports the pattern
analysis one. These areas are re-loaded whenever a new fragment is assigned to the switch. Once
the graph area is loaded, the GTRP protocol is designed to: 3a take the assigned fragment’s edges
as an input packet, 3b enumerate the next derived subgraph from each input packet, 3c test it for
the presence of the desired pattern, and 4 output the pattern in a packet if the tests succeeded.

This process is iterative. To obtain the next subgraph, the switch re-injects the packet at the begin-
ning of the pipeline. This operation is called recirculation and is extremely efficient in commercial
switches. Enumeration is a depth-first process; eventually no further subgraph could be generated.
In that case, the packet is dropped. When all packets/subgraphs resulting from a fragment are
explored, the data plane has completed processing that fragment.
The GTRP protocol is one of those components that have parts that are task-agnostic and parts

that are not. All GPM tasks use the same neighbor map and edge list data structures. However, the
enumeration and pattern analysis themselves are task-specific. The framework comes with some
pre-programmed tasks, and we will explain how to encode new ones shortly (§ 4.5).

4.3 GTRP Packet Format
The GTRP protocol introduces its own packet frame format. The packet frame carries application-
level information (as opposed to networking level) and, therefore, can be laid upon different
transport protocols. We use RDMA-over-Converged Ethernet (RoCE) in this paper [34]. The GTRP
packet frame information can be divided into three areas, as Figure 6 depicts at a high level.

The first area of the frame carries a subgraph. It contains an array of 𝑘 nodeID entries, where 𝑘
is the size of the pattern being matched, as shown in Figure 5 (light-orange area under 3a , 3b ,
and 3c ). This area is used for input, e.g., sending an edge or subgraph to the switch, or output,
e.g., to deliver a clique to a server. The next area of a GTRP frame is dedicated to pattern analysis. It
consists of an array that stores the results of different tests, one entry per test, as shown in Figure 5
(dark-orange area under 3b and 3c ). The remaining area of a GTRP frame is dedicated to flow
control information. It carries several fields that help the switch determine how to process any
given packet. For instance, it contains information on whether the subgraph area’s data should
be loaded onto a switch data structure or whether it should be used as input for the enumeration
process.

4.4 Server-Side Execution
The server-side portion of the framework consists of a simple but powerful programming abstraction:
a super-step stack. A super-step stack can be seen as a query plan that combines two types of
operators: a projection over a user-defined function and an exchange operator [29]. The projection’s
function can be used to enumerate increasingly larger subgraphs. The exchange operators can
move subgraphs up the stack or, as we will discuss shortly, across super-step stacks. The super-step
stack abstraction is modeled after BSP-like processes in which servers alternate computing and
data reshuffling (rendez-vous) steps.

Figure 7 shows how a super-step stack can implement k-cliques listing. The first projection of a
super-step stack takes an assigned fragment’s edges (i.e., 2-node subgraphs) as input and produces
3-node subgraphs. The following projection takes 3-node subgraphs as input and produces 4-node
subgraphs. Each projection function forwards the cliques it found using an exchange operator.
The GraphINC framework can execute several super-step stack instances in parallel, each

processing a different graph fragment. This allows a mining task to be distributed across servers
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and to take advantage of multi-core machines. Load balancing in the GraphINC framework occurs
by redistributing subgraphs at each exchange operator. To reduce the overhead of load balancing,
the GraphINC framework restricts the exchange operators to reshuffle load only across super-stack
stacks of the same machine.

As with other GraphINC framework components, portions of the super-stack are task-specific.
The user-defined functions are task-specific, but the exchanges are generic.

4.5 Supporting New Tasks
The GraphINC framework comes pre-loaded with some tasks, e.g., k-cliques listing and k-motifs
listing. New tasks are easy to implement because several components inside the framework are task-
agnostic, i.e., they can be reused across tasks, as discussed above. These components include switch
data plane artifacts such as the neighbor map and edge list data structures, the GTRP packet frame
format, the boilerplate logic supporting enumeration and pattern analysis, and other components
such as the Algorithm Control and the super-step stack structure.

To implement a new task on the GraphINC framework, the programmer would need to roughly
provide the following components: the user-define functions to use on the super-step stack and
the enumeration and pattern analysis logic on the switch. They would also need to provide server
logic to pre-process the fragments potentially destined for the switch. Such pre-processing involves
pruning and formatting that will be discussed shortly (§ 5.4).

5 THE SWITCH CUT
Having described the framework, the next question is, naturally, how to determine a graph cut, a
partitioning in which the switch receives the dense, potentially skewed portions of the graph while
the servers take the relatively sparse and easy-to-compute areas. We start by giving the intuition
of such a cut (§ 5.1), followed by a formal definition (§ 5.2). We then show how to determine the
cut (§ 5.3) and discuss some pre-processing associated to it (§ 5.4).
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Motifs generated from each node when enumerating using load gathering or scattering on the Mico dataset.

5.1 Switch Cut Intuition
To balance the load among servers and switch, the GraphINC framework partitions the graph in
node sets. We call these node sets fragments. We can simply partition the graph into fragments, but
the search space would be unnecessarily large, producing redundant results. For instance, if we
performed the k-clique listing task, the cliques that span fragments would be enumerated more
than once. Instead, before determining the fragments, the GraphINC framework performs two
procedures: (a) it reorders the nodes by descending degree, and (b) it converts the graph into a
directed one. Using a directed graph reduces the enumeration space in GPM algorithms [12, 20, 39,
53, 64].
The difference here is that the direction commonly used has been ascending; nodes go from a

lower degree to a higher one. Figure 8a (Top) illustrates this method. We call such graphs load
scattering because they tend to distribute the load better. In contrast, Figure 8a (Bottom) shows that
the descending order gathers the load on fewer nodes. Since we want to concentrate skew on the
switch, the descending order suits our purposes.
To illustrate these effects further, we execute the k-clique finding task on a dataset (Mico) and

count the number of cliques generated from each node. Figure 8b shows a plot of the results. We
observe that the descending approach “moves” most cliques to earlier nodes. We verified that
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these effects also held on a different task such as k-motifs. It entails finding all the occurrences of
connected patterns having k-nodes. For example, a 3-motif contains two patterns: a triangle and a
wedge. We show in Figure 8c that the load-gathering approach also works for motifs.

5.2 Switch Cut Definition
Now that we have given the intuition about the switch cut, we formally describe it.
Let 𝐺 = (𝑉 , 𝐸) be an undirected graph where 𝑉 is the set of nodes and 𝐸 the set of edges. The

edge that joins nodes 𝑢 and 𝑣 is denoted by (𝑢, 𝑣). Let 𝑑 (𝑣) denote the degree of a node 𝑣 . For any
permutation 𝜋 : 𝑉 → {1, ..., |𝑉 |}, let 𝐺𝜋 = (𝑉 , 𝐸𝜋 ) be the directed graph derived from 𝐺, where
∀𝑢, 𝑣 ∈ 𝑉 , (𝑢, 𝑣) ∈ 𝐸𝜋 iif (𝑢, 𝑣) ∈ 𝐸 and 𝜋 (𝑢) < 𝜋 (𝑣).

In particular, we are interested in permutations that are monotonous with respect to the order
on 𝑉 induced by 𝑑 . We denote by 𝜋𝑑+ increasing permutation, i.e., that satisfies 𝑑 (𝑢) < 𝑑 (𝑣) ⇒
𝜋𝑑+ (𝑢) < 𝜋𝑑+ (𝑣). Note that the associated graph 𝐺𝑑+ = (𝑉 , 𝐸𝜋𝑑+ ) have edges that point from lower
to higher degree nodes.
Conversely, we denote by 𝜋𝑑− decreasing permutations. The graphs generated with these per-

mutation are denoted 𝐺𝑑− = (𝑉 , 𝐸𝜋𝑑− ) and thus have edges that point from higher to lower degree
nodes. These graph have the same enumeration properties than the load scattering ones but have
the opposite effect in terms of skew; They tend to concentrate the load. We call graphs associated
to decreasing permutations load gathering.

In the following, a subset of nodes 𝐹𝑖 ⊂ 𝑉 of the graph 𝐺𝑑− is called a fragment. Finally, for any
𝐾 ≥ 1, for any partition F = ∪𝐾−1𝑖=0 𝐹𝑖 of 𝑉 , and for any 0 ≤ 𝑘 < 𝐾 we call 𝑆 a switch cut for

𝑆 � (𝐺𝑑− , F , 𝑘)

where the fragments 𝐹0, ..., 𝐹𝑘 ∈ F are assigned to the switch.

5.3 Switch Cut Determination
The ideal cut should divide the work evenly between the servers and the switch. By doing so, the
GraphINC framework seeks to engage the power that both these computing elements can deliver.
Putting it differently, the cut should be so that the time the switch takes to process its share is
approximately the time the servers take to process the remaining portion of the graph. Figure 9
shows such an ideal cut for performing the 5-cliques listing on three different datasets.

The charts show the effect on the execution time that assigning an increasingly large cut to the
switch takes. We start the cut by assigning 100 nodes to the switch. The servers’ runtime dominates
the computation. As we increase the load on the switch, its runtime becomes dominant. We want
the cut to be somewhere in between.
To determine how precise the cut needs to be, we calculated the effects of missing it by ± 10%,

20%, or 30% of the nodes. Figure 9 shows these margins as horizontal lines in each chart. It also
shows the loss of performance at each end of line. For example, if the cut is 30% smaller, i.e., if we
assign less work than we could to the switch, we have a performance loss of 39.6%, 18.8%, and 55.3%
on the Mico, Skitter, and Wiki datasets, respectively. Interestingly, if we over-assign work to the
switch by the same proportion, the performance penalties are much smaller: 4.4%, 5.2%, and 15.7%.
Either way, determining the precise cut would require predicting the runtime of the switch

and servers. We believe this would be somewhat imprecise. Instead, we designed the GraphINC
framework to determine the cut dynamically, as follows. The switch starts processing the graph by
the low nodeID nodes (more precisely, by the fragments that contain those nodes) and proceeds in
ascending order. The servers start processing the graph by the fragments containing the highest
IDs and proceed descendingly.
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Fig. 9. Effect on performance when deviating from the ideal cut point for 𝑘 = 5 cliques by ± 10%, 20%, and

30% nodes. The effects are similar in 𝑘 = 4 motifs, omitted due to space restrictions, where early deviations

cause from 8.8% to 31.1% performance penalties, and late deviations, 1.5% to 2.2%.

Eventually, both the switch and the servers will try to process a few remaining fragments. The
algorithm control (§ 4.1) will prioritize the switch. We will show in Section 7 that our approach
gets very close to the ideal cut and systematically errs by giving more work to the switch.

5.4 Switch Cut Pre-Processing
In contrast to a server, the switch does not hold the entire graph throughout a GPM computation.
Instead, it stores the portion of the graph necessary to execute an assigned fragment. Before
processing a fragment, the switch requests a designated server to select and format the relevant
data (§ 6). The server transfers the requested data to the switch using RDMA [35], an efficient
networking protocol that relies on the network card hardware rather than the server’s CPU to
perform transfers.

Even so, selecting and formatting data takes some computing power from the server. The Graph-
INC framework uses a small number of cores in designated servers to pre-process fragments ahead
of time before they are assigned to the switch. Our experiments showed that we could use one core
per physical pipeline on the switch for pre-processing—4 cores in total (out of 256 in our setting).
This amounts to less than 0.1% of server capacity.

6 SWITCH DESIGN
There are several ways to lay out the GraphINC framework’s data structures and graph manipu-
lation logic on a programmable switch. In this section, we present the choices and trade-offs we
made. We start with the design of the two main data structures (§ 6.1), and then discuss powerful
pruning techniques that reduce their footprint (§ 6.2). These techniques can be so effective that
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sometimes resources go unused. We present novel ways to deploy graph logic on the switch that
leverage these resources to obtain better performance in what we call super-linear pipelines (§ 6.3).

6.1 Switch Data Structures
The GraphINC framework uses two main data structures on the switch: a neighbor map for
subgraph enumeration and (one or more) edge list(s) for pattern analysis. Because of size restrictions,
it would be infeasible to fit these structures on the switch for entire graphs. Instead, the GraphINC
framework processes one graph fragment at a time, i.e., it only enumerates subgraphs and tests
patterns that start at the nodes in that fragment. Therefore, a fragment’s neighbor map and edge
list may omit non-reachable nodes. There may still be highly connected nodes that could reach a
significant fraction of the graph. We will discuss this case shortly, but first, let us introduce the
main data structures on the switch.

The Neighbor Map. The classic way to represent a neighbor map is called Compressed Sparse
Row format (CSR). In this format, a list of a node’s edges is laid out on an array. The CSR format
also requires an index to locate where each node’s neighbor list starts and ends. Figure 10 (Left)
shows one way to implement the index and how to pack the arrays together on the switch.

The figure also shows one alternative implementation in which we would not allow a neighbor
map to cross stages. The vast majority of the nodes’ neighbors fit within a register3 and, if space is
left, we can still pack other neighbor lists in it—as long as none of them crosses stages. Figure 10
(Right) shows this representation. It may seem that since storage space is at a premium on the
switch, we should opt for the organization that saves the most space.
However, the complexity of the programs that a switch supports is also limited. The first or-

ganization requires extra code to cross stages, whereas the second only needs to know where a
neighbor list ends once a traversal starts. We opted for more straightforward logic in the GraphINC
framework, i.e., the implementation shown in Figure 10 (Right). Even if some registers may not be
complete, this strategy allows us to trade a small amount of space to reduce the size/complexity of
our program.

The Edge List. The edge list contains a sequence of (𝑢, 𝑣) node pairs. It is used by the pattern
analysis algorithm, for instance, to check if a recently enumerated subgraph contains only fully-
connected nodes. If the necessary edges are present, the subgraph is a clique (§ 4.2). The edge list is
usually large, and even after pruning the unreachable nodes, it requires many registers to store.
Our framework lays out the list across several stages by hashing its contents as Figure 11 (Left)
illustrates.
Pattern analysis, however, involves multiple tests. When the enumeration process adds a new

node to a subgraph, that node may need to have many edges to the rest of the subgraph, depending
on the pattern we are mining. Unfortunately, the feed-forward model gives a packet only one
chance at an action, after which it should move to the next stage (§ 2). If the list is laid out in a
given stage, once the packet moves, it loses access to it. In other words, we can only use the edge
list to test for one edge at a time. This means that the GraphINC framework must recirculate the
packet once more for every additional test the pattern requires.

The GraphINC framework tries to avoid recirculation by reserving as many stages as possible to
the edge list. In many cases, there are stages enough to have more than one copy of it, as Figure 11
(Right) depicts. Each extra copy of the edge list allows an extra edge test to be done. Generally, we
need 𝑘 − 2 copies of the list to fit on the switch, 𝑘 being the size of the pattern we are mining.

3The size of a register is a piece of information under NDA but is adequate for our use cases.
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We can control the size of the edge list by limiting the number of nodes assigned to a fragment.
It is even possible to have a one-node fragment. If this node’s edge list is still too big, we can sub-
partition it further by considering a fragment covering only a few edges. Using such a technique,
the neighbor maps and edge lists for sub-partitions could be arbitrarily smaller. That said, sub-node
partitioning was unnecessary for all the datasets we tested.
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6.2 Pruning Techniques
Besides pruning the unreachable nodes given a fragment, there are task-specific techniques to
reduce the graph size even further. We introduce two pruning techniques here for the k-clique
listing but note that other tasks have pruning opportunities of their own, which we omitted due to
space restrictions.

Testing Order Technique. We present this technique through an example. Suppose we have
two instances of the edge list, as Figure 11 (Right) shows, and the switch fragment contains node
0, and that the enumeration process just added node 3 to the subgraph {0, 1, 2}. By definition,
larger cliques are only extended from smaller cliques. Therefore {0, 1, 2} is a clique. To test the new
subgraph, we need to discover if the edges {0, 3} and {1, 3} exist. We can then assess if {0, 1, 2, 3} is
also a clique.
In general, the pattern analysis process needs to look for edges between {𝑣0, 𝑝}, {𝑣1, 𝑝}, ...,

{𝑣𝑘−3, 𝑝} where 𝑝 is the newly added node, 𝑣𝑖 are the nodes in the subgraph that was extended,
and 𝑘 is the size of the pattern. Because of our partitioning scheme, we know that 𝑣0 will only
contain the fragment’s node(s). In our example, it is node 0. We also know, by convention, that the
membership tests for an edge to this node will be performed using the first copy of the edge list.
Therefore, the first edge list needs to contain only the edges originating from nodes in the current
fragment.

Moreover, we know that all other membership tests will be performed in other edge list copies.
Accordingly, the second edge list contains all edges except the ones originating from the fragment
node with the smallest node ID. This observation results in a substantial compression opportunity.
For the Mico dataset, on average across all fragments, the first stage in pattern analysis holds 21×
less state than the second stage.

Clique Property Technique. By definition, the switch does not need to store neighbors that are
more than 𝑘 − 1 hops away from the fragment’s node(s) it is considering. These neighbors never
form cliques of size 𝑘 that originate from the fragment’s nodes. Therefore, these distant neighbors
can be pruned from the graph representation for that fragment.

However, not all nodes within 𝑘 hops need to be considered. The Clique Property also determines
that a 4-node clique can only be formed from nodes participating in 3-node cliques. In other
words, the opportunity exists to prune nodes not participating in any 3-node clique. This requires
calculating 3-node cliques as part of the pruning process before shipping a fragment to the switch.
The Clique Property pruning applies to the neighbor map and the edge lists. This gives us a

reduction in fragment sizes ranging from a factor of 2 to 9 times. The Clique Property and the
Testing Order techniques are orthogonal and can yield compound benefits.

Discussion. Although the properties we presented here were discussed in the context of the
k-cliques listing task, some of their ideas can be generalized. The order of tests performed in an
arbitrary pattern can be determined upfront, just as we did with k-cliques. The established order
can then help prune the edge list instances. Moreover, the idea of pruning nodes beyond 𝑘 hops
applies to all tasks that mine for fixed-sized patterns.
The pruning techniques we suggest here can be performed during the pre-processing time, as

long as we keep the calculation necessary in check. For instance, we limit the pruning to look at
only 3-node cliques for the Clique Property as opposed to larger cliques. The small addition in
computational effort is offset by the reduction in size of the data structures that are produced.
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6.3 Super- and Sub-Linear Pipelines
As discussed above, a pipeline may have several copies of the edge list. We call this pipeline
linear since it can enumerate and test one subgraph per pipeline traversal. We also mentioned
that if the edge list is too large, we may need to recirculate a packet several times to complete the
pattern analysis. We call such a pipeline sub-linear since many passes are needed for each subgraph.
Figure 12 depicts these pipeline layouts. The figure also shows that, at times, we can leverage our
pruning techniques to compress the data structures enough to enumerate and evaluate several
subgraphs per pass. These are deemed super-linear pipelines.
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Fig. 12. Example of the different types of pipelines for 𝑘 = 5 cliques finding. (Top) The sub-linear pipeline
requires multiple passes because it can only store one edge list. (Center) The linear pipeline enumerates and

tests one subgraph per pass. Therefore it needs 𝑘 − 2 copies of the edge list. (Bottom) The super-linear one

can process two subgraphs per pass because it has a copy of the entire pipeline.

The super- and sub-linear pipeline possibilities give the GraphINC framework great flexibility.
One may choose to engage more resources on the switch to obtain speed. Others may choose to
process with as little switch area as possible or to process more computationally intensive tasks,
for instance, increasing 𝑘 in our k-clique listing running example. We will show shortly what types
of pipelines are possible given a dataset, the desired 𝑘 , and the type of switch available (§ 7.3).

7 EXPERIMENTS
We carried out six sets of experiments, each aiming to answer a specific question about the Graph-
INC framework, as follows:
• How does the switch contribute to the overall performance of a GPM task (§ 7.1)?
• How does the cut assigned to the switch influence that performance (§ 7.2)?
• What is the performance of different types of pipelines (§ 7.3)?
• How scalable is theGraphINC framework when running increasingly complex GPM tasks (§ 7.4)?
• How does the GraphINC framework’s performance numbers translate (or not) across a different
task (§ 7.5)?

• How does the switch performance compare to other accelerators (§ 7.6)?

Setup. We run our experiments on a cluster of 16 servers. Each server contains two sockets, each
with an 8-cores 2.1 GHz Intel Xeon CPU E5-2620v4, and a total of 128 GB of main memory. The
servers run Ubuntu Linux 22.04.1 and are interconnected through a programmable hardware switch
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with 100 Gbps ports based on the Tofino 1 chip [38]. We use Mellanox’s ConnectX-5 100 Gbps
network cards on all the servers.

We program the switch using P4 to behave like a regular packet forwarding device when running
baseline experiments. Otherwise, the switch is programmed to run the GraphINC framework in
addition to its packet forwarding logic. Either way, the servers run the server-side portion of the
GraphINC framework, written in C. Unless mentioned otherwise, we use the server-side portion
of the framework to implement the k-clique listing task (cf. § 4.4).

We use several known graph datasets in our experiments: the Mico dataset models co-authorship
information; the Skitter dataset captures Internet topology; the Wiki dataset represents communi-
cations over wikipedia (i.e., discussions pages); the Patents dataset represents patents and their
citations. Table 1 lists the key characteristics of these graphs.

Graph |V(G)| |E(G)| 𝑑
4-nodes 5-nodes

cliques subgraphs cliques subgraphs
Mico [25] 100k 1.08M 22 515M 984M 19B 36B
Skitter [50] 1.7M 11M 13 149M 2.1B 1.1B 27B
Wiki [50] 2.3M 4.6M 3 65M 4.8B 383M 49B
Patents [31] 3.7M 16M 10 3.5M 68M 3M 44M

Table 1. Dataset Properties, where 𝑑 is the average degree.

The columns 4-nodes and 5-nodes in Table 1 refer to the number of cliques and subgraphs
generated for those values of𝑘 . These numbers help us put in perspective the amount of computation
involved for each dataset.

7.1 Effects of Engaging the Switch
This first experiment compares the performance of executing the k-cliques listing task with 𝑘 = 4
and 𝑘 = 5. We compare the GraphINC framework with two different baseline systems. The first
one is called Fractal, a state-of-the-art GPM system built on top of Spark [23] and OpenJDK8. We
list Fractal’s results running on 8 or 16 machines because, curiously, the latter may be worse than
the former. The second baseline is the GraphINC framework itself but running with the switch
in a passive mode, i.e., using the switch only to exchange data between servers. We denote this
version by ‘Servers’ since no acceleration is deployed in this case.

In contrast, the GraphINC framework version uses the switch to process the skewed portion
of the graph, but otherwise, it uses the same server-side code as the ‘Servers’ version. We use the
dynamic cut approach to determine the size of the switch cut (§ 5). The three systems run on the
same machines and switch. We tested these systems with the datasets described in Table 1 and
show the results of this experiment in Figure 13 (in log scale).
The charts show that the switch-accelerated version of the k-cliques is faster in all cases. The

reason is that, given the switch assistance, the servers are required to process a smaller, more
uniform portion of the graph. For the three datasets, Mico, Skitter, and Wiki, the difference in speed
between GraphINC and Fractal ranges from 6.58×, for Mico and 𝑘 = 5, to 52.49×, for Skitter and
𝑘 = 4. The difference in speed between GraphINC and the servers ranges from 2.67× for Mico
𝑘 = 4 to 10.79× for Skitter and 𝑘 = 5.

For the Patents dataset, we notice a different behavior compared to the other datasets. Patents
is peculiar in that its number of cliques and subgraphs decreases as the pattern size increases, as
shown in Table 1. Moreover, most of the cliques do not originate from a small portion of high-degree
nodes.

These factors explain the behavior seen in Figure 13 for the Patents dataset: there is no substantial
difference between the runtime of 𝑘 = 4 and 𝑘 = 5. The GraphINC framework still outperforms
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(a) 𝑘 = 4 (b) 𝑘 = 5

Fig. 13. Comparison of running the k-cliques task entirely on servers or sharing the workload with the switch.

Fractal by 125.5× and 113.73× for 𝑘 = 4 and 𝑘 = 5, respectively, but it improves the servers
performance by only 1.9× and 1.8× for 𝑘 = 4 and 𝑘 = 5, respectively.

7.2 Effects of Varying the Cut Size
This experiment expands on the results of the previous one as follows. We run the GraphINC
framework again on all the datasets of Table 1, calculating both 𝑘 = 4 and 𝑘 = 5 cliques finding
task, but now we vary the switch cut manually from 100 to 1000 nodes. (We extend the experiment
to 200k nodes for the Patents dataset.) For each cut size, we record the time the servers take with
the switch acceleration. For comparison, we annotate each experiment with the actual switch cut
(dynamic) that would be chosen by the GraphINC framework. Figure 14 shows the experiment’s
results.
As expected, the larger the cut, the longer the switch takes to complete its part of the compu-

tations and, conversely, the easier it becomes for the servers. Recall that the nodes are ordered
by degree and that the skew is concentrated on early nodes. Therefore, the switch handles the
most computationally intensive nodes, even in the small cuts. We observe that, as expected, the
GraphINC framework determines the dynamic cut conservatively by erring on this side of assign-
ing more work to the switch (§ 5.3). The charts show that this decision affects the performance
only marginally. Ultimately, this penalty is small given that the alternative, early cuts, would have
worse performance consequences.

7.3 Performance of Different Types of Pipelines
For certain datasets and 𝑘 sizes, it is possible to duplicate logic and data structures on the switch
such that more than one subgraph can be handled in a single pass, i.e., by traversing all stages in
the switch once (§ 6.3). In other cases, we need several passes on the switch to process a single
subgraph. Table 2 describes which pipelines are possible for the Tofino 1 generation of switches as
well as the projected results for the next generation of switching silicon, Tofino 2 [37], which has
more stages per pipeline.

The table uses a numeric scale to denote how much processing is done by a pipelined implemen-
tation. A zero indicates that the pipeline is linear, and precisely one subgraph is processed at every
pass. A positive number means the pipeline is super-linear and can process an additional number
of subgraphs. For instance, a +1 means this is a 2-subgraph super-linear pipeline; a +2 denotes a
3-subgraph pipeline, and so on. A <+1 means that we cannot implement a super-linear pipeline but
miss by very little. The × sign means a certain pipeline implementation is not feasible. A negative
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(a) 𝑘 = 4 (b) 𝑘 = 5

Fig. 14. Effect of varying the size of the offloaded fragment for different datasets and values of 𝑘 .

number means the pipeline is sub-linear. For instance, a -1 means each subgraph requires one
additional recirculation to be fully processed.

Tofino 1 Tofino 2
sub- linear super- sub linear super
linear linear linear linear ×

Mico
k=5 +2 +6 -2
k=6 <+1 +3 -1
k=7 <+1 +3 +0

Skitter
k=5 × +1 +1
k=6 -1 × × × +2
k=7 -2 × × × +3

Wiki
k=5 <+1 +3 +4
k=6 <+1 +2 +5
k=7 -1 × × +2 +6

Table 2. Pipelines types supported by Tofino 1 and 2 chips. A positive number indicates the additional

number of subgraphs per pass that super-linear pipelines can implement (cf. Fig. 12). A negative number

indicates the amount of recirculations needed on a sub-linear pipeline. An × means the pipeline cannot be

fully implemented.
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Table 2 shows we can implement 3-subgraph super-linear pipelines for Mico and 𝑘 = 5. In other
words, we can fit three instances of the enumeration-testing logic (cf. Figure 5) in one pipeline. This
means we can also implement a 2-subgraph super-linear version of that pipeline by omitting one
enumeration-testing logic instance, and a linear version, by omitting two. Therefore, we decided
to compare the performance scalability of these three different implementations. The idea behind
this experiment is to quantify the performance benefits of traversing more subgraphs per pass.
Figure 15 shows the result of this experiment.

Fig. 15. Effect of pipeline optimization.

We observe that the super-linear pipelines are 2.13× and 3× faster than the linear one. This
is due to the reduced number of packet recirculations required to perform the enumeration. For
instance, the recirculation is reduced by 2.8× when using the faster super-linear pipeline compared
to the linear one.

7.4 Projected Scalability of the Framework
In this experiment, we investigate how the GraphINC framework’s performance evolves when we
execute the k-clique listing task for increasingly large clique sizes. We use Fractal with 16 servers as
the baseline. Figure 16 (Left) shows the results for the Mico dataset while Figure 16 (Right) shows
the results for the Wiki one. Note that the y-scale in those charts is logarithmic.

Fig. 16. Performance for cliques of size [5-7] on Mico (left) and Wiki (right). Cliques of size 7 are calculated

using sub-linear pipeline on Wiki.

For the Mico experiments, we use an actual 3-subgraph implementation for 𝑘 = 5. However,
as shown in Table 2, for 𝑘 = 6 and 𝑘 = 7 super-linear pipelines are barely possible, i.e., there is
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a good amount of space left on the switch after implementing a linear pipeline but not enough
to implement a 2-subgraph one. We decided to assess the potential of a 2-subgraph pipeline by
making some implementation modifications. These modifications execute in the same way as an
actual 2-subgraph super-linear pipeline once the data is loaded into the switch data structures.
However, loading data fragments in this setup is not possible in a fast way. The measured times we
show do not consider this extra loading time, but it simulates accurately the times we expect to see
on a Tofino 2 switch.

For the Wiki experiments, we performed similar modifications. As Table 2 shows, the 𝑘 = 5 and
𝑘 = 6 could not be super-linear but by very little, so we bypass the data loading times as above.
The 𝑘 = 7 is an actual sub-linear pipeline. The results indicate that the GraphINC framework is
consistently faster than Fractal for cliques of sizes [5-7] for both the Mico and the Wiki dataset.

7.5 Performance on a Different Task
In this experiment, we evaluate the switch performance on a different task: the k-motifs finding
task. We run two sets of experiments, the first for size 3-motifs, which contains 2 patterns, and the
second for size 4-motifs, with 6 patterns. Figure 17 shows the different patterns involved in this
task. Like in the k-cliques listing task, the GraphINC framework assigns the skewed portion of
the graph to the switch and the remaining nodes to the servers. We use the Mico dataset in this
experiment and two baselines: Fractal and the non-accelerated version of GraphINC framework
(‘Servers’). Figure 18 and 19 show the results of this experiment. Note that the y-scale in Figure 18
is logarithmic.

Fig. 17. (Left) 3-motifs patterns and (Right) 4-motifs ones.

Fig. 18. Comparison of running the k-motif task entirely on the servers or sharing the workload with the

switch.

The results in Figure 18 show that GraphINC outperforms Fractal by 83× in the case of 𝑘 = 3,
and 5.7× in the case of 𝑘 = 4. GraphINC also outperforms the servers by 4.4× for 𝑘 = 3, and 5.4× for
𝑘 = 4. These acceleration numbers are consistent with the numbers we obtained for k-cliques (§ 7.1),
i.e., our framework outperforms the baselines on both tasks by similar margins.

Figure 19 shows the effect of varying the cut size on the run time for the motifs task. Like in the
k-cliques listing task, most results originate from the high-degree nodes, and, as expected, we see
the GraphINC framework assigning the ‘actual cut’ (dynamic) to the right side of when the curves
cross, i.e., the ideal cut.
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(a) 𝑘 = 3 (b) 𝑘 = 4

Fig. 19. Effect of varying the size of the offloaded fragment for different values of 𝑘 .

7.6 Comparison to Other Accelerators
In this experiment, we evaluate the relative performance of different accelerators for the k-clique
listing task. We start with Pangolin, a state-of-the-art Graph Pattern Mining System [12], which
runs on GPUs and CPUs. For the GPU experiment, we installed an NVIDIA GTX TITAN X GPU
(12GB memory) with CUDA 10.2 on one of our servers. We compare the performance of Pangolin in
a stand-alone CPU and in a stand-alone GPU with the GraphINC framework using a single switch.
We vary the sizes of the cliques we are mining from 𝑘 = 4 to 𝑘 = 6. We used the Mico dataset in this
experiment, and the switch was loaded with a 𝑘 = 4 and 𝑘 = 5 3-subgraph super-linear pipeline
and a 𝑘 = 6 linear one. Figure 20 shows the results of this experiment. Note that the y-scale in that
chart is logarithmic.

Fig. 20. Comparing a switch and GPU as accelerators for finding cliques in the Mico dataset.

The results show that, for smaller cliques, the switch performs better than the CPU but worse
than the GPU for 𝑘 = 4 and 𝑘 = 5. The real difference appears in 𝑘 = 6, as the size of the intermediate
results for processing cliques grow (e.g., the number of subgraph candidates). Pangolin depends
heavily on optimized in-memory tables whose size is relative to the size of such intermediate
results. Consequently, it runs out of memory when processing 𝑘 = 6. The memory limitation,
however, is temporary, as newer generation GPUs tend to come with more memory than the
previous generation.

Either way, we should note that there are promising partitioning techniques to fit graphs beyond
the GPUmemory [30] or that use multiple GPUs [11]. As future work, we plan to compare advanced
GPU techniques to a version of GraphINC that utilizes the next generation of programmable
switches. Independently of each platform’s relative merits, the work we present here provides
system builders with an additional acceleration option that did not exist before. The switch may be
an existing equipment rather than an addition of a card, and using it would not alter the power
consumption of the entire platform, as adding accelerator cards would.
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Next, we evaluate the performance of GraphINC compared to GraphPi, a state-of-the-art dis-
tributed Graph Pattern Matching system [65]. Note that pattern matching and mining systems
are different. GraphPi receives one pattern at a time and generates an optimal matching order
to eliminate all redundant computations for this pattern, whereas the GraphINC framework un-
derstands that several patterns may be involved in a task. For this reason, to evaluate the task of
finding 5-cliques in GraphPi, we input clique patterns of sizes 3, 4, and 5 and aggregate the results.
Figure 21 shows the results of peforming the k-cliques task on the different systems for 𝑘 = 4 and
𝑘 = 5.

Fig. 21. Comparing GraphPi and GraphINC systems when performing the k-cliques finding task.

The results show that the GraphINC framework provides improvements ranging from 2.19× for
Skitter 𝑘 = 5 to 11.53× for Wiki 𝑘 = 4. There is one specific case in which GraphPi’s results and
ours are the same, in Mico 𝑘 = 5. This may be due to the highly crafted server-side optimizations
that GraphPi performs that are absent in our server-side scheme. Our servers stack could also adopt
these optimizations, but even so, the switch fundamentally takes over a portion of the work from
the servers. If the portion chosen is computationally intensive—e.g., the skew—the experiments we
presented here show that the acceleration provided by moving the computation to the switch is
substantial.

8 RELATEDWORK
To the best of our knowledge, theGraphINC framework is the first to demonstrate how to accelerate
GPM tasks using In-Network Computing and programmable switches. However, INC has also
been shown to benefit other database areas such as query execution [40, 47, 48, 61, 66, 72, 73],
data aggregation [27, 46, 63, 78], data caching [44], replication [52, 82], transactions support [19,
41, 43, 51], and benchmarking [42, 49], to cite a few areas. As programmable switches replace
fixed-function ones in major networking equipment vendors, we expect to see other uses of INC
applied towards data analytics in general and graphs in particular.

There exist numerous algorithms tackling GPM tasks in the literature. We divide them into three
classes according to their focus: single-machine approaches, distributed systems approaches and
hardware-based acceleration approaches. We discuss each of them in turn.

Single-Machine Approaches. The approaches in this category run on a single machine and try
to leverage the multi-core architecture in which typical CPUs are structured. The advantage of
keeping to a single machine is that the processes can communicate with light-weight methods such
as shared-memory [12, 39, 53, 54, 76]. Most of these algorithm apply, like our approach, techniques
to reorder vertices to reduce the search space and achieve load balancing. Note, however, that while
most of them reorder vertices to scatter the skew, we reorder vertices to concentrate it (§ 5.1).

Some relational systems can express graph pattern matching as SQL-like queries [26, 33]. These
systems usually implement a join algorithm called worst-case optimized join [58, 75] in which the

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 184. Publication date: June 2023.



184:24 Rana Hussein et al.

join is solved without enumerating unnecessary subgraphs. This is equivalent to the depth-first
search that the GraphINC framework performs on the switch.

Distributed Systems Approaches. In this category, systems try to parallelize the processing
of the task and distribute it across a set of machines while incurring a minimum amount of
communication [10, 23, 60, 69, 70, 77, 80]. The core aspect about these approaches is that they need
to handle skew in a dynamic fashion. They typically use a range of techniques that revolve around
the idea of dynamic work stealing across cores and workers. By definition, these systems deploy a
switch to interconnect the servers and, therefore, our technique can be seen as complementary. It
is conceivable for these approaches to resort to the offloading techniques we present here should
the switch they deploy be programmable.

GPU- and Hardware-based Accelerator Approaches. Like ours, this class of algorithms resorts
to specialized hardware for GPM computations. The most common platform in this category are
GPU-based [11, 12, 30, 79], but further work also proposes accelerators such as Processing-In-
Memory [5], or even custom ASICs [13, 32, 45, 81]. The way in which the hardware is used varies
greatly. For instance, some accelerators, like ours, require a change of paradigm, e.g., the use of
set-centric algorithms in the PIM work [5]. Some accelerators, unlike ours, run the entirety of the
GPM task, e.g., Pangolin [12]. The most notable difference to our approach is that the GraphINC
framework does not alter how the servers operate; it simply reduces the load by dynamically
assigning portions of the graph to the switch.

9 CONCLUSION
This paper introduced the GraphINC framework, a high-performance distributed system that
supports Graph Pattern Mining tasks. The most salient feature of our framework is that it utilizes a
new technology called In-Network Computing, in which the network is at once the element that
transports data and a computing unit that can process it. In particular, the GraphINC framework
leverages off-the-shelf programmable switches to offload the computations on the critical, heavy
portions of the graph.

Adopting the GraphINC framework has at least two significant advantages. First, it effectively
benefits from hardware acceleration without adding new hardware. Strictly speaking, the hardware
in question—the switch—already exists in a distributed system setting, and programmables switches
are bound to become prevalent, given their flexibility and similar costs. Second, our framework
provides significant performance improvements by relieving the servers from processing the skewed
portion of the graph.
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