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Abstract—Sparse Mobile Crowdsensing (MCS) has become
a compelling approach to acquire and make inference on
urban-scale sensing data. However, participants risk their
location privacy when reporting data with their actual sensing
positions. To address this issue, we adopt e-differential-privacy
in Sparse MCS to provide a theoretical guarantee for parti-
cipants’ location privacy regardless of an adversary’s prior
knowledge. Furthermore, to reduce the data quality loss caused
by differential location obfuscation, we propose a privacy-
preserving framework with three components. First, we learn
a data adjustment function to fit the original sensing data to
the obfuscated location. Second, we apply a linear program to
select an optimal location obfuscation function, which aims to
minimize the uncertainty in data adjustment. We also propose
a fast approximated variant. Third, we propose an uncertainty-
aware inference algorithm to improve the inference accuracy of
obfuscated data. Evaluations with real environment and traffic
datasets show that our optimal method reduces the data quality
loss by up to 42% compared to existing differential privacy
methods.

I. INTRODUCTION

Mobile Crowdsensing (MCS) [1] is an emerging paradigm
that leverages the recent surge of sensor-equipped smart-
phones to collect urban-scale information, such as noise [2]
and traffic [3]. However, the target sensing area can some-
times be so large that it might be challenging to get sufficient
spatial coverage of mobile users due to budget or time
constraints. One solution is to use Sparse Mobile Crowd-
sensing to impute information of the uncovered regions
by combining historical records with available sensing data
from nearby regions [4]. In Sparse MCS, participants report
the sensing data with time stamps and geographical coordi-
nates, which may introduce serious privacy risks. Therefore,
ensuring location privacy is essential to attract participants.

A large body of work on location-based systems (LBS)
studies location privacy, and has proposed two general
protective mechanisms [5]: (i) protecting users’ identities
through anonymity, so that their location traces cannot
be linked to specific individuals, and (ii) using location
obfuscation to alter users’ actual locations exposed to the
service provider. This paper focuses on obfuscation.

One of the most popular obfuscation mechanisms is
cloaking [5], [6]. It represents a user’s location as a cloaked
region containing multiple fine-grained cells instead of a
specific place or cell. However, the effectiveness of cloaking
can be greatly impaired if the adversary has prior knowledge

about the target user’s location distribution [7]. For example,
if the cloaked region where a user appears consists of a
school and a government office and it is known that the user
is a student, the adversary can conclude rather confidently
that the user would be at the school.

To address this problem, differential privacy [8], [9] has
been introduced to ensure that the chance of users being
mapped to one specific obfuscated location from any of
the actual locations is similar [7]. The more similar the
probability for each region is, the harder it is to infer users’
original positions, leading to better privacy protection.

In conventional LBS, the data loss introduced by applying
differential privacy is measured by the distance between
the actual and the obfuscated locations. However, in Sparse
MCS, the data quality loss is determined by the difference
of sensing data between the actual and the obfuscated
locations, instead of the geographic distance. In other words,
a participant’s location may be mapped to a place far away,
as long as the sensing values of the two locations are close
enough. Therefore, instead of directly using the existing
algorithms for LBS [7], [10], we need to redesign the
obfuscation mechanisms for Sparse MCS applications.

In this paper, we explore how to balance three key
elements in the location privacy-preserving mechanism for
Space MCS applications: the participant’s privacy require-
ments, the adversary’s prior knowledge about the partic-
ipant’s actual location distribution, and the data quality
degradation stemming from the location obfuscation. The
main contributions of this work are:

1) To the best of our knowledge, this is the first work
to apply differential location privacy to Sparse MCS while
reducing the data quality loss.

2) A quality-assured privacy-preserving framework, which
consists of three components: (i) a data adjustment function
to fit the original sensing data to the obfuscated location; (ii)
an optimal obfuscation function, DUM-¢€e, and its fast ap-
proximation, FDUM-€e, to minimize the uncertainty in data
adjustment under the constraints of e-differential-privacy
and evenly-distributed obfuscation; and (iii) an uncertainty-
aware inference algorithm to improve the inference accuracy
for the obfuscated data.

3) Empirical evaluations with real temperature and traffic
monitoring datasets, which validates that compared to the
existing differential privacy mechanisms, our framework
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Figure 1: Regular data reporting for Sparse MCS (Top) and with location
privacy protection using obfuscation (Bottom).

(3) After the participants

with DUM-ee can reduce the data quality loss by up to 42%;
compared to DUM-ee, FDUM-€e increases the quality loss
by <3%, but with only <1% of the computation time.

II. PRELIMINARY: SPARSE MCS

Sparse MCS Use Case. Suppose an organizer launches a
temperature monitoring task in a target urban area, which is
divided into fine-grained regions. The goal is to update the
temperature map once every hour (sensing cycle) based on
sensing results from selected participants. These participants
need to upload the temperature sensed on their smartphones
to the server, along with the actual sensing locations (see
Figure 1 (2-Top)). Typically, with a limited budget, the
selected participants cannot fully cover the area; hence,
the server needs to infer the temperature values of the
overlooked regions (see Figure 1 (3-Top)).

Collected Sensing Matrix. Data inference is modeled as
a matrix completion problem: let Collected Sensing Matrix
(C) be a matrix to record the data collected from partici-
pants, such that C|r,t] represents the data of region r in
cycle t. If no participant uploads data from region 7 in cycle
t, then C|[r,t] is unknown. The key to a successful Sparse
MCS task is to determine a high quality, low uncertainty
inference algorithm to fill in the missing data.

Data Inference Algorithm. Recently, compressive sens-
ing has been proven to be more accurate than most of
the other methods in inferring urban sensing data such as
temperature and traffic [3], [11], [12], so we use it as the
inference method in this paper.

As a corollary from the compressive sensing theory,
Candes et al. [13] postulate two critical assumptions for
applying compressive sensing to matrix completion problem:

1) Even Data Distribution. To ensure effective data infer-
ence, uniform distribution of the observed data is required.
In Sparse MCS, this means that the sensed regions in the
target sensing area should be evenly distributed [13].

2) Small Data Uncertainty. When there is no noise or
uncertainty in the sampled entries, the missing values in the
matrix can be accurately inferred as long as the previous
assumption holds. When the sampled entries contain noise
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Figure 2: Location privacy-preserving framework for Sparse MCS.

or uncertainty, the total inference error is proportional to the
uncertainty level of the sampled entries [13].

We will revisit the two essential assumptions when dis-
cussing the design of quality-optimized location privacy-
preserving mechanisms.

III. LOCATION PRIVACY-PRESERVING FRAMEWORK

Regular data collection in Sparse MCS needs participants
to report their actual regions. Using obfuscation to add
location privacy protection can allay participants’ concerns,
but may lead to data quality loss if the sensing data assigned
to an obfuscated region were not representative of the actual
situation. Therefore, we design a location privacy-preserving
framework, which incorporates two unique components:
location obfuscation and data adjustment.

Figure 1 (Bottom) illustrates the privacy-preserving pro-
cess of Sparse MCS for a temperature monitoring use
case, where participants report their obfuscated locations
to the server rather than their actual locations. Figure 2
is an overview of our proposed location privacy-preserving
framework for Sparse MCS. It consists of two tiers — server
side and mobile client side. Before a Sparse MCS task
starts, based on the historical sensing data, the server side
generates a probabilistic obfuscation matrix (Step S1) and a
data adjustment function (Step S2) in an offline manner.
The matrix encodes the probabilities of obfuscating any
one region to another. We can safeguard users’ location
privacy by carefully selecting the probabilities, which can
make it impossible to accurately infer an actual region from
its obfuscated counterpart, even if the adversary knows the
obfuscation matrix. The data adjustment function is used
to reduce data uncertainty due to region obfuscation. It
is learned by analyzing the correlation between any two
regions’ sensing data in the historical log.

After pre-downloading both the obfuscation matrix and
the data adjustment function to their mobile phones, parti-
cipants can execute the sensing task on the mobile clients
as follows. First, each mobile phone senses its actual loca-
tion. Then, based on the probabilistic obfuscation matrix,
it maps the associated region to another region (Step M1).
Afterward, the data adjustment function alters the original
sensing data to fit the properties of the obfuscated region
(Step M2). The mobile client then uploads the modified
region and data to the server. The server then infers the full
sensing map from all the obfuscated regions collectively,



which contains a certain degree of uncertainty compared to
the actual data (Step S3). Next, we introduce how to apply
differential location privacy to Sparse MCS.

IV. DIFFERENTIAL LOCATION PRIVACY

Adversary Model. In this paper, we focus on a common
adversary model — Bayesian attack [7], [10]. Specifically,
suppose an adversary has some prior knowledge about the
probabilistic distribution of a user’s actual region r, denoted
as m(r); also, the adversary is assumed to know the location
obfuscation probability P[r,r*] for any source region r and
target region r*.! Then, if the adversary observes the user’s
obfuscated region r*, he can predict a posterior distribution
of the user’s location, denoted as o (r), based on Bayes’ rule:

O'(T’) _ P[T.?T*] ) ,/T(T.)
Yoper Plrsre] - ()

Remark 1: The location obfuscation process is done on the
smartphone side so that the MCS server has no knowledge
of participants’ true locations like an adversary.

Remark 2: This adversary model is a snapshot localization
attack: the adversary can infer a participant’s actual region
using only the currently reported (obfuscated) position. The
study on trajectory attack will be our future work.

Definition. Under this adversary model, our intention of
defining differential privacy in Sparse MCS is to bound
the improvement of the adversary’s posterior knowledge
over the prior knowledge, i.e., o(r)/m(r). Intuitively, if two
regions r and 7’ have similar probabilities of being mapped
to r*, then an adversary, if observing r*, will be unable to
distinguish whether the true region is 7 or 7.

ey

Definition 1. e-differential-privacy. Suppose the target sens-
ing area consists of a set of regions R, then a probabilistic
obfuscation matrix P satisfies e-differential-privacy iff:

Plr,r*] <e“ - Plr',r*], Vrpr',r*eR )

where € is the parameter indicating the level of privacy, and
P[r,r*] denotes the entry in P of obfuscating r to r*.

The smaller ¢ is, the stronger privacy protection is. Note
that e-differential-privacy is just a constraint on the obfusca-
tion matrix; hence, given a certain ¢, multiple matrices may
satisfy the e-differential-privacy.

Privacy Guarantee. We can prove that e-differential-
privacy theoretically limits the knowledge gain in the pre-
vious adversary model, i.e., o(r)/m(r), whatever the adver-
sary’s prior knowledge 7 (r) is (Theorem 3.2 in [7]).

Theorem 1. If an obfuscation matrix satisfies e-differential-
privacy, then for an adversary with any prior knowledge T,
his posterior knowledge o satisfies:

/e <o(r)/m(r) <ef, VreR 3)

The adversary could obtain P through spoofing to be a participant and
receive P directly from the server.

V. DIFFERENTIAL LOCATION PRIVACY WITH DATA
QUALITY LOSS REDUCTION

As illustrated above, there may exist many obfuscation
matrices satisfying e-differential privacy. Our goal is to
select the one that can minimize the data quality loss brought
in by location obfuscation.

A. Data Quality Requirements for Obfuscation

Recall that in regular Sparse MCS tasks, to infer the
complete sensing matrix, compressive sensing theory as-
sumes that (1) the participants report from evenly distributed
regions, and (2) their reported sensing data are accurate [13].
However, introducing differential location privacy may com-
promise these two requirements:

1) Even Obfuscated Region Distribution. While the se-
lected participants’ actual location distribution is even, the
distribution of the obfuscated regions may be unbalanced.
Consider an extreme case of the obfuscation matrix where
no region can be obfuscated to region <. Then in the collected
sensing matrix, all the values of the ith row are unknown.

2) Small Data Uncertainty in Obfuscated Regions. The
participant’s actual sensing data corresponds to the original
region. Although data adjustment can reduce the discrepancy
between the reported data and the true data of the obfuscated
region, inevitably there still exists some uncertainty after this
process.

B. Optimal Obfuscation Matrix Generation

We seek to reduce the data uncertainty and control the
distribution evenness of the obfuscated regions arose in the
location obfuscation. To achieve the first goal, we optimally
select an obfuscation matrix that can minimize the expecta-
tion of data uncertainty between the reported and true data
in the obfuscated regions. Regarding the second aspect, we
introduce an evenness constraint to the obfuscation matrix.

Objective: Data Uncertainty Minimization

The first step to reduce the data uncertainty is applying a
data adjustment function to adapt the original sensing data
to the obfuscated region. As environmental data usually have
high spatial correlations [11], we learn a linear regression
model for data adjustment, based on the historical sensing
data of the original and obfuscated regions. In our framework
(Figure 2), model learning is conducted on the server (Step
S2), while the linear fit estimation is performed on the
mobile clients (Step M2).

We define an uncertainty matrix, U, to represent the
intrinsic error or uncertainty of the proposed data adjustment
model. Note that U[r,*], the data uncertainty incurred by
obfuscating region r to r*, can be computed by the residual
standard error of the linear regression adjustment model.

Intuitively, smaller uncertainty leads to better quality.
Hence, we can formulate the problem as finding an obfus-
cation matrix P that can minimize the overall expectation
of data uncertainty in U, i.e.,
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where p(r) is the overall probability of any one participant
appearing in the region r (3 . p(r) = 1). Usually p(r) is
assumed to be a uniform distribution or modeled as overall
human mobility pattern (e.g., via anonymous mobile phone
call records [14]). For a well-designed Sparse MCS task,
p(r) should be roughly even-distributed to ensure the data
quality. For simplicity, p(r) is set to 1/|R| (uniform). Then,
to improve data quality for Sparse MCS, the objective is to
minimize Eq. 4, with the following constraints.

Constraint 1: e-Differential-Privacy

P must satisfy e-differential-privacy (Eq. 2).

Constraint 2: Even Obfuscated Region Distribution

The obfuscated regions need to be evenly distributed to
guarantee the inferred data quality, i.e.,

B =30 pr) Pl = 1R )

Linear Optimization: DUM-ce

With the objective of reducing data quality loss, we
formulate a linear program, Data Uncertainty-Minimization
under constraints of e-differential-privacy and evenly-
distributed obfuscation (DUM-ee), to obtain the optimal P:

arg min Z p(r) - Z Ulr,r*] - P[r,r"] 6)
P reR r*eR

s.t. Plr,r*] <e®- P[r',r*] vrr'or*eR - (7)

Zp(r) -Plr,r*]=1/|R| Vr*eR (8)
reR

Plr,r*] >0 Vr,r* € R 9)
Z Plrr¥] =1 VreRr (10)
r*€eER

where Eq. 7 is e-differential-privacy; Eq. 8 is the evenness
constraint; Eq. 9 and Eq. 10 are constraints for probabilities.

C. Approximation of Optimal Obfuscation Matrix

DUM-ee needs to make O(|R|?) comparisons between
different regions to ensure e-differential-privacy, which
makes it hard to scale. We thus approximate DUM-ee to
reduce the number of comparisons, while still ensuring e-
differential-privacy.

To mark which two regions need to be compared, we de-
fine a region-comparison graph G(R,E) where each vertex
r € R represents a region. Two regions rq, ro are required
for comparison if the edge (ri,72) € €. For DUM-¢e, G is
a complete graph as every two regions should be compared.

Now, we introduce the definition of diameter-2-critical
graph [15], whose diameter is 2 and the deletion of any edge
increases its diameter. Then, the following theorem holds:

Theorem 2. If G(R,E) is a diameter-2-critical graph, an
obfuscation matrix P satisfies e-differential-privacy if it
satisfies the following tighter constraint:

Plr,r*] <e2 - P/, r*], V(rr)e&r*cR (1)

The number of comparisons in Eq. 11 is O(|€||R]). To
reduce O(|€||R|), we identify the diameter-2-critical graph
with the minimal number of edges [16]: one vertex is joined
by an edge with all others; then, O(|€|) = O(|R]), and the
number of comparisons is O(|R|?). We then approximate
DUM-ee by replacing Eq. 7 with Eq. 11, calling it Fast
DUM-ece (FDUM-¢ce). To create the minimal diameter-2-
critical graph, any region can be chosen as the “central”
vertex that connects to all others. Our experiments show
that this selection has negligible effect on the data quality,
and thus we randomly pick one as the central vertex.

D. Uncertainty-Aware Inference Algorithm

Ordinary compressive sensing inference for matrix com-
pletion treats all the collected data instances equally in the
learning process [3]. However, as the privacy-preserving
data instances inherently have uncertainties, we propose an
uncertainty-aware inference algorithm by assigning higher
weights to the uploaded (adjusted) data with lower uncer-
tainty as an indicator of trust. More specifically, we extend
the stochastic gradient descent [17] learning process and
give different sampling weights to different entries in the
collected sensing matrix. The weight assigned is based on
the overall uncertainty @(r*) of the obfuscated region r*:

a(rt) =Y _ p(r)- Plrr]- Ulr,r*) (12)

As higher weights should be assigned to lower-uncertainty
regions, we compute the sampling weight w(r*) as follows:
" (¥
w(r*) = wo + (1 — wp) - Tmex — 8" (13)
Umax — Umin
where Upax and Ui, are the maximum and minimum
overall uncertainties among all the regions, respectively;
wp € [0,1] is the basic sampling weight for the region with
the highest uncertainty, which is set to 0.75 as found in our
empirical results (see Section VI).

VI. EVALUATION

Baselines. We employ three privacy-preserving baseline
mechanisms. The difference between them and (F)DUM-ce
is the method for generating the obfuscation matrix P.

Self [18] assigns higher probability to self-obfuscation
pairs: Pyylr, 7*] o< €€, if 7* = r; 1, otherwise.

Laplace [7] is to add Laplacian noise to the actual location
data. Intuitively, Laplace tends to obfuscate a region to its
nearby regions with high probability.

Exponential [9] is also a widely-used differential privacy
mechanism. We set its scoring function as the uncertainty
matrix; thus, the smaller U[r,r*] is, the higher P[r,r*] is.

Evaluation Scenarios. We evaluate our framework on
two datasets from real environment and traffic monitoring.

Environment monitoring: We use the temperature sensing
datasets from SensorScope [19]. We divided the target area,
EPFL campus (300m x500m), into 100 equal-sized regions
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(IR| = 57).
(30mx50m), and got 57 regions deployed with the sensors.
These 57 regions are used in the evaluation. The sensing
data spanned one week, with a sensing cycle of 30 minutes.
We use the SWIM model with the ‘Dartmouth’ setting [20]
to generate the moving traces of 1000 candidate participants.

Traffic monitoring: We use a four-day trajectory dataset
of ~30,000 taxis in Beijing [21]. The sensing cycle is set
to 1 hour. Road segments (between two neighboring road
intersections) are seen as ‘regions’. We choose the top 100-
500 road segments which have the most frequent taxi visits
to construct the target sensing area.

For both scenarios, the data of the first day is used for
learning the data adjustment function and region obfuscation
matrix, while the rest days are for testing.

Experiment Parameters. We set up the experiment with
the privacy level, €, and the number of participants selected
in each cycle, k, as independent variables.

Data Quality Metric. To measure data quality, we calcu-
late the Mean Absolute Error (MAE). For each experiment
setting of k and e, MAE is computed over five repeated trials.
We focus on data quality loss and define Lossyag:

Lossyap(DUM-ce) = MAE(DUM-¢ce) — MAE(No-Privacy)

2

Evaluation Results: Computation Resources. The most
time-consuming part of our framework is learning the ob-
fuscation matrix. The time needed is proportional to the
number of regions in the target sensing area. We use IBM
CPLEX to solve DUM-ee or FDUM-¢€e. In our test computer
(CPU: Intel Core i7-3612QM @2.10GHz, RAM: 8 GB, OS:
Windows 7), DUM-ce can only process at most 150
regions, which consumes 1119 seconds; otherwise, CPLEX
terminates exceptionally with ‘out of memory’. For FDUM-
€e, computation time is less than 1% of DUM-ce, and could
handle up to 500 regions within just 121 seconds. As
learning obfuscation matrix is an offline process, the above
computation time is acceptable.

Evaluation Results: Data Quality. In general, our results
show that DUM-ce can reduce data quality loss by up to
429% compared to the three baselines, and FDUM-ee can
achieve similar performance as DUM-ee (<3% additional
quality loss).

Environment Monitoring. Figure 3a shows the temperature
MAE under varying privacy level €, with a fixed number
of participants (k = 15). As expected, No-Privacy achieves
the best data quality. Among the privacy-preserving mecha-
nisms, DUM-ee incurs the smallest Lossyag. When varying

4o ©

Figure 4: MAE of UA vs. OC
(temperature, k = 15, DUM-e€e).
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Figure 5: MAE in traffic monitoring
(k = 0.3|R]|, varying €).
€ in [In(2), In(8)], DUM-ee can reduce Lossyag by 11.2-
31.6%, 11.3-24.3% and 7.1-20.9% compared to Laplace,
Self and Exponential, respectively. Also, MAE of DUM-ee
decreases the most sharply. Hence, relaxing privacy level
leads to more improvements in data quality for DUM-ee.

Figure 3b shows that MAE decreases for all the mecha-
nisms with more participants. When € = In(4), by varying
k from 5 to 20, Lossyar of DUM-ee is always the smallest
among all the privacy-preserving mechanisms. Specifically,
Lossyarp of DUM-€e is smaller than the three baselines by
13.5-42.1%. Furthermore, we can see that to ensure a certain
data quality level, organizers have the trade-offs between
smaller, more manageable recruitment populations (k) and
the participants’ privacy level (¢). For example, to achieve
MAE < 0.235, organizers can recruit 10 participants with
No-Privacy, or 20 participants with DUM-ee when € = In(4).
Relaxing to In(8) allows for a smaller recruitment size of
15.

To evaluate our Uncertainty-Aware inference algorithm
(UA), we compare it with Ordinary Compressive sensing
(0C), as shown in Figure 4. We experimented with wgy =
0.25, 0.5 and 0.75 for UA, and found that 0.75 performs the
best. Overall, UA achieves a smaller MAE than OC when e
is low. For a larger ¢ = In(8), UA does not appreciably
improve accuracy, probably because at higher ¢ (lower
privacy), the obfuscation leads to less uncertainty, and thus
there is not much quality loss for UA to recover.

Traffic Monitoring. Figure 5 shows the data quality with
100 and 500 road segments when k is fixed to 0.3|R|
with varying e in traffic monitoring. For clarity, we only
show the best baseline, Exponential. Generally, DUM-ce
and FDUM-ee achieve similar data quality, much better
than Exponential. For example, FDUM-ee degrades data
quality only by <3% compared to DUM-ee when 30 taxis
are randomly selected on 100 road segments with different
privacy levels.

8

VII. RELATED WORK

Location privacy has been widely studied in recent years
because of the growing popularity of location-based appli-
cations [5]. Popular locaiton privacy protection mechanisms
include cloaking [6] and dummy points [22]. However, both
of them are sensitive to the adversary’s prior knowledge
about the target user’s location distribution [7]. The same
drawback exists when applying cloaking-based location pri-
vacy protection in MCS, e.g., [23], which is still a common
practice in this area [24].



Recently, researchers introduced differential privacy [8]
to location-based services (LBS) [7], [10], [25] to alleviate
the impact of an adversary’s prior knowledge. Traditionally,
differential location privacy alters a user’s actual location
to an obfuscated location by applying appropriately chosen
Laplacian noise [7], [25]. Our work builds on this idea, while
considering the data uncertainty incurred by obfuscation.
We propose to achieve the optimal obfuscation via linear
programming, which can outperform the Laplace noise.
Note that [10] also uses linear programming to obtain an
optimal obfuscation function, but they sought to optimize
LBS services by minimizing the expected distance between
actual and obfuscated locations, which can not be directly
applicable to MCS.

To et al. have developed differential privacy in the par-
ticipant recruitment process of MCS tasks [26]. Since their
objective is to achieve high task assignment rate with short
travel distance, differential location privacy is preserved by
perturbing the total participant count in a certain region,
rather than obfuscating any specific user’s actual location as
discussed in this work.

VIII. CONCLUSION

This paper presents a differential location privacy frame-
work for Sparse MCS. It takes into account the desired level
of privacy protection, the prior knowledge about partici-
pants’ location distribution, and the data quality loss due
to location obfuscation. The proposed framework includes:
(1) a data adjustment function, (2) a linear program and
its fast approximation to obtain the optimal location ob-
fuscation matrix satisfying e-differential-privacy, and (3) an
uncertainty-aware data inference algorithm. Empirical eval-
vation with real-world datasets shows that our framework
can provide adequate privacy protection with reduced data
quality loss. In the future, we will extend this framework
by adding other privacy protection guarantees and relaxing
the requirement of accurate data for learning the obfuscation
matrix.
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