
Knowledge and Information Systems manuscript No.
(will be inserted by the editor)

Scalable Recovery of Missing Blocks in Time Series with
High and Low cross-Correlations

Mourad Khayati · Philippe Cudré-Mauroux ·
Michael H. Böhlen

Received: date / Accepted: date

Abstract Missing values are very common in real-world data including time series
data. Failures in power, communication or storage can leave occasional blocks of
data missing in multiple series, affecting not only real-time monitoring but also com-
promising the quality of data analysis. Traditional recovery (imputation) techniques
often leverage the correlation across time series to recover missing blocks in multiple
series. These recovery techniques, however, assume high correlation and fall short in
recovering missing blocks when the series exhibit variations in correlation.

In this paper, we introduce a novel approach called CDRec to recover large miss-
ing blocks in time series with high and low correlations. CDRec relies on the Centroid
Decomposition (CD) technique to recover multiple time series at a time. We also pro-
pose and analyze a new algorithm called Incremental Scalable Sign Vector (ISSV) to
efficiently compute CD in long time series. We empirically evaluate the accuracy and
the efficiency of our recovery technique on several real-world datasets that represent
a broad range of applications. The results show that our recovery is orders of magni-
tude faster than the most accurate algorithm while producing superior results in terms
of recovery.

Keywords Recovery of missing blocks · time series · Centroid Decomposition ·
correlation.

The first author received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 732328 (FashionBrain). The second author received funding from the
European Research Council (ERC) under the European Union Horizon 2020 Research and Innovation
Programme (grant agreement 683253/Graphint).

Mourad Khayati, Philippe Cudré-Mauroux
eXascale Infolab, University of Fribourg, Switzerland
E-mail: {firstname.lastname}@unifr.ch

Michael H. Böhlen
Department of Informatics, University of Zurich, Switzerland

2 Mourad Khayati et al.

1 Introduction

Time series data can be found in nearly every domain, for example, climate, traffic,
finance, industry and medicine. In such fields, missing values often occur (e.g, the
Intel Berkeley research lab dataset [7] is missing about 50%, the UCI repository of
time series [11] is missing about 20%). Missing values often appear consecutively,
forming a block in a time series. Some missing blocks can be rather large, because, for
instance, it can take minutes, hours or even days for a broken sensor to be replaced.
Data management systems assume no such gaps exist in the data. Even if a system
can work with incomplete data (e.g., NULLs in relational databases), leaving missing
values untreated can cause incorrect or ill-defined results [8].

The recovery of missing values has been extensively studied in the literature. Sev-
eral techniques have been proposed to recover missing values, but only a few of them
are able to handle large missing blocks (see Section 2). Existing block-recovery algo-
rithms often leverage the correlation across time series. These techniques, however,
fall short when time series exhibiting variations in correlation are used. This limits
the recovery accuracy since using both highly and lowly correlated time series can be
beneficial to the recovery process [16].

In this paper, we study the problem of the recovery of missing blocks in multiple
univariate time series1 exhibiting variations in correlation. More specifically, we in-
troduce a new matrix-based algorithm called CDRec that accurately recovers missing
blocks in highly and lowly correlated time series. Unlike standard matrix completion
techniques [23,25], our technique embeds the time series’ cross-correlation into its
optimization problem and thus makes it possible to take into account the variation in
correlation.

At the technical level, our recovery technique relies on the Centroid Decomposi-
tion (CD) technique. The latter decomposes an n×m input matrix X into the product
of two matrices, X = L·RT , where L and R are called the loading and relevance ma-
trix, respectively, and RT denotes the transpose of R. Each loading and relevance col-
umn (vector) is determined based on a maximal centroid value, max‖XT ·Z‖, which is
equal to the norm of the product between the transpose of the input matrix and a sign
vector Z consisting of 1s and 1s. Finding the maximizing sign vector that maximizes
the centroid value is at the core of the CD method. The most efficient algorithm to
compute the maximizing sign vector [9] requires the construction of a correlation ma-
trix with a quadratic space complexity. This high complexity hinders the application
of CD to recover long time series.

To solve the scalability problem of CD, we introduce a new algorithm called In-
cremental Scalable Sign Vector (ISSV) that efficiently computes the maximizing sign
vector for an n×m input matrix, X, that represents m time series with n observa-
tions each. Compared to the technique introduced in [9], our proposed solution does
not require the construction of a correlation matrix, thus reduces space. Compared to
our earlier technique introduced in [17], our proposed solution computes the weight
vectors in an incremental fashion, thus speeds up the computation.

In summary, the main contributions of this paper are as follows:

1 We consider time series with equally spaced granularity.

Scalable Recovery of Missing Blocks in Time Series with High and Low cross-Correlations 3

– We introduce a new parameter-free algorithm based on the Centroid Decomposi-
tion technique to recover large missing blocks in multiple time series. Our algo-
rithm is able to handle time series with high variations in correlation.

– We propose a new sign vector computation algorithm, called Incremental Scal-
able Sign Vector (ISSV), that reduces the space complexity of the Centroid De-
composition technique from quadratic to linear and improves its runtime by an
order of magnitude.

– We present the results of an experimental evaluation of the recovery accuracy and
efficiency of CDRec, and the efficiency and the correctness of ISSV on real-world
time series. The results show that CDRec is orders of magnitude faster than the
most accurate algorithm while producing superior results in terms of recovery.

– We reimplement most of the missing-block recovery techniques in a common
language (C++) and make public the source code and the datasets2.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 provides preliminary concepts and definitions. Section 4 describes the
CDRec algorithm to recover missing blocks in multiple time series. Section 5 in-
troduces the ISSV algorithm to compute the sign vector used by CD in linear space
complexity and discusses its properties. Section 6 reports the results of our experi-
ments. Section 7 concludes the paper and points to future work.

2 Related Work

2.1 Centroid Decomposition

The Centroid Decomposition (CD) is a matrix decomposition technique that com-
putes the loading and the relevance vectors out of an input matrix X. The most chal-
lenging part of CD is the computation of the sign vector Z, consisting of 1s and 1s,
that maximizes ‖XT ·Z‖, where XT is the transpose of X and ‖·‖ denotes the norm
of a vector. The classical approach is based on the centroid method [10] with a brute
force search through an exponential number of sign vectors (see Section 3.3). This
yields an exponential time and linear space complexity. Chu et al. [9] introduce a
more efficient algorithm to find the maximizing sign vector, which we refer to as
Quadratic Sign Vector (QSV). The authors consider the set of all possible sign vec-
tors as an n-dimensional hypercube, where each node represents a sign vector and is
connected with all nodes representing a sign vector that differs in exactly one ele-
ment. The QSV algorithm performs the search through a traversal along the nodes of
the hypercube. QSV achieves a quadratic runtime complexity and its space complex-
ity is quadratic too because of the construction of the correlation matrix. In [17] we
introduce the SSV algorithm that computes the sign vectors without the construction
of the covariance/correlation matrix and achieves a linear space complexity. The main
idea of SSV is as follows: instead of searching for the maximizing sign vector using
all elements of the input matrix X, SSV searches for it by rows of X. The search is

2 Source code and datasets are available online: https://github.com/eXascaleInfolab/2019_
kais-bench.git

https://github.com/eXascaleInfolab/2019_kais-bench.git
https://github.com/eXascaleInfolab/2019_kais-bench.git

4 Mourad Khayati et al.

performed by iteratively computing a weight vector V , derived from X, which is then
used to select the element in Z that needs to be flipped. The weight vector is obtained
through mapping the original optimization problem that CD solves onto a different
and equivalent optimization problem.

This work extends our earlier results [17] as follows. First, we introduce the
CDRec algorithm that uses CD to recover missing blocks in time series and describe
its properties (cf. Section 4). Second, we introduce the ISSV technique to incremen-
tally compute the sign vectors, yielding a faster CD computation compared to the
SSV technique (cf. Section 5). Next, we prove the correctness of our flipping strategy
which guarantees an optimal recovery (cf. Section 5.3). Finally, we empirically com-
pare the recovery accuracy of CDRec against the state-of-the-art recovery techniques
we describe below (cf. Section 6).

2.2 Missing-Blocks Recovery Techniques

Several statistical techniques have been proposed in the literature to recover missing
values such as Regression [13], MeanImpute [14], kNNImpute [33], etc. Data analy-
sis tools, such as R package, implement a wide range of these statistical techniques3.
These techniques are, however, effective only in the case of single or a handful of
missing values and are not suitable in the case of large missing blocks [22,34], which
is the main focus of this paper. In what follows we describe three different categories
of techniques designed to recover missing blocks in time series data.

Matrix-based techniques. They recover missing blocks by looking at an entire set
of series as a matrix and by applying techniques based on matrix completion prin-
ciples. These algorithms rely on different matrix decomposition/factorization tech-
niques such as Principal Components Analysis, Matrix Factorization, Non-Negative
Matrix Factorization and Singular Spectrum Analysis.

In [32], the authors propose the TRMF technique that uses Matrix Factorization
(MF) to recover missing blocks in multidimensional time series. MF takes an n×m
input matrix X and approximates it using two factor matrices, W and H respectively
of size n× r and r×m such that X≈W ·H. The resulting factorization is embedded
with a new temporal autoregressive regularizer to learn the dependencies across the
input time series. The temporal dependencies are then used to infer replacement val-
ues for the missing ones. TRMF resorts to an autoregressve model, which makes it
not scalable for large time series.

Mei et al. [19] propose a temporal NonNegative matrix Factorization (NMF)-
based technique called TeNMF to recover missing blocks. NMF is similar to the
above MF technique, but it constrains W and H to contain non-negative elements
only. The authors formalize the matrix recovery problem as a minimization of a
quadratic nonnegative loss function of the difference between V and the product
W ·H. Then, a penalization term is introduced into the loss function to take into
account for the cross-correlation between time series. TeNMF’s recovery is sensitive
to negative correlations as it resorts to NMF principles.

3 https://cran.r-project.org/web/views/MissingData.html

https://cran.r-project.org/web/views/MissingData.html

Scalable Recovery of Missing Blocks in Time Series with High and Low cross-Correlations 5

Balzano et al. [5,6] propose a Principal Component Analysis (PCA)-based re-
covery technique called GROUSE. PCA takes an n×m input matrix X and finds
n components each of size m that approximate the dimensions of the initial data.
Grouse applies an incremental gradient descent procedure on a defined cost func-
tion to track the co-evolving dimensions and subsequently derive the missing values.
The proposed technique does not initialize the missing values rendering GROUSE’s
recovery unstable.

In [2,3], the authors introduce a recovery algorithm that relies on the Singular
Spectrum Analysis (SSA) technique. The proposed technique takes the input time
series and constructs a so called page matrix (a non overlapping Hankel matrix4).
Then, the Singular Value Decomposition (SVD) [21] is applied to the Page matrix in
order to extract the singular values. The latter are grouped depending on the model
that generates the time series and used to approximate the original matrix. The ap-
proximated matrix is used as a source of replacement for the missing values. This
technique does not support multiple incomplete time series.

Pattern-based Techniques. These techniques consider that sensors which are at
close proximity can present trend similarity. They apply pattern matching techniques
and use the observed values as a source of replacement.

TKCM [29] is a continuous technique to recover missing blocks in correlated time
series streams. It first defines a pattern as interval of points, across all time series, that
contains the missing value. Then, it searches for the k most similar non-overlapping
patterns to the defined pattern and returns the average of points over the k patterns
as an estimation of the missing value. TKCM is able to handle linear and non-linear
correlated time series and performs a scalable recovery that is linear with the length
of time series. TKCM is designed for time series with repeating trends and is not
capable of recovering multiple time series at a time.

Yi et al. [30] introduce the STMVL technique to recover missing blocks in
geosensory time series. The proposed technique leverages the temporal (closeness
of the values in time) and spatial (distance between time series) correlation between
time series. STMVL combines a user-based and item-based collaborative filtering
with statistical smoothing models to derive models out of the historical data. The
missing values are then estimated using the generated models and the spatio-temporal
coordinates of values. STMVL assumes the input time series to be highly correlated.

Network-based techniques. These algorithms build a (parametric) model which re-
constructs the linear dependence between time series. The recovery is based on in-
formation obtained through those dependencies.

Yoon et al. [31] introduce a Neural Network (NN)-based solution called MRNN
to recover missing blocks. The proposed solution first initializes the missing values
using linear interpolation and then applies a multi-directional Recurrent network to
recover the missing data. MRNN learns the data dependencies by leveraging both
the correlation within time series and the correlation across time series. MRNN was
designed for medical data where time series are dependent on one another.

4 https://en.wikipedia.org/wiki/Hankel_matrix

6 Mourad Khayati et al.

In [18], the authors introduce a Deep Network-based recovery technique called
DeepIN. The proposed technique is designed for a smart city environment where the
missing blocks follow a repeating pattern. DeepIN uses multiple LSTM (Long Short
Term Memory) models to learn the temporal-spatial dependencies across time series
and assumes the time series to be highly correlated.

In Section 6, we compare the efficiency and accuracy of CDRec against all the
aforementioned recovery, except DeepIN, for which no source code is publicly avail-
able. Our results show that, in addition to be parameter-free, our recovery outperforms
the state of the art.

3 Background

3.1 Notations and Definitions

Bold upper-case letters refer to matrices, regular font upper-case letters refer to vec-
tors (rows and columns of matrices) and lower-case letters to refer to elements of
vectors/matrices. For example, X is matrix, Xi∗ is the i-th row of X, X∗i is the i-th
column of X, (Xi∗)

T is the transpose of Xi∗ and xi j is the j-th element of Xi∗. The
isolated column vectors that do not belong to a matrix will be denoted with a capital
letter, e.g., V .

A time series X = {(t1,v1), . . . ,(tn,vn)} is an ordered set of n temporal val-
ues vi that are ordered according to their timestamps ti. In the rest of the paper
we omit the timestamps, since they are ordered, and write the time series X1 =
{(0,2),(1,0),(2, 4)} as the ordered set X1 = {2,0, 4}. We write X = [X∗1|. . . |X∗m]
(or Xn×m) to denote an n×m matrix having m time series X∗ j as columns and n values
for each time series as rows.

A sign vector Z ∈ {1, 1}n is a sequence [z1, . . . ,zn] of n unary elements, i.e.,
|zi|= 1 for i = {1, . . . ,n}.

We use the symbol× for scalar multiplications and the symbol · for matrix multi-
plications. The symbol ‖‖ refers to the l-2 norm of a vector. Assume X = [x1, . . . ,xn],
then ‖X‖=

√
∑

n
i=1(xi)2.

3.2 Centroid Decomposition

The Centroid Decomposition (CD) decomposes an n×m matrix, X = [X∗1| . . . |X∗m],
into an n×m loading matrix, L = [L∗1| . . . |L∗m], and an m×m relevance matrix,
R = [R∗1| . . . |R∗m], i.e.,

X = L·RT =
m

∑
i=1

L∗i·(R∗i)T

where RT denotes the transpose of R.

Scalable Recovery of Missing Blocks in Time Series with High and Low cross-Correlations 7

The function CD describes the Centroid Decomposition procedure of an n×m
input matrix X. At each iteration i, the maximizing sign vector Z (described in Sec-
tion 3.3) is computed, and used to subsequently compute the i-th relevance and load-
ing vectors. Next, a matrix reduction step is applied in order to obtain the next rele-
vance and loading vectors. The algorithm terminates when m loading and relevance
vectors, of size n and m respectively, are computed. Note that the m maximizing sign
vectors are different and independent from each other.

function CD(X, n, m)
i := 1
repeat

Zi := FindMaxSV (X,n,m)
Ci := ‖XT ·Zi‖
Ri := Ci

‖Ci‖
Li := X ·Ri
X := X−Li ·RT

i
i := i+1

until i = m;
return L,R

end function

Example 1 (Centroid Decomposition) To illustrate the computation of CD, con-
sider the input matrix, X, that contains three time series of five elements each as
a running example, i.e.,

X =


6 3 3
2 2 2
7 1 −5
3 4 −1
2 4 2


Among all sign vectors, the sign vector that maximizes ‖XT ·Z‖ is Z1 =

{ 1,1,1,1, 1}T . Z1 is used to compute the first column of R (and L) during itera-
tion 1 as follows:

R∗1=
XT ·Z1

‖XT ·Z1‖
=

[
0.86
0.19
0.48

]
; L∗1 = X·R∗1 =


5.27
1.63
8.27
4.33
3.86


Similarly, the second and third columns of R (and L) are computed using the

second and third maximizing sign vectors (derived from X− L∗1·RT
∗1) respectively.

The resulting decomposition produced by CD is (only two decimals are shown):

X =


6 3 3
2 2 2
7 1 5
3 4 1
2 4 2

=


5.27 5 1.1
1.63 2.19 2.14
8.27 2.33 1.1
4.33 2.67 0.41
3.86 2.48 1.73


︸ ︷︷ ︸

L

·
 0.86 0.34 0.39

0.19 0.91 0.38
0.48 0.25 0.84


︸ ︷︷ ︸

RT

8 Mourad Khayati et al.

3.3 Maximizing Sign Vector

Given an n×m matrix X, the maximizing sign vector Z maximizes the centroid value
‖XT ·Z‖, i.e., Z satisfies the following equation:

arg max
Z∈{1, 1}n

‖XT ·Z‖. (1)

To illustrate the computation of the maximizing sign vector, consider the same
input matrix from our running example. We proceed by enumerating all possible sign
vectors and we compute ‖XT ·Z‖ for each of them (the computed values are displayed
below the sign vectors).

Z1
1
1
1
1
1


7.2

Z2
1
1
1
1
1


16.7

Z3
1
1
1
1
1


3.6

Z4
1
1
1
1
1


15.3

Z5
1
1
1
1
1


4.1

Z6
1
1
1
1
1


16.4

Z7
1
1
1
1
1


15.5

· · ·

Z10
1
1
1
1
1


23.3

· · ·

Z32
1
1
1
1
1


7.2

Among all sign vectors, Z10 and its sign opposite give the same and maximum
centroid value ‖XT ·Z‖ = 23.3, and is thus the maximizing sign vector. Assume that
diag 0(X) is an auxiliary function that sets the diagonal values of an n×n matrix to
0, then according to Lemma 1 in [17], the following equivalence holds:

arg max
Z∈{1, 1}n

‖XT ·Z‖ ≡ arg max
Z∈{1, 1}n

ZT ·V (2)

where V = diag 0(X·XT) ·Z. The elements of V are defined as follows:

vi = zi(zi×Xi∗ ·S− (Xi∗ · (Xi∗)
T)) (3)

where vi is the i-th element of the weight vector V and S = ∑
n
i=1(zi× (Xi∗)

T).
In the next section, we describe the CDRec algorithm that uses CD to recover

missing blocks in time series.

4 Recovery of Missing Blocks

4.1 Recovery process

Algorithm 1 uses CD to recover missing blocks in multiple time series at a time. It
takes as input a matrix X that contains a set of missing blocks XB and a list T of pairs
indicating the rows and columns of the missing values in X. We normalize the data
using the z-score normalization technique [15]. The recovery starts by initializing XB
using either linear interpolation or extrapolation, depending on the position of the

Scalable Recovery of Missing Blocks in Time Series with High and Low cross-Correlations 9

missing block(s) in X (line 2). Then, we apply a truncation to the decomposition of X
to return Lk and Rk which contain the first k columns of L and R respectively (line 6).
To dynamically set, at each iteration, the truncation factor k, we utilize the commonly
used entropy method (described later). Next, the values in X with positions in T are
updated with their corresponding ones in Xk = Lk ·RT

k (lines 8-9). On line 10, we
cache the computed sign vector and we use it as an initial sign vector in the CD
computation of the next iteration of the recovery. The recovery process terminates

if the relative difference in Frobenius norm ‖XB− X̃B‖F/|B|=
√

∑
|B|
i=1(x̃i− x̃′i)2/|B|

between X̃B and XB (where x̃i ∈ X, x̃i ∈ X̃ and |B| is the length of the missing block)
falls below a small threshold value ε (by default 10 5).

Algorithm 1: CDRec(X, T)
Input : n×m matrix X; List of missing time points T
Output: Matrix with recovered values X̃

1 Linearly interpolate/extrapolate all missing values in X;
2 Zinit := [1, . . . ,1];
3 repeat
4 X̃ := X;
5 compute truncation factor k of X; . using Entropy-based technique
6 [Lk,Rk,Z] := CD(X,n,k,Zinit);
7 Xk := Lk · (Rk)

T ;
// Update missing values

8 foreach (i, j) ∈ T do
9 x̃i j := yi j;

// yi j element of Xk at timestamp i

10 Zinit := Z ; . cache the sign vector

11 until ‖XB−X̃B‖F
|B| < ε;

12 return X̃;

Example 2 Let’s take the example of the input matrix X from our running example
(cf. Example 1). We illustrate the application of CDRec to recover a missing block (in
gray) in the first time series.


6 3 3
2 2 2
7 1 5
3 4 1
2 4 2


︸ ︷︷ ︸

X

→


6 3 3
2 2 2
− 1 5
− 4 1
2 4 2


︸ ︷︷ ︸

Xmiss

→


6 3 3
2 2 2

0.66 1 5
0.66 4 1

2 4 2


︸ ︷︷ ︸

Xinit

→


6 3 3
2 2 2

5.1 1 5
1.06 4 1
2 4 2


︸ ︷︷ ︸

X̃1

→ ·· · →


6 3 3
2 2 2

6.98 1 5
4 4 1
2 4 2


︸ ︷︷ ︸

X̃p

First, the missing block in Xmiss is initialized and the resulting matrix, Xinit , is
decomposed using a truncation factor k = 1 to produce L1 and RT

1 . By multiplying
L1 and RT

1 we obtain X̃1. After applying the same process p times, the final X̃p con-
taining the recovered values is obtained. Using longer time series helps to improve
the accuracy of the recovery as described in Section 6.

10 Mourad Khayati et al.

To dynamically set the truncation factor k, we use an entropy-based method. Let
X be an input matrix of n rows and m columns with n�m and let fk =

‖XT ·Zk‖
∑

m
i=1(‖XT ·Zk‖)2

be the relative contribution of the k-th centroid value to the Frobenius norm. Then,
the entropy of the centroid values is defined as follows:

E =− 1
logm

m

∑
i=1

fi log fi (4)

The entropy E is used to find the appropriate truncation factor for the recovery
process. More specifically, at each iteration of Algorithm 1, we select the smallest k
such that ∑

k
i=1 fi ≥ E. Since the entropy (used to find the truncation value k) mini-

mizes the Frobenius norm [4] as does the iterative process, then our recovery quickly
converges (cf. Section 6.2.3).

4.2 Recovery Properties

The following lemma shows that the recovery of CDRec embeds the correlation
across the input time series.

Lemma 1 Let X be an n×m input matrix containing m time series where some of
them have missing blocks. Then, the recovery of CDRec is based on the summation
of the time series cross-correlation.

Proof 1 From (2) we have

V = diag 0(X·XT)·Z = diag 0(


x11 . . .x1n

x21 . . .x2n
...

xm1 . . .xmn

 ·
x11 x21 . . .xm1

...
x1n x2n . . .xmn

)·Z

Let x̄∗i and σ∗i be respectively the mean and the standard deviation of X∗i. Since
each column of X is z-score normalized, it follows

V = diag 0(


x11−x̄∗1

σ∗1
. . . x1n−x̄∗n

σ∗n

x21−x̄∗1
σ∗1

. . . x2n−x̄∗n
σ∗n

...
x21−x̄∗1

σ∗1
. . . x2n−x̄∗n

σ∗n

 ·


x11−x∗1
σ∗1

x21−x∗1
σ∗1

. . . x21−x∗1
σ∗1

...
x1n−x∗n

σ∗n
x2n−x∗n

σ∗n
. . . x2n−x∗n

σ∗n

) ·Z (5)

Consider the product of the first row of X and the the first column of XT . we have

Scalable Recovery of Missing Blocks in Time Series with High and Low cross-Correlations 11

[
x11−x̄∗1

σ∗1
. . . x1n−x̄∗n

σ∗n

]
·


x11−x̄∗1

σ∗1
...

x1n−x̄∗n
σ∗n

=
∑

n
i=1(x1i− x̄∗i)(x1i− x̄∗i)

σ∗1σ∗1

= r11 (r is the Pearson correlation) (6)

Putting (6) into (5) we get

V = diag 0(


r11 r12 . . .r1n

r21 r22 . . .r2n
...

rm1 rm2 . . .rmn

) ·Z =


0 r12 . . .r1n

r21 0 . . .r2n
...

rm1 rm2 . . .0

 ·Z =


∑

n
i=1(zi× r1i)− z1× r11

∑
n
i=1(zi× r1i)− z2× r22

...
∑

n
i=1(zi× r1i)− zn× rnn


The elements of V used for the decomposition (and subsequently the recovery)

are computed by summing up the cross-correlation between the columns of X which
concludes the proof.

5 Incremental Scalable Sign Vector (ISSV)

In this section, we first introduce a new incremental algorithm called ISSV to incre-
mentally compute the maximizing sign vector in linear space. Then, we discuss the
properties of the ISSV algorithm.

5.1 Incremental Weight Vector

Lemma 2 (Weight vectors are incremental) Let Z(k) be Z at iteration k, p the po-
sition of the last element flipped in Z(k) and let vi be the i-th value in V . For any two
consecutive iterations of sign vectors, the weight vectors are linearly dependent, i.e.,

v(k+1)
i = v(k)i −2× (Xi∗ ·XT

p∗)

Proof 2 By definition of the weight vector (cf. (2)) we have

V (k) = diag 0(X·XT) ·Z(k)

V (k+1) = diag 0(X·XT) ·Z(k+1) (7)

Let p be the index of the element in Z(k) that has been flipped and let Up be the
unit vector with the same length as Z(k) where the p-th element is 1 and all other
elements are 0. Using Up we compute Z(k+1) as follows

Z(k+1) = Z(k)−2×Up (8)

12 Mourad Khayati et al.

Putting (8) into (7) we get

V (k+1) = diag 0(X·XT) · (Z(k)−2×Up)

= diag 0(X·XT) ·Z(k)−2×diag 0(X·XT) ·U

=V (k)−2×diag 0(X·XT) ·Up (9)

Let col(X, p) return the p-th column of X. Then, from (9) we get

V (k+1) =V (k)−2× col(diag 0(X·XT), p)

=V (k)−2×


X1∗ ·XT

p∗
X2∗ ·XT

p∗
...

Xn∗ ·XT
p∗


Thus, ∀i ∈ [1,n]\{p} we have

v(k+1)
i = v(k)i −2× (Xi∗ ·XT

p∗) (10)

Lemma 2 allows us to incrementally compute V (k+1) out of V (k) and subse-
quently to incrementally compute the maximizing sign vector. Unlike the iterative
approach [17], the incremental approach does not require the construction of the in-
termediate vectors S and Z each of length n yielding faster computation. We compare
the efficiency of both approaches in Section 6.

We propose an algorithm with linear space complexity to incrementally compute
the maximizing sign vector Z according to the maximization problem introduced in
(2). The basic idea is as follows. We begin with the sign vector Z = [1, . . . ,1]T , change
the sign of the element in Z that increases ZT ·V most, and incrementally compute the
weight vector. The algorithm terminates when Z and V have the same pairwise sign.

Algorithm 2: ISSV(X,n,m)
Input : n×m matrix X
Output: maximizing sign vector Z ∈ [1, 1]n

1 ZT := [1, . . . ,1];
2 V := Compute initial weight vector ; . using (3)
3 repeat
4 p := {i | vi = min(v j ∈V)&z j× v j < 0};
5 zp := (1)× zp;
6 foreach vi ∈V \ vp do
7 vi := vi−2×Xi∗ · (Xp∗)

T

8 until p = 0;
9 return Z ∈ [1, 1]n;

Algorithm 2 implements the incremental strategy to compute the maximizing sign
vector. We note that V is computed directly from X by reading the matrix row by
row, one row at a time to compute the individual elements of V . We first compute

Scalable Recovery of Missing Blocks in Time Series with High and Low cross-Correlations 13

the initial weight vector according to (3). Then, we search for the index (p) of the
element vi ∈ V with the largest absolute value such that vi and zi ∈ Z have different
signs, i.e., zi× vi < 0. If such an element is found, the sign of zi is flipped. A new
vector V is incrementally computed out of the previous one, which is different from
the vector in the previous iteration due to the sign change. The iteration terminates
when the signs of all corresponding elements in V and Z are the same and thus, i.e.,
p is equal to 0. The vector Z in the final iteration is the maximizing sign vector that
maximizes ZT ·V .

Example 3 To illustrate the computation of the sign vector using Algorithm 2, con-
sider the same input matrix as the one introduced in our running example. We
denote Z(k) as Z in the k-th iteration. First, Z is initialized with 1s, i.e., Z(1) =
{1,1,1,1,1}T and the initial weight vector is computed using (3) to get V (1) =
{ 57,10, 46,9, 54}T . All elements of Z(1) have a different sign from the correspond-
ing elements in V (1) and among them the element in the 1st position has the highest
absolute value. Using p = 1, the next weight vector is incrementally computed (us-
ing (10)) as follows

v1 = 57

v2 =10−2× (
[
6 3 3

]
×

 2
2
2

) = 10

v3 = 46−2× (
[
6 3 3

]
×

 7
1
5

) = 62

v4 =9−2× (
[
6 3 3

]
×

 3
4
1

) = 27

v5 = 54−2× (
[
6 3 3

]
×

 2
4
2

) = 66

i.e.,

Z(2) =


1
1
1
1
1

 and V (2) =


57
10
62
27
66

 .

Only the 5th element in Z(2) has a different sign from the corresponding element
in V (2), In the third iteration of the algorithm, we flip the sign of the element at
position 5 in Z(2) and we use the new sign vector Z(3) to compute V (3), similarly to

14 Mourad Khayati et al.

the previous iteration, and get

Z(3) =


1
1
1
1
1

 and V (3) =


69
26

118
75
66


Since all corresponding elements in Z(3) and V (3) have the same sign, the algo-

rithm terminates and Z(3) is returned as the maximizing sign vector that maximizes
ZT ·V . Note that our technique computes the same sign vector as the one computed
by the exhaustive search illustrated in Section 3.3.

Example 3 illustrates the main properties of the ISSV algorithm. First, the prod-
uct ZT ·V is monotonically increasing at each iteration, i.e., (Z(1))T ·V (1) = 138,
(Z(2))T ·V (2) = 90 and (Z(3))T ·V (3) = 354. Second, he algorithm terminates and com-
putes the global optimum, i.e., 23.3.

The ISSV algorithm keeps in memory the sign vector V and one row of XT , each
with O(n) space complexity, where n is the number of rows in X. To compute the
individual elements vi = vi−2×Xi∗ · (Xp∗)

T of the weight vector, X is read one row
at a time. The result vector has length n, thus the total space complexity is O(n). The
total runtime complexity is O(xn), where x is the number of flipped elements in the
returned sign vector Z. The number of flipped elements depends on the number of
negative rows in the input matrix and is on average less than third of the number of
rows (n) (cf. the experiment of Fig.10 in [17]).

5.2 ISSV Properties

In this section, we describe the main properties of the ISSV algorithm. Since ISSV
uses the same definition of the weight vector as the SSV algorithm, the two algorithms
share the same properties. More specifically, the computation of ISSV is monotonic,
terminates and returns the correct result.

Let Z(k) and V (k) refer to, respectively, vectors V and Z in the k-th iteration of the
ISSV algorithm. v(k)i and z(k)i denote, respectively, the i-th element of V (k) and Z(k).
Lemma 3 shows that the computation of the maximizing sign vector in the ISSV
algorithm is strictly monotonic, i.e., each iteration increases the value of ZT ·V .

Lemma 3 (Monotonicity) For any two consecutive iterations k and k+1 in the ISSV
algorithm, the following holds:

(Z(k+1))T ·V (k+1) > (Z(k))T ·V (k).

Lemma 4 shows that ISSV does not flip a sign value more than once and thus
terminates.

Lemma 4 (Termination) Let X be an n×m matrix. ISSV(X,n,m) terminates and
performs at most n iterations.

Scalable Recovery of Missing Blocks in Time Series with High and Low cross-Correlations 15

Lemma 5 shows that our greedy approach computes the optimal solution.

Lemma 5 (Correctness) The ISSV algorithm computes the maximizing sign vector
for which the final product ZT ·V is the global maximum.

The proofs of Lemma 3, 4 and 5 are described in detail in [17].

5.3 Flipping strategy

Lemma 6 (Local optimal choice) The ISSV algorithm changes in each iteration the
element of the sign vector Z that increases ZT ·V most.

Proof 3 We do a case analysis to prove that ISSV makes the local optimal choice.
Case z(k)i × v(k)i < 0: The ISSV algorithm changes in each iteration the sign of an

element z(k)i that maximizes |z(k)i × v(k)i |. Since diag 0(X·XT) is a symmetric matrix
we have

V (k) =


v1

v2
...

vn−1

vn

=


0 x12 . . . x1n

x12 0 . . . x2n
...

...
. . .

...
x1n−1 x2n−1 . . . xn−1n
x1n x2n . . . 0


︸ ︷︷ ︸

diag 0(X·XT)

·Z(k)

Without loss of generality, we assume z(k)1 × v(k)1 < 0, z(k)n × v(k)n < 0 such that

|v(k)1 | > |v
(k)
n |. Let Z1 and Zn be the sign vectors resulting from changing the sign of

z1 and zn respectively. Then, we have

(Z1)
T ·V (k) > (Zn)

T ·V (k)

(Z1)
T · (diag 0(X·XT) ·Z(k))> (Zn)

T · (diag 0(X·XT) ·Z(k))

n−1

∑
i=2

xin >
n−1

∑
i=2

x1i (11)

Let’s assume that we get a bigger benefit by changing the sign of zn instead of z1.
Then, we get

(Z1)
T ·V (k+1)

1 < (Zn)
T ·V (k+1)

n

(Z1)
T · (diag 0(X·XT) ·Z1)< (Zn)

T · (diag 0(X·XT) ·Zn)

n−1

∑
i=2

xin <
n−1

∑
i=2

x1i

16 Mourad Khayati et al.

This contradicts Equation (11). Therefore, we get a bigger benefit by choosing the
element that maximizes |z(k)i × v(k)i |, i.e., z1.

Case z(k)i × v(k)i ≥ 0: If instead we changed the sign of an element z(k)i for which
z(k)i × v(k)i ≥ 0 we get Z(k+1) = Z(k)+2×U (cf. Lemma 3), which implies (Z(k+1))T ·
V (k+1) ≤ (Z(k))T ·V (k). Therefore, ZT ·V will not be increased.

We now show that two alternative sign flipping strategies to compute the sign
vector do not produce the global maximum.

Strategy 1: change at each iteration the sign of more than one element in Z. The
maximization problem looks as follows:

[
1 1 . . . 1

]
︸ ︷︷ ︸

(Z(k))T

·



0 x12 . . . x1n

x21 0 . . . x2n

.

.

.

.

.

.
. . .

.

.

.

xn1 xn2 . . . 0


︸ ︷︷ ︸

diag 0(X·XT)

·



1

1

.

.

.

1


︸ ︷︷ ︸

Z(k)︸ ︷︷ ︸
V (k)

The result of the maximization is obtained first by multiplying the i-th element
of (Z(k))T with the i-th column of diag 0(X·XT), yielding a vector. Then, the i-th
element of the resulting vector is multiplied again with the i-th element of Z(k).
Thus, changing the sign of z(k)i affects only the ith column of diag 0(X·XT); all other
columns are unaffected. Thus, the result of changing z(k)i is independent from chang-
ing z(k)j for j 6= i. Since we are maximizing over independent variables, the maxi-
mization of (Z(k))T ·V (k) is obtained by checking the result of changing one element
in Z(k) at a time, and not if more than one element is changed.

Strategy 2: change at each iteration the sign of an element z(k)i for which z(k)i ×
v(k)i > 0. Following the same reasoning as in the proof of Lemma 3, we have Z(k+1) =

Z(k) + 2×U , which implies that (Z(k+1))T ·V (k+1) < (Z(k))T ·V (k). Therefore, this
strategy is strictly monotonically decreasing and thus the global maximum will not
be obtained.

6 Experimental Evaluation

This section evaluates in turn the performance of i) our CDRec (Recovery using CD)
algorithm and ii) the ISSV algorithm that efficiently computes CD. For each exper-
iment, we report the average result over five consecutive runs of the various algo-
rithms.

Scalable Recovery of Missing Blocks in Time Series with High and Low cross-Correlations 17

6.1 Setup

6.1.1 Implementation

We compare CDRec against the state-of the-art missing-blocks recovery techniques:
SSA [2], GROUSE [5], TeNMF [19], TKCM [29], STMVL [30], MRNN [31] and
TRMF [32]. We rewrote all these algorithms in C++, except SSA and MRNN (for
which we use the efficient original implementations). We use the same advanced
linear algebra operations across all techniques, thanks to a modern library called Ar-
madillo [27]. The source code and the datasets are available online5.

All the following experiments were performed on a Linux machine with a
3.4 GHz Intel Core i7 and 16GB of RAM. The code was compiled with g++ 7.3.0 at
the maximum optimization level.

6.1.2 Datasets

The following empirical evaluation was performed on various real-world datasets
containing time series of different (Pearson) correlation values. Each tuple in the time
series records a timestamp and the value of an observation. The values of the obser-
vations are stored as 4-byte floating numbers while the sign vectors are binary arrays.
The BAFU dataset, kindly provided by the BundesAmt Für Umwelt (the Swiss Fed-
eral Office for the Environment) [12], contains water discharge time series collected
from different Swiss rivers containing between 200k and 1.3 million values each, and
cover the time period from 1974 to 2015. The MeteoSwiss dataset, kindly provided
by the Swiss Federal Office of Meteorology and Climatology [20], contains weather
time series recorded in different cities in Switzerland. Also, we use publicly avail-
able real-world time series: statistical quality control on Baseball time series [24],
Temperature values of 703 climate stations in China collected from 1960 to 2012 [1]
and Gas concentration batches that were gathered between 2007 and 2011 in a gas
delivery platform facility situated at the ChemoSignals Laboratory at UCSD [28,26].
For the gas dataset, we choose the longest batches to which we refer to as Gas6 and
Gas10.

Table 1: Description of time series.

Name TS max_length nb of TS granularity correlation (r)
BAFU TS 1.3M 12 30 min [-0.03, 0.89]
MeteoSwiss TS 200k 7 10 min [-0.12,0.9]
Baseball TS 2k 4 1 year [-0.53, 0.49]
Temperature TS 19k 12 1 day [0.78, 0.89]
Gas 3600 24 6hrs [-0.75,0.78]

The datasets we use in our experiments represent a broad range of applications.
They contain time series which exhibit different levels of correlations that are repre-

5 https://github.com/eXascaleInfolab/2019_kais-bench.git

https://github.com/eXascaleInfolab/2019_kais-bench.git

18 Mourad Khayati et al.

sentative of many aspects naturally present in real-world data. Table 1 describes the
main properties of our time series.

6.2 Recovery Evaluation

In this section, we compare the accuracy and the efficiency of CDRec against the
aforementioned techniques under different recovery scenarios.

6.2.1 Accuracy

In Table 2, we evaluate the accuracy of all the techniques using all datasets from
Table 1. We set the length and the number of the time series respectively to their
maximum per dataset. We first evaluate the case where the missing block appears
in one time series. Then, we evaluate the case where the missing block appears in
multiple time series. As accuracy measure we use the root mean square error (RMSE)
between the original blocks and the recovered ones.

RMSE =

√
1
|T | ∑t∈T

(xt − x̃t)
2

where T is the set of missing values, xt and x̃t are the original and the recovered value,
respectively.

On the left-hand side of Table 2, we set a missing block to appear arbitrarily in
the middle of one of the series in the dataset. We then vary the size of the missing
block from 20% to 80% of the chosen series and measure the recovery accuracy
using RMSE. The results show that CDRec is on average 2.3x more accurate than the
most accurate state-of-the-art algorithm, TRMF. Thanks to the weight vectors that
embed the correlation across the input time series, CDRec is able to better leverage
the similarity between time series and to accurately recover the missing blocks. The
superiority of CDRec is more visible on datasets with high variations of correlation,
e.g., Baseball and Gas datasets. We also observe that the error of CDRec does not
always increase along with the size of the missing block in this experiment. In three
datasets, Baseball Meteo, and Temperature the trend is the opposite. In these three
datasets, larger missing blocks require a larger number of iterations which, in turn,
yield better recovery.

On the right-hand side of Table 2, we vary the number of incomplete time series
and we measure the recovery accuracy of all techniques, except TKCM and SSA
which do not support this feature. We create missing blocks with the size of 10% of
the longest time series per dataset to appear completely at random in each time series.
The results show that, similarly to the single incomplete case, CDRec outperforms its
competitors in most datasets when multiple time series are incomplete. We observe
also that in some datasets the error does not always increase along with the number
of incomplete time series. As we stated earlier, the bigger the number of missing
blocks, the more iterations the algorithms can perform to compute the recovery. More

Scalable Recovery of Missing Blocks in Time Series with High and Low cross-Correlations 19

Table 2: Recovery accuracy on real-word datasets

varying % of miss. val. varying # of incomplete TS
Method 20 % 40 % 60 % 80 % 2 3 4

B
as

eb
al

l.

CDRec 0.47 0.48 0.46 0.43 0.50 0.50 0.92
GROUSE 2.30 2.72 3.49 4.40 5.7 5.7 4.96
MRNN 0.54 0.70 1.36 0.46 0.96 1.13 0.95

SSA 0.47 0.54 0.50 0.51 - - -
STMVL 1.05 1.08 1.06 1.05 1.10 0.97 1.01
TeNMF 0.68 0.80 3.39 0.68 0.95 0.98 0.89
TKCM 1.20 1.20 1.18 1.13 - - -
TRMF 0.58 0.66 0.76 0.84 0.60 0.58 0.77

M
et

eo
Sw

is
s

CDRec 0.05 0.04 0.03 0.05 0.04 0.09 0.15
GROUSE 5.35 4.99 4.25 4.32 5.90 4.86 4.80
MRNN 0.31 0.42 0.62 0.51 0.35 0.42 0.48

SSA 0.10 0.09 0.10 0.13 - - -
STMVL 0.32 0.28 0.25 0.26 0.25 0.26 0.63
TeNMF 0.07 0.08 0.08 0.31 0.09 0.13 0.83
TKCM 0.13 0.14 0.27 0.40 - - -
TRMF 0.05 0.05 0.04 0.15 0.04 0.23 0.28

G
as

CDRec 0.08 0.1 0.23 0.61 0.56 0.58 0.55
GROUSE 0.31 0.27 1.01 0.98 0.52 2.87 2.70
MRNN 0.37 0.77 0.68 0.55 0.79 0.74 0.95

SSA 0.50 0.41 0.74 0.70 - - -
STMVL 0.57 0.69 1.10 1.04 1.19 1.21 1.21
TeNMF 0.62 0.61 0.81 0.91
TKCM 0.37 0.68 1.10 1.03 - - -
TRMF 0.12 0.32 0.62 0.68 0.65 0.60 0.63

B
A

FU

CDRec 0.07 0.08 0.15 0.22 0.20 0.17 0.16
GROUSE 0.62 0.48 0.60 0.54 0.47 0.42 0.38
MRNN 0.42 0.46 0.48 0.49 0.43 0.43 0.39

SSA 0.25 0.18 0.22 0.20 - - -
STMVL 1.04 0.79 0.92 0.81 0.75 0.67 0.62
TeNMF 0.09 0.10 0.29 0.39 0.18 0.15 0.17
TKCM 0.42 0.48 0.47 0.52 - - -
TRMF 0.17 0.14 0.42 0.47 0.24 0.20 0.18

Te
m

p.

CDRec 0.29 0.30 0.31 0.25 0.28 0.27 0.3
GROUSE 0.54 0.56 0.51 0.53 0.39 0.35 0.44
MRNN 1.73 1.33 1.21 1.33 1.27 1.40 0.96

SSA 0.31 0.34 0.32 0.37 - - -
STMVL 0.45 0.45 0.4 0.42 0.32 0.30 0.37
TeNMF 0.29 0.32 0.33 0.91 0.28 0.28 0.37
TKCM 2.20 1.74 1.96 1.77 - - -
TRMF 0.33 0.37 0.34 0.33 0.27 0.27 0.36

iterations mean further opportunities to refine the values with which the missing block
was initialized.

We also evaluate the recovery accuracy when increasing the sequence length (n)
and the sequence number (m). The results show similar trends as the ones depicted in
Table 2. In general, all techniques take advantage of longer and/or larger number of
time series to improve the recovery.

In the experiment in Figure 1 we evaluate the impact of the position of the missing
block on the recovery accuracy. We keep the length and number of time series to their

20 Mourad Khayati et al.

maximum per dataset and we vary the position of the missing block starting after 5%
of the data. We set the size of the missing block to 10% of one time series and we
choose the BAFU and Gas datasets which contain the longest and largest number of
time series, respectively.

The results show two different trends. In the BAFU dataset (cf. Figure 1a), the ac-
curacy of CDRec and TRMF is barely affected by the position of the missing block.
For the remaining algorithms, however, the recovery drastically varies depending on
the position. Most algorithms achieve their best recovery when the missing block
occurs between 30% and 40% from the beginning of the data. This part of the data
contains a flat trend which poses no significant recovery challenge to most of the
algorithms. In the Gas dataset (cf. Figure 1b), the accuracy of all algorithms deteri-
orates when the missing bock occurs between 40% and 50% from the beginning of
the time series. The reason is that this part of the data contains lots of fluctuations
which makes it harder for the algorithms to estimate the missing block. These results
confirm that CDRec is still the best contender.

0 10 20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

0.6

position of MB (%)

R
M

SE

CDRec GROUSE MRNN STMVL
SSA TeNMF TKCM TRMF

(a) BAFU dataset

0 10 20 30 40 50 60
0

0.5

1

1.5

position of MB (%)

R
M

SE

(b) Gas dataset.

Fig. 1: Accuracy comparison with moving the missing block (MB) position.

6.2.2 Efficiency

In this section, we compare the efficiency of CDRec by varying in turn the length of
time series and their number. We measure the runtime and present it on a log scale
since the results vary widely across algorithms.

In the experiment in Fig. 2, we set the number of time series to the maximum
number per dataset, we vary their length between 200 and 2000 and measure the
runtime (in ms) to recover a missing block of 100 observations (notice the log scale
on the y axis). The results of this experiment show CDRec takes on average 5 ms to
recover time series containing 2000 observations each. CDRec is on average 3x faster
(3ms vs 10ms) than the the fastest state-of-the-art technique, SSA and two orders
of magnitude faster than the most accurate state-of-the-art technique, TRMF. The
efficiency of CDRec is explained by its fast incremental computation of the centroid
values.

Scalable Recovery of Missing Blocks in Time Series with High and Low cross-Correlations 21

2 4 6 8 10 12 14 16 18 20

103

104

105

106

TS length [x100]

ru
nt

im
e

(m
s)

CDRec GROUSE MRNN STMVL
SSA TeNMF TKCM TRMF

(a) Baseball dataset

2 4 6 8 10 12 14 16 18 20

103

104

105

106

TS length [x100]

ru
nt

im
e

(m
s)

(b) Gas dataset (drift6)

2 4 6 8 10 12 14 16 18 20
103

104

105

106

TS length [x100]

ru
nt

im
e

(m
s)

(c) Meteo dataset

2 4 6 8 10 12 14 16 18 20
103

104

105

106

TS length [x100]

ru
nt

im
e

(m
s)

(d) Temperature dataset

2 4 6 8 10 12 14 16 18 20

103

104

105

106

TS length [x100]

ru
nt

im
e

(m
s)

(e) Gas dataset (drift10)

2 4 6 8 10 12 14 16 18 20

103

104

105

106

TS length [x100]

ru
nt

im
e

(m
s)

(f) BAFU dataset

Fig. 2: Runtime varying TS length.

In the experiment in Fig. 3, we set the length of time series to 1k, we vary their
number and measure the runtime (in ms) to recover a missing block of 100 observa-
tions (notice the log scale on the y axis). We use the three datasets that contain the
largest number of time series. The results of this experiment show that CDRec and
SSA are the fastest solutions while TRMF and TeNMF are the slowest. Thanks to its
effective entropy-based truncation procedure, the runtime of CDRec barely increases
while increasing the number of time series used in the recovery.

4 5 6 7 8 9 10 11 12
103

104

105

106

TS length [x100]

ru
nt

im
e

(m
s)

CDRec GROUSE MRNN STMVL
SSA TeNMF TKCM TRMF

(a) BAFU dataset

4 5 6 7 8 9 10 11 12
103

104

105

106

TS

ru
nt

im
e

(m
s)

(b) Gas dataset (drift10)

4 5 6 7 8 9 10 11 12
103

104

105

106

of TS

ru
nt

im
e

(m
s)

(c) Temperature dataset

Fig. 3: Runtime varying TS number.

6.2.3 Convergence

In the experiments in Fig. 4, we evaluate the convergence of the CDRec’s recovery
by measuring the number of iterations. In Fig. 4a, we set the number of time series
to the maximum number per dataset and we vary the length of time series, while in

22 Mourad Khayati et al.

Fig. 4b we set the length of time series to 1k and we vary the number of time series.
The results of both experiments confirm that adding more observations and more
time series helps CDRec reducing the number of iterations to perform the recovery
until becoming constant at a specific number of observations (1k values in the case
of the BAFU dataset), and at a specific number of time series also (8 time series
in the same dataset). In Fig. 4c, we vary the missing percentage rate in time series
and we measure the number of iterations. The result of this experiment confirms
that CDRec converges on all datasets, i.e., the number of iterations does not exceed
100 for different missing rates in all datasets. It is worth noticing that the relative
difference of Frobenius norm computed at each iteration of Algorithm 1 decreases
monotonically until reaching the specified threshold.

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

TS length [x100]

#
ite

r

Meteo Bbal Drift6 Drift10 BAFU Temp

(a) Varying length of TS

4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

of TS

#
ite

r

(b) varying # of TS

10 20 30 40 50 60 70 80
0

20

40

60

80

100

missing rate (%)

#i
te

r

(c) varying % of missing

Fig. 4: Recovery Convergence.

6.3 Matrix Decomposition

In this section, we evaluate different techniques to compare the Centroid Decomposi-
tion. We compare our technique ISCD against SCD and QSV that use SSV and QSV
techniques, respectively (cf. Section 2.1).

6.3.1 Efficiency

In order to evaluate the efficiency of our technique, we choose the three datasets with
the longest time series from Table 1. Fig. 5 evaluates the efficiency of our ISCD
technique to decompose matrices of time series and compares it against SCD and
QCD.

In the experiments shown in Figs. 5b, 5a, 5c we set the number of time series to
the maximum per dataset, we vary their length and we report the runtime of the three
algorithms. The results of this experiment show that for the largest BAFU dataset,
ISCD is more than 3x faster than SCD. The QCD algorithm runs out of memory for
n > 10000, as it constructs an n×n correlation matrix.

In the experiments shown in Figs. 5e, 5d, 5f we set the series length to 1k, we
vary their number between 10 and 100 (by splitting the series into smaller segments)
and we report the runtime of the three algorithms. The results of this experiment show

Scalable Recovery of Missing Blocks in Time Series with High and Low cross-Correlations 23

that all the algorithms are linear with the number of time series. The results show also
that in the BAFU dataset, ISCD is up to 9x faster than QCD (9min vs. 82min) and 7x
faster than SCD (9min vs. 62min) while in the two other datasets, our ISCD is up to
12x faster than QCD (6 sec vs. 75 sec) and 6x faster than SCD (6 sec vs. 38 sec).

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 10 40 70 100 130 160 190

ru
nt

im
e

(s
)

Length of TS [k]

QCD SCD ISCD

(a) varying TS length on Me-
teoSwiss dataset.

 0

 30000

 60000

 90000

 120000

 150000

 180000

 0 20 40 60 80 100

ru
nt

im
e

(s
)

Length of TS [10k]

QCD SCD ISCD

(b) varying TS length on BAFU
dataset.

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 40 70 100 130 160 190

ru
nt

im
e

(s
)

Length of TS [10k]

QCD SCD ISCD

(c) varying TS length on Temp
dataset.

 0
 10
 20
 30
 40
 50
 60
 70
 80

 10 20 30 40 50 60 70 80 90 100

ru
nt

im
e

(s
)

of TS

QCD SCD ISCD

(d) varying # of TS on Me-
teoSwiss dataset.

 0

 1000

 2000

 3000

 4000

 5000

 10 20 30 40 50 60 70 80 90 100

ru
nt

im
e

(s
)

of TS

QCD SCD ISCD

(e) varying # of TS on BAFU
datset.

 0
 10
 20
 30
 40
 50
 60
 70
 80

 10 20 30 40 50 60 70 80 90 100

ru
nt

im
e

(s
)

of TS

QCD SCD ISCD

(f) varying # of TS on Temp
dataset.

Fig. 5: Efficiency of different CD implementations.

6.3.2 Correctness

In this section, we evaluate the correctness of our technique by computing the Frobe-
nius norm (cf. Section 4) between the input matrix X and the matrix product L ·RT

computed as a result of the decomposition. A correct CD decomposition returns L
and R s.t. X = L ·RT and subsequently FrobN = 0. In Table 3 we vary the length of
the time series while keeping their number to the maximum per dataset, and compute
FrobN for different CD techniques. The results show that, unlike QCD, ISCD and
SCD return similar FrobN equal to zero for all datasets. Thus, both SCD and ISCD
compute the correct CD decomposition while QCD yields only an approximation of
the decomposition.

7 Conclusion

In this paper, we introduced a new recovery algorithm for time series exhibiting vari-
ations in correlation. We presented the CDRec algorithm that uses the Centroid De-
composition technique to accurately recover large missing blocks in multiple time
series. We also presented an incremental approach to efficiently compute CD for long

24 Mourad Khayati et al.

Table 3: Frobenius norm of different techniques.

dataset
FrobN n = 500 n = 1k n = 2k

SCD ISCD QCD SCD ISCD QCD SCD ISCD QSV

BAFU 6.7E 15 6.5E 15 33 2.3E 14 2.4E 14 52 4.1E 14 3.9E 14 58
MeteoS 5.6E 15 5.6E 15 18 7.9E 15 7.9E 15 27 1.9E 14 1.9E 14 44
Gas6 2.4E 14 2.4E 14 56 3.3E 14 3.3E 14 73 5.7E 14 5.7E 14 92
Baseball 6.4E 15 6.5E 15 14 1.8E 14 1.8E 14 23 - - -
Temp. 1.5E 14 1.3E 14 47 2.5E 14 2.4E 14 70 3.9E 14 3.8E 14 105
Gas10 2.1E 14 2.1E 14 66 3.8E 14 4E 14 78 4.6E 14 4.6E 14 90

time series. We conducted experiments on several real-world time series demonstrat-
ing that our recovery technique outperforms the state of the art. The results show that
CDRec is orders of magnitude faster than the most accurate algorithm while produc-
ing superior results in terms of recovery.

As future work, we plan to investigate the application of CDRec to perform con-
tinuous recovery of missing values in time series streams.

References

1. Administration, C.M.: Temperature TS , homepage: https://www.hydrodaten.admin.ch/en
(Accessed: 2018-07-01)

2. Agarwal, A., Amjad, M.J., Shah, D., Shen, D.: Model agnostic time series analysis via matrix esti-
mation. POMACS 2(3), 40:1–40:39 (2018). DOI 10.1145/3287319. URL https://doi.org/10.
1145/3287319

3. Agarwal, A., Amjad, M.J., Shah, D., Shen, D.: Time series analysis via matrix estimation. CoRR
abs/1802.09064 (2018). URL http://arxiv.org/abs/1802.09064

4. Alter, O., Brown, P.O., Botstein, D.: Singular value decomposition for genome-wide expression data
processing and modeling. Proceedings of the National Academy of Sciences of the United States of
America 97 18, 10101–6 (2000)

5. Balzano, L., Chi, Y., Lu, Y.M.: Streaming pca and subspace tracking: The missing data case. Proceed-
ings of the IEEE 106(7) (2018)

6. Balzano, L., Nowak, R., Recht, B.: Online identification and tracking of subspaces from highly in-
complete information. 2010 48th Annual Allerton Conference on Communication, Control, and Com-
puting (Allerton) (2010). DOI 10.1109/allerton.2010.5706976

7. Bodik, P., Hong, W., Guestrin, C., Madden, S., Paskin, M., Thibaux, R.: Intel berkeley research lab
dataset, homepage: http://db.csail.mit.edu/labdata/labdata.html (2004)

8. Cambronero, J., Feser, J.K., Smith, M.J., Madden, S.: Query optimization for dynamic imputation.
PVLDB 10(11), 1310–1321 (2017). DOI 10.14778/3137628.3137641. URL http://www.vldb.
org/pvldb/vol10/p1310-feser.pdf

9. Chu, M.T., Funderlic, R.: The centroid decomposition: Relationships between discrete variational
decompositions and svds. SIAM J. Matrix Analysis Applications 23(4), 1025–1044 (2002). DOI
10.1137/S0895479800382555

10. D’agostino Sr, R.B., Russell, H.K.: Centroid Method. John Wiley and Sons, Ltd (2005). DOI
10.1002/0470011815.b2a13006

11. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). URL http://archive.
ics.uci.edu/ml

12. for the Environment FOEN, F.O.: BAFU TS, homepage: https://www.meteoswiss.admin.ch/
home.html?tab=alarm (Accessed: 2018-03-01)

13. Gold, M.S., Bentler, P.M.: Treatments of missing data: A monte carlo comparison of rbhdi, itera-
tive stochastic regression imputation, and expectation-maximization. Structural Equation Modeling:
A Multidisciplinary Journal 7(3), 319–355 (2000). DOI 10.1207/S15328007SEM0703_1. URL
https://doi.org/10.1207/S15328007SEM0703_1

https://www.hydrodaten.admin.ch/en
https://doi.org/10.1145/3287319
https://doi.org/10.1145/3287319
http://arxiv.org/abs/1802.09064
http://db.csail.mit.edu/labdata/labdata.html
http://www.vldb.org/pvldb/vol10/p1310-feser.pdf
http://www.vldb.org/pvldb/vol10/p1310-feser.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.meteoswiss.admin.ch/home.html?tab=alarm
https://www.meteoswiss.admin.ch/home.html?tab=alarm
https://doi.org/10.1207/S15328007SEM0703_1

Scalable Recovery of Missing Blocks in Time Series with High and Low cross-Correlations 25

14. Hening, D., Koonce, D.A.: Missing data imputation method comparison in ohio university student
retention database. In: Proceedings of the 2014 International Conference on Industrial Engineering
and Operations Management, Bali, Indonesia, January 7 – 9, 2014 (2014)

15. Jain, A.K., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern
Recognition 38(12), 2270–2285 (2005). DOI 10.1016/j.patcog.2005.01.012. URL https://doi.
org/10.1016/j.patcog.2005.01.012

16. Khayati, M., Böhlen, M.H., Cudré-Mauroux, P.: Using lowly correlated time series to recover missing
values in time series: A comparison between SVD and CD. In: Advances in Spatial and Temporal
Databases - 14th International Symposium, SSTD 2015, Hong Kong, China, August 26-28, 2015.
Proceedings, pp. 237–254 (2015). URL http://dx.doi.org/10.1007/978-3-319-22363-6_
13

17. Khayati, M., Böhlen, M.H., Gamper, J.: Memory-efficient centroid decomposition for long time se-
ries. In: IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA,
March 31 - April 4, 2014, pp. 100–111 (2014)

18. Lee, M., An, J., Lee, Y.: Missing-value imputation of continuous missing based on deep imputation
network using correlations among multiple iot data streams in a smart space. IEICE Transactions
102-D(2), 289–298 (2019). URL http://search.ieice.org/bin/summary.php?id=e102-d_
2_289

19. Mei, J., de Castro, Y., Goude, Y., Hébrail, G.: Nonnegative matrix factorization for time series recov-
ery from a few temporal aggregates. In: Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 2382–2390 (2017)

20. of Meteorology, F.O., Climatology: MeteoSwiss TS, homepage: https://www.hydrodaten.
admin.ch/en (Accessed: 2018-03-01)

21. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM (2000). DOI 10.1137/1.
9780898719512. URL https://my.siam.org/Store/Product/viewproduct/?ProductId=
971

22. Moritz, S., Sardá, A., Bartz-Beielstein, T., Zaefferer, M., Stork, J.: Comparison of different methods
for univariate time series imputation in R. CoRR abs/1510.03924 (2015). URL http://arxiv.
org/abs/1510.03924

23. Ongie, G., Willett, R., Nowak, R.D., Balzano, L.: Algebraic variety models for high-rank matrix
completion. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, pp. 2691–2700 (2017)

24. Rasp, J.: Statistical Quality Control, homepage: http://www.cma.gov.cn (Accessed: 2018-07-01)
25. Recht, B.: A simpler approach to matrix completion. Journal of Machine Learning Research 12,

3413–3430 (2011)
26. Rodriguez-Lujan, I., Fonollosa, J., Vergara, A., Homer, M., Huerta, R.: On the calibration of sensor ar-

rays for pattern recognition using the minimal number of experiments. Chemometrics and Intelligent
Laboratory Systems 130, 123 – 134 (2014). DOI https://doi.org/10.1016/j.chemolab.2013.10.012.
URL http://www.sciencedirect.com/science/article/pii/S0169743913001937

27. Sanderson, C., Curtin, R.R.: A user-friendly hybrid sparse matrix class in C++. In: Mathemat-
ical Software - ICMS 2018 - 6th International Conference, South Bend, IN, USA, July 24-27,
2018, Proceedings, pp. 422–430 (2018). DOI 10.1007/978-3-319-96418-8_50. URL https:
//doi.org/10.1007/978-3-319-96418-8_50

28. Vergara, A., Vembu, S., Ayhan, T., Ryan, M.A., Homer, M.L., Huerta, R.: Chemical gas sensor drift
compensation using classifier ensembles. Sensors and Actuators B: Chemical 166-167, 320 – 329
(2012). DOI https://doi.org/10.1016/j.snb.2012.01.074. URL http://www.sciencedirect.com/
science/article/pii/S0925400512002018

29. Wellenzohn, K., Böhlen, M.H., Dignös, A., Gamper, J., Mitterer, H.: Continuous imputation of miss-
ing values in streams of pattern-determining time series. In: Proceedings of the 20th International
Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017., pp.
330–341 (2017)

30. Yi, X., Zheng, Y., Zhang, J., Li, T.: ST-MVL: filling missing values in geo-sensory time series data.
In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI
2016, New York, NY, USA, 9-15 July 2016, pp. 2704–2710 (2016)

31. Yoon, J., Zame, W.R., van der Schaar, M.: Estimating missing data in temporal data streams us-
ing multi-directional recurrent neural networks. IEEE Trans. Biomed. Engineering 66(5), 1477–
1490 (2019). DOI 10.1109/TBME.2018.2874712. URL https://doi.org/10.1109/TBME.2018.
2874712

https://doi.org/10.1016/j.patcog.2005.01.012
https://doi.org/10.1016/j.patcog.2005.01.012
http://dx.doi.org/10.1007/978-3-319-22363-6_13
http://dx.doi.org/10.1007/978-3-319-22363-6_13
http://search.ieice.org/bin/summary.php?id=e102-d_2_289
http://search.ieice.org/bin/summary.php?id=e102-d_2_289
https://www.hydrodaten.admin.ch/en
https://www.hydrodaten.admin.ch/en
https://my.siam.org/Store/Product/viewproduct/?ProductId=971
https://my.siam.org/Store/Product/viewproduct/?ProductId=971
http://arxiv.org/abs/1510.03924
http://arxiv.org/abs/1510.03924
http://www.cma.gov.cn
http://www.sciencedirect.com/science/article/pii/S0169743913001937
https://doi.org/10.1007/978-3-319-96418-8_50
https://doi.org/10.1007/978-3-319-96418-8_50
http://www.sciencedirect.com/science/article/pii/S0925400512002018
http://www.sciencedirect.com/science/article/pii/S0925400512002018
https://doi.org/10.1109/TBME.2018.2874712
https://doi.org/10.1109/TBME.2018.2874712

26 Mourad Khayati et al.

32. Yu, H., Rao, N., Dhillon, I.S.: Temporal regularized matrix factorization for high-dimensional time
series prediction. In: Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 847–855
(2016)

33. Zhang, S.: Nearest neighbor selection for iteratively knn imputation. J. Syst. Softw. 85(11), 2541–
2552 (2012). DOI 10.1016/j.jss.2012.05.073. URL http://dx.doi.org/10.1016/j.jss.2012.
05.073

34. Zhu, X.: Comparison of four methods for handing missing data in longitudinal data analysis through
a simulation study. Open Journal of Statistics 4, 933–944 (2014). DOI http://dx.doi.org/10.4236/ojs.
2014.411088

http://dx.doi.org/10.1016/j.jss.2012.05.073
http://dx.doi.org/10.1016/j.jss.2012.05.073

	Introduction
	Related Work
	Background
	Recovery of Missing Blocks
	Incremental Scalable Sign Vector (ISSV)
	Experimental Evaluation
	Conclusion

