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Abstract—Real world applications that deal with time series
data often rely on matrix decomposition techniques, such as the
Singular Value Decomposition (SVD). The Centroid Decomposi-
tion (CD) approximates the Singular Value Decomposition, but
does not scale to long time series because of the quadratic space
complexity of the sign vector computation.

In this paper, we propose a greedy algorithm, termed Scalable
Sign Vector (SSV), to efficiently determine sign vectors for CD
applications with long time series, i.e., where the number of rows
(observations) is much larger than the number of columns (time
series). The SSV algorithm starts with a sign vector consisting
of only 1s and iteratively changes the sign of the element that
maximizes the benefit. The space complexity of the SSV algorithm
is linear in the length of the time series. We provide proofs for
the scalability, the termination and the correctness of the SSV
algorithm. Experiments with real world hydrological time series
and data sets from the UCR repository validate the analytical
results and show the scalability of SSV.

I. INTRODUCTION

The Centroid Decomposition (CD) has been introduced as
an approximation of the Singular Value Decomposition (SVD).
It decomposes an input matrix, X, into the product of two
matrices, X = L ·RT , where L is the loading matrix and R is
the relevance matrix (RT denotes the transpose of R). Each
loading and relevance vector is determined based on a maximal
centroid value, max ‖XT ·Z‖, which is equal to the norm of the
product between the transpose of the input matrix and the sign
vector Z consisting of 1s and 1s. Finding the maximizing sign
vector Z that maximizes the centroid value is therefore at the
core of the CD method. The classical approach [1] enumerates
all possible sign vectors and chooses the one that maximizes
the centroid value. This approach has linear space complexity
since no data structures other than the input matrix are needed.
However, its runtime is exponential. A more efficient solution
to determine the maximizing sign vector has been introduced
by Chu and Funderlic [2] and has quadratic runtime. The
drawback of this solution is a quadratic space complexity since
a correlation/covariance matrix is needed in addition to the
input matrix.

In this work, we address the scalability of the Centroid
Decomposition technique for an n×m matrix, X, that repre-
sents m time series with n observations each, where n is much
larger than m (i.e., n� m). We propose a greedy algorithm,
termed Scalable Sign Vector (SSV), to compute the maximizing
sign vector. The basic idea is as follows: instead of searching

for the maximizing sign vector using all elements of X, we
search for it by rows of X. First, a sign vector Z is initialized
to contain only 1s as elements. Then, the algorithm iteratively
updates the sign of the element in Z that increases ‖XT ·Z‖
most. The relevant element can be determined efficiently by
checking all elements of a weight vector V , which is derived
from X. Instead of enumerating all possible sign vectors,
our strategy generates only the vectors that most increase
ZT · V . At the end of this iterative process, the sign vector
Z that yields the maximal centroid value is found. The SSV
algorithm has quadratic time (worst case) and linear space
complexity. Compared to the classical approach, SSV reduces
the runtime of the CD method from exponential to quadratic
while keeping the same linear space complexity. Compared to
the most efficient algorithm [2], SSV keeps the same quadratic
runtime complexity, but reduces the space complexity from
quadratic to linear.

Matrix decomposition techniques are widely used for time
series data in a variety of real world applications, such as data
prediction, recommender systems, image compression, recov-
ery of missing values, stocks, etc. In most of these applications,
only very few and short time series can be considered for
the analysis due to the computational complexity of current
solutions for matrix decomposition. As a consequence, not
all relevant information of the original set of time series
is considered for the decomposition. This is an unfortunate
limitation since it can be imperative to use long time series
to improve data analysis [3]. For instance, in the recovery
of missing values the most correlated time series are used
to capture similar trends, and the use of longer time series
improves the accuracy of the recovered values (as we will
show in Section VI). Thus, scalable solutions that avoid an a
priori segmentation of long time series are needed.

At the technical level, we provide an analysis and proofs of
the correctness, the termination and the scalability of the SSV
algorithm. The analytical results are confirmed by an in-depth
empirical evaluation. In summary, the main contributions of
this paper are the following:

• We propose a sign vector computation algorithm,
called Scalable Sign Vector (SSV), that reduces the
space complexity of the Centroid Decomposition tech-
nique from quadratic to linear, while keeping the same
runtime complexity as the state-of-the-art solution.

• We prove that the space complexity of the SSV



algorithm increases linearly with the length of the time
series.

• We prove that the computation performed by the
SSV algorithm is strictly monotonic. We use the
monotonicity property to prove the correctness of the
proposed solution.

• We prove that the SSV algorithm terminates and
performs at most n iterations.

• We present the results of an experimental evaluation
of the efficiency and scalability of the SSV algorithm
on real world hydrological data and on datasets from
the UCR repository.

The remainder of the paper is organized as follows. Sec-
tion II reviews related work. Preliminary concepts and defi-
nitions are provided in Section III. In Section IV, we present
the SSV algorithm. Section V describes the main properties
of the SSV algorithm. Section VI reports the results of our
experiments. Section VII concludes the paper and discusses
future work.

II. RELATED WORK

The Centroid Decomposition (CD) has been introduced as
an approximation of the Singular Value Decomposition [2].
It computes the centroid values, the loading vectors and
the relevance vectors to approximate, respectively, the eigen
values, the right singular vectors and the left singular vectors
of SVD. Chu et al. [2], [4] prove that the CD approximation
of SVD is the one that best minimizes the variance between
corresponding elements. Thus, the variance between the cen-
troid values computed by CD and the eigen values computed
by SVD is minimal.

The most challenging part of the CD of a matrix X is the
computation of the sign vector Z, consisting of 1s and 1s,
that maximizes ‖XT ·Z‖, where XT is the transpose of X and
‖·‖ denotes the norm of a vector. The classical approach is
based on the centroid method [5]. The centroid method uses
a brute force search through an exponential number of sign
vectors. Thus, the algorithm has exponential time and linear
space complexity. This method has been used in various fields
such as dimensionality reduction [6], peak shift detection [7],
etc.

The most efficient algorithm to find the maximizing sign
vector was introduced by Chu and Funderlic [2], which we re-
fer to as Quadratic Sign Vector (QSV). It transforms the maxi-
mization problem from max ‖XT ·Z‖ to max (ZT ·(X·XT )·Z)
and achieves a quadratic runtime complexity. The space com-
plexity is quadratic as well due to the construction of X·XT .
Fig. 1 illustrates the main data structures of the algorithm for
an n × 3 input matrix X. Step 1 applies the transformation
of the maximization problem, and Step 2 determines the
maximizing sign vector. The set of all possible sign vectors
can be considered as an n-dimensional hypercube, where each
node represents a sign vector and is connected with all nodes
representing a sign vector that differs in exactly one element.
The QSV algorithm performs a traversal along the nodes
of the hypercube, starting from the node that represents the
sign vector Z = [ 1, . . . , 1]T until finding the node (and
corresponding sign vector) that maximizes ZT ·(X·XT )·Z.

The Singular Value Decomposition (SVD) [8], [9], [10]
is a widely used matrix decomposition technique. SVD per-
forms the decomposition by finding the eigen values with
their corresponding left and right singular vectors. SVD has
been used for dimensionality reduction [11], [12], image
compression [13], [14], missing values recovery [15], [16],
etc. As most matrix decomposition techniques, SVD constructs
a correlation/covariance matrix to find the eigen values and
their corresponding singular vectors. Several algorithms have
been proposed to make SVD for an n ×m matrix faster for
special cases of n and m. For instance, for m > 5

3n, the
runtime of SVD is reduced from 4n2m + 8nm2 + 9m3 to
2n2m+2m3 [17]. Less attention has been given to reduce the
space complexity while keeping the same runtime complexity,
which is the goal of this paper.

Rendle [18], [19] introduces Factorization Machines (FM)
that perform a decomposition of large input matrices. Factor-
ization Machines perform learning and prediction with input
matrices of millions of values. For specific input matrices, the
result obtained by the application of FM contains the decom-
position matrices produced by SVD. The approach assumes
the existence of repeating patterns in the input matrix. Each
repeating pattern is represented by a block of data, and the
decomposition is computed using these blocks of data.

Papalexakis et al. [20] present a scalable solution to com-
pute tensor (3d matrix in this work) decompositions [21]. More
specifically, a parallel approach to compute the PARAFAC
decomposition is proposed, which is a multidimensional gen-
eralization of SVD. The proposed solution works in three
steps: create random samples of the input tensor, apply a
parallel decomposition on each of them, and merge the result
of each decomposition. This gives an approximation of the
decomposition of the entire input tensor. The method scales
linearly to millions of values. However, it is applicable only
to sparse tensors, where more than 90% of the elements of the
input tensor are equal to zero. Only the non-zero elements are
used in the decomposition. In contrast, our solution performs
the matrix decomposition for any type of input matrices.

Gemulla et al. [22] propose a large-scale matrix decomposi-
tion technique that, similar to CD, decomposes an input matrix
into the product of two matrices. The proposed technique
implements a scalable distributed Stochastic Gradient Descent
(SGD) method [23]. The latter computes a loss function that
minimizes an error value between the input matrix and the
product of the two matrices. The method works as follows.
First, the input matrix is partitioned into blocks that are
distributed across a MapReduce cluster. Then, the loss function
is computed as the sum of local loss functions, each of
which is computed in parallel over a single data block. This
technique exploits the fact that the computation of local loss
functions can be swapped without changing the final result
of the decomposition. This is possible since each local loss
function is computed over a different row and/or column of
the input matrix. This technique scales to large input matrices
consisting of millions of rows and columns. The technique we
propose in this paper cannot be distributed since it computes a
sequence of vectors, where each vector relies on the previous
one.

Li et al. [24] follow the same idea to distribute the
computation of a matrix decomposition across a MapReduce
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Fig. 1. Illustration of the main data structures used by the QSV algorithm.

cluster. They propose a parallelizable computation of the SGD
method using Resilient Distributed Datasets (RDDs) [25], but
investigate the case when the individual blocks do not fit
into the main memory of a node. The proposed solution is
based on a hash table that stores partitions of data blocks in
memory. It scales to large data sets containing millions of
values. The work uses the fact that the decomposition can
be performed in parallel over separate rows and/or columns
of data. Our solution cannot be computed over separate rows
and/or columns of the input matrix since the sequence of
computed vectors requires the use of the entire matrix.

The methods described in Gemulla et al. [22] and
Li et al. [24] implement a scalable SGD method. They do not
assume any constraints about the input matrix, but compute
a decomposition that is different from the one produced by
SVD. The SGD method minimizes a given error value, which
is different from CD. This approach makes SGD suitable for
applications where an error value needs to be minimized, such
as in recommender systems [26] used in Netflix [27], [28],
[29] or MovieLens [30].

The solution proposed in this paper describes a scalable
implementation of the CD matrix decomposition technique that
approximates SVD. Our solution uses the entire input matrix
for the computation and can therefore not be computed over
separate blocks of rows and/or columns in parallel. Instead of
distributing the decomposition across clusters, we propose to
reduce the space complexity of the decomposition method.

III. PRELIMINARIES

A. Notations

Bold upper-case letters refer to matrices, regular font
upper-case letters to vectors (rows and columns of matrices)
and lower-case letters to elements of vectors/matrices. For
example, X is a matrix, Xi∗ is the i-th row of X, X∗i is
the i-th column of X, (Xi∗)

T is the transpose of Xi∗ and xij
is the j-th element of Xi∗.

A time series X = {(t1, v1), . . . , (tn, vn)} is a set of
n temporal values vi that are ordered with respect to the
timestamps ti. We assume time series with aligned timestamps
(possibly after a preprocessing step). Thus, in the rest of
the paper we omit the timestamps and write a time series
X1 = {(0, 2), (1, 0), (2, 4)} as X1 = {2, 0, 4}.

An n×m matrix X = [X∗1|. . . |X∗m] contains as columns
m time series X∗j and as rows n values for each time series.

Our database contains up to 200 real world hydrological time
series with each of them containing up to 120k values. Thus,
we consider matrices where the length of time series n is much
larger than the number of time series m, i.e., n� m.

A sign vector Z ∈ {1, 1}n is a sequence [z1, . . . , zn] of
n elements, i.e., |zi| = 1 for i = 1, . . . , n.

B. Centroid Decomposition

The Centroid Decomposition (CD) is a decomposition tech-
nique that decomposes an n×m matrix, X = [X∗1| . . . |X∗m],
into an n × m loading matrix, L = [L∗1| . . . |L∗m], and an
m×m relevance matrix, R = [R∗1| . . . |R∗m], i.e.,

X = L·RT =

m∑
i=1

L∗i·(R∗i)T ,

where RT denotes the transpose of R.

Algorithm 1: CD(X, n, m)
Input: n×m matrix X
Output: L, R

L = R = [];
for i = 1 to m do

Z = FindSignV ector(X, n,m);
C∗i = XT · Z;
R∗i =

C∗i
‖C∗i‖

;
R = Append(R, R∗i);
L∗i = X ·R∗i;
L = Append(L, L∗i);
X := X− L∗i ·RT

∗i;
return L, R

Algorithm 1 computes the CD of an input matrix X
into matrices L and R. At each iteration i, function Find-
SignVector() determines the sign vector Z that yields the
maximal centroid value ‖XT ·Z‖ (where ‖XT ·Z‖ is equal
to the square root of the squared elements of XT ·Z). We
call Z the maximizing sign vector. Next, the centroid vector,
C∗i, and the centroid value, ‖C∗i‖, are computed. Finally, the
vectors L∗i and R∗i are computed and added as columns to,
respectively, L and R. In order to eliminate duplicate vectors,
the next loading vectors, L∗i+1, and relevance vectors, R∗i+1,
are computed from X − L∗i · RT

∗i. The algorithm terminates
when m centroid values and m loading and relevance vectors
are found.



Example 1: Consider a matrix X and two sign vectors:

X=

[
2 2
0 3
4 2

]
XT=

[
2 0 4
2 3 2

]
Z1=

[
1
1
1

]
Z2=

[
1
1
1

]

The centroid values for the two sign vectors are computed
as ‖XT ·Z1‖ =

√
( 2)2 + ( 3)2 =

√
13 and ‖XT ·Z2‖ =√

( 6)2 + 72 =
√
85. Since ‖XT ·Z2‖ > ‖XT ·Z1‖, Z2 is the

maximizing sign vector (among the two sign vectors).

C. Application of CD

The following example illustrates how to interpret the
Centroid Decomposition of a matrix of m time series. Let
F = {f1, . . . , fm} be the set of m factors that (most) influence
the values in the time series.

Example 2: Consider a 2 × 3 matrix X = {X1, X2}
that consists of two time series X1 = {2, 0, 4} and X2 =
{ 2, 3, 2}. X1 is the temperature in Zurich, and X2 is the
temperature in Basel. The CD method decomposes X by
finding the loading and the relevance vectors with respect to
each time series as shown in Fig. 2.

X =

 2 2
0 3
4 2



CD(X) =

 2.820 0.217
2.278 1.952
4.122 1.735


︸ ︷︷ ︸

L

,

[
0.651 0.759
0.759 0.651

]
︸ ︷︷ ︸

R

such that

X =

 2 2
0 3
4 2

 =

 2.820 0.217
2.278 1.952
4.122 1.735


︸ ︷︷ ︸

L

×
[

0.651 0.759
0.759 0.651

]
︸ ︷︷ ︸

RT

Fig. 2. Example of Centroid Decomposition.

If F = {nbrSunnyHours, amntRain} and if each tem-
perature time series is mainly influenced by the two factors
of F , the Centroid Decomposition shows how to obtain the
temperature values in a specific city using these two factors.
For instance, the first value of the temperature in Zurich shown
in gray color (i.e., 2) is obtained using a loading value of
2.820 for nbrSunnyHours with a relevance value of 0.651

to which we add a loading value of 0.217 for amntRain with
a relevance value of 0.759.

The result of the decomposition in Example 2 can be used
to recover missing values. Let’s assume the second value of the
temperature in Basel is missing. The first step of the recovery
process is to initialize the missing value using a classical
imputation technique, e.g., linear interpolation. Then, we apply
the Centroid Decomposition to learn the loading and relevance
values of the two factors to refine the initialized value. The
refined values better approximate the missing value. We show
the result of the recovery based on Centroid Decomposition in
Section VI-B5.

IV. SCALABLE SIGN VECTOR

This section presents a scalable sign vector (SSV) com-
putation technique, which has the same quadratic runtime
complexity as the QSV algorithm [2], but requires only linear
space. The core of the solution is the transformation of the
maximization of the centroid values ‖XT ·Z‖ into a new
and equivalent maximization problem that can be computed
efficiently.

A. Overview and Data Structures

Fig. 3 illustrates the SSV computation method. We trans-
form the maximization of the centroid values to a new max-
imization problem that is based on a sign vector Z and a
weight vector V that is derived from X. More specifically, a
sequence of vector pairs V (k) and Z(k) is iteratively computed,
beginning with Z(1) = [1, . . . , 1]T . In each iteration, the sign
vector is changed at the position that maximizes the product
of the two vectors. The last sign vector Z(k) (1 ≤ k ≤ n) is
the maximizing sign vector. 2 2

0 3
4 2


︸ ︷︷ ︸

X︸ ︷︷ ︸
Input

→

 1
1
1


︸ ︷︷ ︸

Z(1)

 18
0
6


︸ ︷︷ ︸

V (1)

 1
1
1


︸ ︷︷ ︸

Z(2)

 18
12
18


︸ ︷︷ ︸

V (2)︸ ︷︷ ︸
SSV computation

→

 1
1
1


︸ ︷︷ ︸

Z(2)︸ ︷︷ ︸
SSV output

Fig. 3. Illustration of SSV.

Fig. 4 illustrates the Centroid Decomposition of an input
matrix X using SSV. In the first iteration of Algorithm 1, we
use X and SSV to derive the first maximizing sign vector. We
then compute vector L∗1 and R∗1 according to Algorithm 1. In
the second iteration, we update matrix X to X

′
= X−L∗1·RT

∗1
and repeat the process, i.e., derive the second maximizing sign
vector Z ′ and compute vectors L∗2 and R∗2. 2 2

0 3
4 2


︸ ︷︷ ︸

X

→

 1
1
1


︸ ︷︷ ︸

Z

→

 2.820
2.278
4.122


︸ ︷︷ ︸

L∗1

[
0.651
0.759

]
︸ ︷︷ ︸

R∗1

→

(a) Iteration 1

→

 0.164 0.141
1.482 1.270
1.317 1.129


︸ ︷︷ ︸

X
′

→

 1
1
1


︸ ︷︷ ︸

Z′

→

 0.217
1.952
1.735


︸ ︷︷ ︸

L∗2

[
0.759
0.651

]
︸ ︷︷ ︸

R∗2

(b) Iteration 2

Fig. 4. Illustration of Centroid Decomposition using SSV.

B. Transformation of the Maximization Problem

In this section, we present a transformation of the maxi-
mization of ‖XT ·Z‖ into a new and equivalent maximization
problem and we show that the new maximization problem can
be efficiently computed with linear space complexity.

The following auxiliary function is used: diag 0(X) sets
the diagonal values of an n× n matrix X to 0.

The following lemma introduces a maximization equiva-
lence, which states that maximizing ‖XT ·Z‖ over all possible



sign vectors Z is equivalent to maximizing the product of ZT

and the vector V = diag 0(X·XT ) · Z. This maximization
equivalence will be used to define the new maximization
problem.

Lemma 1 (Maximization Equivalence): Let matrix X =
[X∗1| . . . |X∗m] be an n × m matrix and V be the vector
V = diag 0(X·XT )·Z. The following equivalence holds:

arg max
Z∈{1, 1}n

‖XT ·Z‖ ≡ arg max
Z∈{1, 1}n

ZT ·V.

Proof: We expand both sides of the equivalence and show
that the expanded expressions are equivalent.

The transformation of the expression on the left-hand side
yields

arg max
Z∈{−1,1}n

‖XT ·Z‖ ≡

≡ arg max
Z∈{−1,1}n

‖XT ·Z‖2

≡ arg max
Z∈{−1,1}n

((

n∑
i=1

xi1×zi)2 + · · · + (

n∑
i=1

xim×zi)2)

≡ arg max
Z∈{−1,1}n

((

n∑
i=1

x̃i1)
2 + · · ·+ (

n∑
i=1

x̃im)2),

where x̃ij = xij × zi for j = 1, . . . ,m. Notice that the first
step takes the square of the norm, which has no impact on the
vector Z that maximizes the norm. Next, we use the square of
sum rule

(

n∑
i=1

xi)
2 =

n∑
i=1

x2i + 2×
n∑

j=2

j−1∑
i=1

xi×xj

and transform the above expression into

arg max
Z∈{−1,1}n

‖XT ·Z‖ ≡

≡ arg max
Z∈{−1,1}n

(

n∑
i=1

x̃2i1 + 2×
n∑

j=2

j−1∑
i=1

x̃i1×x̃j1 +

...
n∑

i=1

x̃2im + 2×
n∑

j=2

j−1∑
i=1

x̃im×x̃jm).

Since x̃ij = xij × zi with zi ∈ {−1, 1}, we have x̃2ij = x2ij .
That is, the terms

∑n
i=1 x̃

2
ij for j = 1, . . . ,m in the above

expression are constant and independent of the sign vector
Z. Therefore, they can be removed from the maximization
problem, which yields

arg max
Z∈{−1,1}n

‖XT ·Z‖ ≡

≡ arg max
Z∈{−1,1}n

(2×(
n∑

j=2

j−1∑
i=1

x̃i1×x̃j1 + · · ·+
n∑

j=2

j−1∑
i=1

x̃im×x̃jm︸ ︷︷ ︸∑m
k=1

∑n
j=2

∑j−1
i=1 x̃ik×x̃jk

))

≡ arg max
Z∈{−1,1}n

(2×
m∑

k=1

n∑
j=2

j−1∑
i=1

x̃ik×x̃jk). (1)

Next, we transform the expression on the right-hand side.
From the definition of V we get

arg max
Z∈{−1,1}n

ZT ·V ≡ arg max
Z∈{−1,1}n

(ZT ·diag 0(X·XT )·Z).

The matrix representation of diag 0(X·XT ) using the rows of
X is given as

diag 0(X·XT ) =


0 X1∗·(X2∗)

T · · · X1∗·(Xn∗)
T

X2∗·(X1∗)
T 0 · · · X2∗·(Xn∗)

T

...
...

. . .
...

Xn∗·(X1∗)
T Xn∗·(X2∗)

T · · · 0

.

We use this representation and transform the argument of the
arg max function as follows:

ZT ·diag 0(X·XT )·Z =

= ZT ·


0 X1∗·(X2∗)

T · · · X1∗·(Xn∗)
T

X2∗·(X1∗)
T 0 · · · X2∗·(Xn∗)

T

...
...

. . .
...

Xn∗·(X1∗)
T Xn∗·(X2∗)

T · · · 0

·Z

= ZT ·


0 + z2×(X1∗·(X2∗)

T ) + · · ·+ zn×(X1∗·(Xn∗)
T )

z1×(X2∗·(X1∗)
T ) + 0 + · · ·+ zn×(X2∗·(Xn∗)

T )
...

z1×(Xn∗·(X1∗)
T ) + z2×(Xn∗·(X2∗)

T ) + · · ·+ 0


= z1×(0 + z2×(X1∗·(X2∗)

T ) + · · ·+ zn×(X1∗·(Xn∗)
T )) +

z2×(z1×(X2∗·(X1∗)
T ) + 0 + · · ·+ zn×(X2∗·(Xn∗)

T )) +

...
zn×(z1×(Xn∗·(X1∗)

T ) + z2×(Xn∗·(X2∗)
T ) + · · ·+ 0).

The vector products in the above expression are replaced by a
sum, i.e., Xi∗ · (Xj∗)

T =
∑m

k=1 xik×xjk, which gives

ZT ·diag 0(X·XT )·Z =

= z1×(0 + z2×
m∑

k=1

x1k×x2k + · · ·+ zn×
m∑

k=1

x1k×xnk) +

z2×(z1×
m∑

k=1

x2k×x1k + 0 + · · ·+ zn×
m∑

k=1

x2k×xnk) +

...

zn×(z1×
m∑

k=1

xnk×x1k + z2×
m∑

k=1

xnk×x2k + · · ·+ 0).

Finally, we push the elements of the sign vector into the sum
and replace zi × xik by x̃ik, which gives



ZT ·diag 0(X·XT )·Z =

= 0 +

m∑
k=1

x̃1k×x̃2k + · · ·+
m∑

k=1

x̃1k×x̃nk +

m∑
k=1

x̃2k×x̃1k + 0 + · · ·+
m∑

k=1

x̃2k×x̃nk +

...
m∑

k=1

x̃nk×x̃1k +

m∑
k=1

x̃nk×x̃2k + · · ·+ 0

= 2×
m∑

k=1

n∑
j=2

j−1∑
i=1

x̃ik×x̃jk.

We insert this expression in the arg max function, which gives
Equation (1).

Lemma 1 forms the basis for a new and equivalent maxi-
mization problem. Instead of maximizing ‖XT ·Z‖, the product
ZT ·V is maximized over all sign vectors Z ∈ {1, 1}n. Since
the computation of V = diag 0(X·XT )·Z has quadratic space
complexity (due to the construction of the matrix X·XT ), we
proceed by showing how to avoid this product and how to
compute V directly from X.

Lemma 2: Let X = [X∗1| . . . |X∗m] be an n ×m matrix
and vi be the i-th element of the vector V = diag 0(X·XT )·Z.
Then, the following holds:

vi = zi × (zi ×Xi∗·ZT ·X−Xi∗·(Xi∗)
T ).

Proof: We use the matrix representation of diag 0(X·XT )
to compute V as follows:

diag 0(X·XT )·Z =

=


0 X1∗·(X2∗)

T · · · X1∗·(Xn∗)
T

X2∗·(X1∗)
T 0 · · · X2∗·(Xn∗)

T

...
...

. . .
...

Xn∗·(X1∗)
T Xn∗·(X2∗)

T · · · 0

·Z

=


X1∗·(0 + z2×(X2∗)

T + · · ·+ zn×(Xn∗)
T )

X2∗·(z1×(X1∗)
T + 0 + · · ·+ zn×(Xn∗)

T )
...

Xn∗·(z1×(X1∗)
T + z2×(X2∗)

T + · · ·+ 0)



=


z1 × (z1 ×X1∗·

∑n
j=1(zj × (Xj∗)

T )−X1∗·(X1∗)
T )

z2 × (z2 ×X2∗·
∑n

j=1(zj × (Xj∗)
T )−X2∗·(X2∗)

T )
...

zn × (zn ×Xn∗·
∑n

j=1(zj × (Xj∗)
T )−Xn∗·(Xn∗)

T )


Since we have that ZT ·X =

∑n
j=1(zj×(Xj∗)

T ), it follows
that vi = zi × (zi ×Xi∗·ZT ·X−Xi∗·(Xi∗)

T ).

Based on Lemma 2 we show that the space complexity of
computing vector V (i.e., diag 0(X·XT )·Z) is linear in the
number of rows of X.

Lemma 3 (Linear Space): For an n × m matrix X, the
computation of V = diag 0(X·XT )·Z has O(n) space com-
plexity.

Proof: The result of
∑n

j=1(zj × (Xj∗)
T ) is computed

by keeping in memory a single row Xj∗ and one element
of Z at a time, which requires O(m) space. This sum is
computed only once. To compute the individual elements
vi = zi × (Xi∗·ZT ·X − Xi∗·(Xi∗)

T ) of the result vector of
diag 0(X·XT )·Z, X is read again, one row at a time. The
result vector has length n. Since n� m, the space complexity
of diag 0(X·XT )·Z is O(n).

C. Computation of Maximizing Sign Vectors

We present now an algorithm with linear space complexity
to compute the maximizing sign vector Z according to the
maximization problem introduced in Lemma 1. The basic idea
is as follows. We begin with the sign vector Z = [1, . . . , 1]T

and iteratively change the sign of one element in Z that
increases ZT ·V most. The algorithm terminates when ZT ·V
cannot be increased further with this strategy.

Algorithm 2: SSV(X, n, m)
Input: n×m matrix X
Output: maximizing sign vector ZT = [z1, . . . , zn]

pos = 0;
repeat

// Change sign
if pos = 0 then ZT = [1, . . . , 1];
else change the sign of zpos;

// Determine S and V
S =

∑n
i=1(zi × (Xi∗)

T );
V = [];
for i = 1 to n do

vi = zi × (zi ×Xi∗ · S −Xi∗ · (Xi∗)
T );

Insert vi in V ;

// Search next element
val = 0, pos = 0;
for i = 1 to n do

if (zi × vi < 0) then
if |vi| > |val| then

val = vi;
pos = i;

until pos = 0;
return Z;

Algorithm 2 implements this strategy and computes the
maximizing sign vector. Note that V is computed directly from
X by reading the matrix row by row, one row at a time: first
to compute the intermediate vector S and then to compute
the individual elements of V . We search for the index (pos)
of the element vi ∈ V with the largest absolute value such
that vi and zi ∈ Z have different signs, i.e., zi × vi < 0. If
such an element is found, the sign of zi is changed. A new
vector V is computed, which is different from the vector in
the previous iteration due to the sign change. The iteration



terminates when the signs of all corresponding elements in V
and Z are the same. The vector Z in the final iteration is the
maximizing sign vector that maximizes ZT ·V .

Example 3: To illustrate the computation of the sign vector
using Algorithm 2, consider the input matrix of our running
example, i.e.,

X =

[
2 2
0 3
4 2

]
.

First, Z is initialized with 1s, and S and V are computed:

S =

[
2
2

]
+

[
0
3

]
+

[
4
2

]
=

[
2
3

]
v1 = [2 2]×

[
2
3

]
− [2 2]×

[
2
2

]
= 18

v2 = [0 3]×
[
2
3

]
− [0 3]×

[
0
3

]
= 0

v3 = [ 4 2]×
[
2
3

]
− [ 4 2]×

[
4
2

]
= 6

i.e.,

Z(1) =

[
1
1
1

]
and V (1) =

[
18
0
6

]
.

Two elements of Z(1) have a different sign from the cor-
responding elements in V (1). Thus, the algorithm iterates
through the elements in V (1) to search for the index of the
element vi ∈ V (1) with the largest absolute value, such that
zi ∈ Z(1) and vi have different signs. This search returns
pos = 1. In the second iteration, we change the sign of the
element at position 1 in Z(1) and we use the new sign vector
Z(2) to compute V (2), similar to iteration 1, and get

Z(2) =

[
1
1
1

]
and V (2) =

[
18
12
18

]
.

Since all corresponding elements in Z(2) and V (2) have the
same sign, the algorithm terminates and Z(2) is returned as
the maximizing sign vector that maximizes ZT ·V .

V. PROPERTIES OF THE ALGORITHM

This section works out the main properties of the SSV al-
gorithm. More specifically, we prove monotonicity, termination
and correctness of our algorithm.

A. Monotonicity

Let Z(k) and V (k) refer, respectively, to vectors V and Z in
the k-th iteration of the SSV algorithm. v(k)i and z(k)i denote,
respectively, the i-th element of V (k) and Z(k). Lemma 4
shows that the computation of the maximizing sign vector in
the SSV algorithm is strictly monotonic, i.e., each iteration
increases the value of ZT · V .

Lemma 4 (Monotonicity): For any two consecutive itera-
tions k and k+1 in the SSV algorithm the following holds:

(Z(k+1))T · V (k+1) > (Z(k))T · V (k).

Proof: First, (Z(k+1))T ·V (k+1) > (Z(k+1))T ·V (k) is
proven. Let i be the index of the largest |v(k)i | such that
v
(k)
i ×z

(k)
i < 0. Thus, we change the sign of z(k)i and compute

V (k+1) = diag 0(X·XT )·Z(k+1). For the computation of
v
(k+1)
i , we multiply z

(k+1)
i with the i-th diagonal element

of X·XT . Since all diagonal elements are equal to 0 we
get v(k)i = v

(k+1)
i . Next, assume a unit vector Ui with the

same length as Z(k) where the i-th element is 1 and all other
elements are 0. Using Ui we compute Z(k+1) as follows:

Z(k+1) = Z(k) − 2× Ui

diag 0(X·XT )·Z(k+1) = diag 0(X·XT )·(Z(k) − 2× Ui)

diag 0(X·XT )·Z(k+1) = diag 0(X·XT )·Z(k)−
2× diag 0(X·XT )·Ui

We substitute V (k+1) = diag 0(X·XT )·Z(k+1) and get:

V (k+1) = V (k) − 2× diag 0(X·XT )·Ui

(Z(k+1))T ·V (k+1) = (Z(k+1))T ·V (k)−
2× (Z(k+1))T ·diag 0(X·XT )·Ui

(2)

Let Y = (Z(k+1))T ·diag 0(X·XT ). Since we changed the
sign of z(k)i we have z

(k+1)
i < 0 and get yi < 0. Since

ui is the only element in Ui that is equal to 1 we know
that in Y ·Ui only yi is multiplied by 1, whereas all other
elements of Y are multiplied by 0. We use Y ·Ui < 0 to get
2× (Z(k+1))T ·diag 0(X·XT )·Ui < 0. From (2), we get

(Z(k+1))T ·V (k+1) > (Z(k+1))T ·V (k). (3)

Second, we show (Z(k+1))T · V (k) > (Z(k))T · V (k). By
changing the sign of the element in Z(k) that corresponds to
the largest |v(k)i | such that v(k)i × z(k)i < 0, we get:

n∑
i=1

(z
(k+1)
i × v(k)i ) >

n∑
i=1

(z
(k)
i × v(k)i )

(Z(k+1))T · V (k) > (Z(k))T · V (k) (4)

By transitivity using (3) and (4), the following holds:

(Z(k+1))T · V (k+1) > (Z(k))T · V (k).

B. Termination

Lemma 5 (Termination): Let X be an n × m matrix.
SSV(X, n,m) terminates and performs at most n iterations.

Proof: We show that each element in the sign vector,
zi ∈ Z, is changed at most once. Since Z contains n elements,
the algorithm performs at most n iterations.

To prove that each element in the sign vector is changed
at most once, we show that any value vi ∈ V that increases
ZT · V most in one of the iterations does not change its sign
in subsequent iterations, i.e., vi < 0. This prevents vi to be
considered as candidate element in future iterations, since the



corresponding sign zi is changed from 1 to −1 and has the
same sign as vi. From Lemma 1 we have

V (k) =


v1
v2
...
vn

 =


0 x12 . . . x1n

x21 0 . . . x2n

...
...

. . .
...

xn1 xn2 . . . 0


︸ ︷︷ ︸

diag 0(X·XT )

·Z(k)

We show two consecutive iterations, k + 1 and k + 2, and
assume without loss of generality that z1 and zn are changed,
respectively.

Let v(k)1 be the element that increases ZT ·V most at the k-
th iteration and assume that z(k)n = 1 has not yet been changed.
We have

v
(k)
1 = (z

(k)
2 × x12) + . . .+ (z

(k)
n−1 × x1n−1) + x1n < 0. (5)

Next, consider iteration k+1. Let v(k+1)
i < 0 with i 6= 1 be the

element that increases ZT · V most (if no such element exists
the algorithm terminates). Without loss of generality assume
that i = n. Then, the sign of zn is changed from 1 to −1, i.e.,
z
(k+2)
n = −1. Hence, in iteration k + 2 we get

v
(k+2)
1 = (z

(k+2)
2 ×x12) + . . .+ (z

(z+2)
n−1 ×x1n−1)− x1n. (6)

Now, we perform a case analysis on the element x1n and prove
that v(k+2)

1 < 0 holds.

a) Case x1n ≥ 0: We have that z(k)i = z
(k+2)
i for

i = 2, . . . , n− 1, thus the sum over the first n− 1 elements in
v
(k)
1 (equation 5) and v

(k+1)
1 (equation 6) is the same. Since

x1n ≥ 0 we can conclude that v(k+2)
1 < v

(k)
1 < 0.

b) Case x1n < 0: As in the previous case, let v(k)1

and v(k+1)
n be the two elements that increase ZT · V most at

iteration k and k + 1, respectively. Since diag 0(X·XT ) is a
symmetric matrix, we have x1n = xn1. Again, we do a case
analysis on x1n (for simplicity, we omit z elements in the
following equations):

• Case x1n < xn2 + . . . + xnn−1: By simple transfor-
mations and x1n = xn1 we get

0 < −xn1 + xn2 + . . .+ xnn−1 = v(k+1)
n .

This leads to a contradiction with our assumption that
v
(k+1)
n increases ZT ·V most in iteration k+1, hence
v
(k+1)
n < 0.

• Case x1n ≥ xn2 + . . .+ xnn−1: Since v(k)1 increases
ZT ·V most at the k-th iteration, the following holds:

v
(k)
1 < v(k)n

x12 + . . .+ x1n−1 + x1n < x1n + xn2 . . .+ xnn−1
x12 + . . .+ x1n−1 < xn2 + . . .+ xn−1n

We substitute the right-hand side in the above equation
by our assumption and get x12 + . . . + x1n−1 < x1n
and further x12 + . . .+ x1n−1 − x1n = v

(k+2)
1 < 0.

By using a similar reasoning, we can generalize the proof
for iterations k and k + p with 1 ≤ p < n − k and elements
vi and vj , i 6= j, that increase ZT · V most, respectively.

C. Greedy Strategy

Lemma 6 (Local optimal choice): The SSV algorithm
changes in each iteration the element of the sign vector Z
that most increases ZT · V .

Proof (idea): The SSV algorithm changes in each iter-
ation the sign of an element z(k)i for which z

(k)
i × v(k)i < 0.

This strategy increases ZT · V . If instead we would change
the sign of an element z(k)i for which z

(k)
i × v

(k)
i ≥ 0 we

get Z(k+1) = Z(k) + 2 × U (cf. Lemma 4), which implies
(Z(k+1))T · V (k+1) ≤ (Z(k))T · V (k). In the algorithm we go
through all elements for which z(k)i ×v

(k)
i < 0 and choose the

element that maximizes |z(k)i × v
(k)
i |. Since this also holds for

k + 1, then we make the local optimal choice.

D. Correctness

In this section we prove that our greedy approach computes
the optimal solution.

Lemma 7 (Global maximum): The SSV algorithm com-
putes the maximizing sign vector for which the final product
ZT ·V is globally maximal.

Proof: In order to prove the correctness of our greedy
algorithm, we need to demonstrate that our algorithm satis-
fies two properties that make any greedy approach optimal
(see [31] for further details).

1) Greedy Choice Property: This property states that an
optimal solution exists that is consistent with the first greedy
choice. We demonstrate that there exists an optimal solution
which includes the first greedy choice.

Let Z = [z1, . . . , zn] be a sign vector and P =
{p1, . . . , pk}, k ≤ n, be the ordered set of sign change po-
sitions in Z as computed by the SSV algorithm. For instance,
P = {2, 3, 4, 1} indicates that in the first iteration z2 has been
changed, in the second iteration z3, etc. We use ZP to refer to
the sign vector where the positions in P have been flipped.
Furthermore, let P ∗ = {p∗1, . . . , p∗l } be the ordered set of
sign change positions in Z for the optimal solution. We can
distinguish two cases:

• p1 ∈ P ∗: The first greedy choice is included in the
optimal solution, hence the greedy choice property
holds.

• p1 6∈ P ∗: The first greedy choice is not included in
the optimal solution. Without loss of generality we
substitute the first element p∗1 ∈ P ∗ by p1 and get
P ′ = (P ∗−{p∗1})∪{p1} = {p1, p∗2, . . . , p∗n}. From the
greedy strategy we know that zp1

× vp1
< 0 and that

p1 is the position with the largest value, i.e., |v(k)p1 | ≥
|v(k)i | for i = 1, . . . , n. Therefore, by replacing p∗1
with p1 in P ′ the product ZT

P ′ ·V will increase, which
is a contradiction to the fact that P ∗ are the positions
of the optimal solution.

Thus, the first greedy choice is part of the optimal solution.

2) Optimal Substructure Property: This property states
that solutions to subproblems of an optimal solution are also
optimal. We demonstrate by contradiction that the optimal



solution after a greedy choice contains an optimal solution
to the remaining subproblem.

Let P ∗ = {p∗1, . . . , p∗k} be the ordered set of sign change
positions in Z for the optimal solution and let P ′ = P ∗ −
{p∗1} = {p∗2, . . . , p∗k} be the ordered set of sign changes of all
positions but p∗1. Assume that P ′ is not optimal. Then, there
exists an optimal solution P ′′ with |P ′′| = k− 1 and p∗1 6∈ P ′′
such that

(ZP ′′)
T · V > (ZP ′)

T · V.

By adding the position p∗1 on both sides we obtain

(ZP ′′∪{p∗1})
T · V > (ZP ′∪{p∗1})

T · V = (ZP∗)
T · V.

This contradicts our assumption that P ∗ produces the optimal
solution. Therefore, P ′ is optimal.

Since the SSV algorithm satisfies the greedy choice prop-
erty and the optimal substructure property, we conclude that
the result of the algorithm is a global optimum.

E. Complexity Analysis

The SSV algorithm keeps in memory the sign vector Z and
V , each with O(n) space complexity, where n is the number
of rows in X. Therefore, the total space complexity is O(n).

The total runtime complexity is O(xn), where x is the
number of changed elements in the returned sign vector Z. In
the worst case, the sign of each element is changed, yielding
a time complexity of O(n2). The experiment in Fig. 10 shows
that the average number of sign changes in Z is n

2 .

VI. EMPIRICAL EVALUATION

A. Setup

We refer to SCD and QCD as the Centroid Decomposition
(CD) using respectively SSV and QSV. We implemented SCD,
QCD and SVD algorithms in Java on top of an Oracle database.
We connect to the database through the 11.2 JDBC driver. For
the experiments the client and the database server run on the
same 2.6 GHz machine with 4GB RAM.

The empirical evaluation is performed on real world
datasets that describe hydrological time series1 where each
tuple records a timestamp and a value of a specific observation.
The hydrological time series have been normalized with the
z-score normalization technique [32]. The values of the obser-
vations are stored as 4-byte floating numbers. We conducted
also experiments on raw time series from the UCR repository
[33].

In what follows, we evaluate scalability, efficiency and
correctness of our algorithm. Furthermore, we empirically
determine the number of iterations performed by the SSV
algorithm and we show the impact of the distribution of the
sign of values across different time series on the number of
iterations. For each experiment, we display the average result
over five runs of the algorithms.

1The data was kindly provided by the environmental engineering company
HydroloGIS (http://www.hydrologis.edu).

B. Experiments

1) Efficiency and Scalability: In order to evaluate the
efficiency and scalability, we choose the longest time series
from the UCR repository. We concatenate the time series that
belong to the same dataset to get time series with the same
length as the hydrological ones. Table I describes the used time
series.

TABLE I. DESCRIPTION OF FIRST SET OF TIME SERIES.

Name Provenance Max Length Number TS
Hydrological TS Hydrologis 120’000 217
MALLAT UCR repository 2345 1024
StarLightCurves (SLC) UCR repository 8236 1024
CinC ECG torso (ECG) UCR repository 1380 1639

The experiment in Fig. 5 evaluates the runtime of the
SCD algorithm and compares it against other techniques. The
computation of matrix X·XT is included in the running times
of QCD and SVD. In Fig. 5(a), the number m of time series
is four and the number n of rows varies between zero and
120k. This experiment shows that, for all time series, SCD
has quadratic runtime with respect to the number of rows of
the input matrix X. Fig. 5(b) compares the runtime of SCD
against QCD and SVD using hydrological time series. This
experiment shows that SCD, QCD and SVD have quadratic
runtime. The QCD algorithm runs out of memory for n > 30k,
whereas SVD runs out of memory for n > 20k. In contrast,
SCD performs the decomposition of a matrix that contains
four time series of 120k observations each in less than seven
minutes.
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Fig. 5. Runtime by varying n.

In the experiment in Fig. 6, n is set to 5k and m varies
between 20 and 100. The results show that the runtime of
the SCD and QCD algorithms increases linearly with m.
Using SCD, the decomposition of a matrix of 100 time series



with 5k observations each is performed in approximately 80
seconds. We did not include SVD, which has a cubic runtime
complexity with respect to m.
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Fig. 7 compares the memory usage of SCD against QCD
and SVD (notice the log-scale on the y-axis). For each of
the three algorithms we sum the allocated space for all data
structures. The results of the calculation of memory allocation
confirm the linear space complexity of SCD with respect to the
number of rows of the input matrix X, whereas QCD and SVD
have quadratic space complexity. For n > 30k and n > 20k,
respectively, QCD and SVD run out of memory.
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2) Algorithm Properties: The properties of the SSV algo-
rithm are evaluated using the time series described in Table I.

Fig. 8 evaluates the trend of the product (Z(k))T ·V (k)

computed by the SSV algorithm. This experiment confirms
the monotonicity property stated in Lemma 4. We extract
1000 values from each time series and compute the product
(Z(k))T · V (k) for 20 iterations. The experiment shows that
(Z(k))T ·V (k) computed by our algorithm is monotonically
increasing.

In Fig. 9, we compare the sign vectors computed by the
SSV algorithm against those computed by QSV algorithm.
This experiment aims to confirm the correctness property
stated in Lemma 7. We compute the percentage of correct
sign vectors, i.e., the sign vectors computed by SSV that are
equal to those computed by QSV. As expected, the experiment
confirms that SSV computes the correct sign vectors in all
cases.

3) Number of Iterations: The time series from Table I are
used. In the experiment of Fig. 10, we show the number of
iterations in the SSV algorithm that are required to compute
the maximizing sign vectors. For all used time series, our
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algorithm performs on average n
2 iterations, i.e., it performs

only half of the maximum number of iterations.
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4) Impact of Sign of Values: We select three time series
from the UCR repository in such a way that we have different
distributions of negative values at the same timestamp across
the selected time series. Table II describes the used time series,
where the third column is the number of values with a negative
sign at the same timestamp in all time series.

TABLE II. DESCRIPTION OF SECOND SET OF TIME SERIES.

Name Provenance length # negative rows (x)
Gun Point UCR 150 90
Cricket X UCR 300 21
Beef UCR 470 0

Fig. 11 illustrates the impact of the number of negative
rows (x) on the number of iterations, and hence on the runtime.
In the Gun Point dataset, x is bigger than half of the input
rows. The number of iterations is on average equal to half of
the input rows. In the Cricket X dataset, x is between 1 and
half of the input rows. In this case, the SSV algorithm iterates



on average x+1 times. In the case where all values in all time
series have the same sign, the number of iterations is equal to
1 as expected. That is, if the sign of all elements is positive
or negative, all elements of the weight vector computed in the
first iteration of the algorithm, i.e., V (1), are positive. In both
cases the sign vector that contains only 1s is the maximizing
vector and our algorithm requires only one iteration to find
the maximizing vector. Fig. 11 shows also that the increase in
the number of input rows together with a higher x implies a
higher runtime. In the case where the negative sign is randomly
distributed across different time series, the number of iterations
is on average equal to n

2 as shown in Fig. 10.
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Fig. 11. Impact of sign of input rows.

In Fig. 12, we used the Beef time series that does not
contain any negative value and we incrementally change the
sign of 10% of input rows. This experiment shows that the
runtime increases with the number of negative rows. If all
rows are negative, the runtime is the same as when all rows
are positive and the number of iterations performed by SSV is
equal to 1.
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Fig. 12. Run time with varying percentage of negative rows.

5) Length of Time Series: The final experiment shows
the impact of using long time series for the recovery of
missing values [15]. We remove a block of 100 values from a
temperature time series and recover the removed block by an
iterative computation of matrices L and R. The input matrix
contains as columns the time series with the removed block
and three other temperature time series. Then, we perform a
one rank reduction, i.e., we compute only three vectors in
the matrices L and R instead of four, and we iterate until
the difference in the Frobenius norm [34] between the matrix
before the decomposition and the one after the decomposition
is less than 10−5. To measure the accuracy, we compute the
Mean Square Error (MSE = 1

k

∑k
i=1(x̃i−xi)2; original value

xi; recovered value x̃i; number of observations k) between the
original and the recovered blocks [35], [36].

Fig. 13 shows the result of this experiment. In Fig. 13(a),
the length of the time series is varied. Longer time series
significantly reduce the MSE. In Fig. 13(b), we take different
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Fig. 13. Impact of the length of the time series and the correlation between
them on the recovery of missing values.

time series of 200 values such that the absolute value of the
Pearson correlation ρ between the time series with the missing
block and the other time series varies, and we compute the
MSE. The experiment shows that the more correlated the time
series are the better is the recovery. Finally, Fig. 13(c) shows
that the correlation between the time series increases with the
length of time series (the same time series as in Fig. 13(a) are
used).

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced the Scalable Sign Vector
algorithm that performs the Centroid Decomposition of a
matrix in linear space complexity. We provided proofs that
show the scalability, the termination and the correctness of our
algorithm. An empirical evaluation on real world hydrological
data sets and also on data sets from the UCR repository demon-
strates that our algorithm has the same runtime as the most



efficient algorithm to compute the Centroid Decomposition,
but reduces the space complexity from quadratic to linear.

In future work, we plan to investigate an incremental
version of the Centroid Decomposition that could be applied
for dynamic time series. Another promising direction is to
investigate segmentation techniques of time series.
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