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Abstract

Time series data is prominent in many real world applications, e.g., hydrology or finance stock
market. In many of these applications, time series data is missing in blocks, i.e., multiple consec-
utive values are missing. For example, in the hydrology field around 20% of the data is missing
in blocks. However, many time series analysis tasks, such as prediction, require the existence of

complete data.

The recovery of blocks of missing values in time series is challenging if the missing block is a
peak or a valley. The problem is more challenging in real world time series because of the irreg-
ularity in the data. The state-of-the-art recovery techniques are suitable either for the recovery of
single missing values or for the recovery of blocks of missing values in regular time series. The
goal of this thesis is to propose an accurate recovery of blocks of missing values in irregular time

series.

The recovery solution we propose is based on matrix decomposition techniques. The main idea
of the recovery is to represent correlated time series as columns of an input matrix where missing
values have been initialized and iteratively apply matrix decomposition technique to refine the
initialized missing values. A key property of our recovery solution is that it learns the shape,
the width and the amplitude of the missing blocks from the history of the time series that con-
tains the missing blocks and the history of its correlated time series. Our experiments on real
world hydrological time series show that our approach outperforms the state-of-the-art recovery

techniques for the recovery of missing blocks in irregular time series. The recovery solution is
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implemented as a graphical tool that displays, browses and accurately recovers missing blocks

in irregular time series.

The proposed approach supports learning from highly and lowly correlated time series. This is
important since lowly correlated time series, e.g., shifted time series, that exhibit shape and/or
trend similarities are beneficial for the recovery process. We reduce the space complexity of the
proposed solution from quadratic to linear. This allows to use time series with long histories

without prior segmentation. We prove the scalability and the correctness of the solution.



Zusammenfassung

Zeitreihendaten sind in vielen praktischen Anwendungsgebieten, wie z.B. in der Hydrologie
oder an der Borse, zu finden. Ein hédufiges Problem in solchen Anwendungen ist das Fehlen
von Daten in Blocken, d.h., dass mehrere Werte hintereinander nicht vorhanden sind. In der
Hydrologie beispielsweise fehlen ca. 20 % aller Daten in Blocken. Dies ist problematisch, da bei
den meisten Analysen von Zeitreihen, wie beispielsweise Vorhersagen, vollstindigen Datensitze
bendtigt werden.

In Zeitreihen ist die Wiederherstellung von Blocken fehlender Werte besonders schwierig, wenn
es sich bei dem fehlenden Block um einen Berg oder ein Tal handelt. Die Wiederherstellung
von praktischen Zeitreihen wird zusétzlich durch Irregularititen innerhalb der Daten erschwert.
Aktuelle Techniken kénnen entweder nur zur Wiederherstellung von einzelnen Werten oder zur
Wiederherstellung von Blocken in reguldren Zeitreihen verwendet werden. Das Ziel dieser Ar-

beit ist die akkurate Wiederherstellung von Blocken fehlender Werte aus irregulidren Zeitreihen.

Unsere Losung zur Wiederherstellung fehlender Blocke basiert auf Matrix-Zerlegungstechniken.
Die Hauptidee umfasst die Reprisentation korrelierter Zeitreihen als Spalten einer Eingabe-
Matrix, in der die fehlenden Werte initialisiert werden. Durch iterative Anwendung der Matrix-
Zerlegungstechnik werden die fehlenden Werte angenéhert. Ein Hauptmerkmal unserer Losung
ist, dass sie die Form, Breite und Amplitude der fehlenden Blocke aus der Historie, die diese
Blocke enthilt, aber auch aus den Historien korrelierter Zeitreihen lernt. Unsere Experimente

auf realen hydrologischen Zeitreihen zeigen, dass unser Ansatz die aktuellen Techniken bei
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der Wiederherstellung von fehlenden Blocken in irregulidren Datensétzen iibertrifft. Unsere Lo-
sung wurde als ein Werkzeug mit grafischer Benutzeroberflache umgesetzt, das erlaubt, fehlende

Blocke in irreguldren Zeitreihen anzuzeigen, dariiber zu navigieren und diese wiederherzustellen.

Der eingefiihrte Ansatz unterstiitzt das Lernen aus stark und schwach korrelierten Zeitreihen.
Dies ist wichtig, da schwach korrelierte Zeitreihen, wie z.B. verschobene Zeitreihen, welche
Ahnlichkeiten in der Form und/oder dem Trend aufweisen, sich vorteilhaft auf den Wieder-
herstellungsprozess auswirken. Weiterhin haben wir die Speicherkomplexitit des préasentierten
Ansatzes von einer vormals quadratischen auf eine lineare Losung reduziert. Dies erlaubt
die Nutzung von grossen Zeitreihen mit langer Historie ohne vorherige Segmentierung. Ab-

schliessend haben wir die Skalierbarkeit und Korrektheit der Losung bewiesen.



We cannot think of being acceptable to others until

we have first proven acceptable to ourselves.

Malcolm X
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CHAPTER 1

Introduction

1.1 Recovery of Missing Values

Nowadays, time series are ubiquitous and are particularly important in real world applications
that manage and analyze the history of data, e.g., environment, finance, web traffic, medicine,

astronomy, etc.

In the last decade, commercial systems that handle time series data have been pro-
posed. Examples are time series databases such as Prometheus [PRO12], InfluxDB [INF13],
OpenTSDB [TSDI10], etc., and time series management tools such as SAP Time Series Man-
agement [SAP10], IBM Informix TimeSeries [IBM13], etc. These systems are designed to effi-
ciently handle time series data. They offer many data management operations such as storage,
display, compression and prediction. The support of the recovery of missing values is however
limited, i.e., missing values are either ignored or replaced by standard statistical methods such
as mean of values, linear interpolation, regression, etc.. The accuracy of these standard statisti-
cal recovery techniques deteriorates in the case where the missing values in the time series are

blocks that include peaks and/or valleys.
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The goal of this thesis is to propose: (i) an accurate recovery technique of blocks of missing val-
ues in time series; (ii) a recovery technique that is able to learn from similar but lowly correlated

time series; and (iii) a scalable recovery technique that does not require any prior segmentation.

Recovery techniques that use only the time series that contains the missing blocks are suitable
for regular time series, i.e., time series having peaks and valleys that follow one or more periodic
models such as a cosine wave. However, in real world applications, e.g., the hydrological field,
time series are irregular and using only the time series that contains the missing blocks yields

bad block recovery results.

Example 1. Figure 1.1 graphically illustrates a humidity time series measured during the year
2001 for a period of three consecutive days in the area of Lisser located in the region of South
Tyrol in Italy. The values of the observations are recorded every 15 min. The x-axis represents
the timestamps of the observations and the y-axis represents the normalized values of each ob-
servation recorded. The humidity time series is irregular, i.e., the shape, the amplitude and the

width of the peaks and valleys do not follow any periodic model.

Humidity TS ——

value

0 40 80 120 160 200 240 280
timestamp (15 min)

Figure 1.1: Example of Irregular Time Series

Thus, instead of using only the time series that contains the missing blocks, we propose a re-
covery technique that learns from different time series. This learning will make it possible to

accurately recover blocks of missing values in irregular time series.
The solutions introduced in this thesis are based on the following observations:
Observation 1 An accurate recovery of blocks of missing values requires the use of the time

series that contains the missing blocks and other similar time series. The correlation is an

effective measure to evaluate the similarity between time series.
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Observation 2 The Centroid Decomposition (CD) technique takes correlated input time series
to produce correlated output vectors that can be used to perform an accurate recovery using

time series with mixed correlations.

Observation 3 The space complexity of the CD technique can be reduced by avoiding the con-

struction of the correlation matrix.

Observation 1 yields a recovery solution based on a matrix decomposition technique. The latter
takes the top-k most correlated time series to the time series that contains the missing blocks as
columns of an input matrix. The columns of the matrix are used to iteratively refine the initialized
missing values. If the set of the most correlated time series to the time series that contains the
missing blocks changes after updating the missing values, then we choose a different time series

in the recovery process.

Observation 2 yields a CD based recovery technique that learns from highly and lowly correlated
time series at a time. In fact, the CD technique performs a matrix decomposition that gener-
ates correlated output vectors. The impact of this property on the block recovery is empirically

evaluated.

Observation 3 yields a space complexity reduction of the CD technique. We first derive a new
optimization problem from the original one. Then, we solve the new optimization problem using
a sequence of weight vectors instead of the correlation matrix. We iteratively choose the weight
vector that yields the local optimum. At the end of this process, the weight vector that solves the

optimization problem is computed.

1.2 Contributions

In this thesis we make three main contributions to the field of time series:

e We introduce a parameter-free algorithm that uses the correlation between time series in

order to perform an accurate recovery of blocks of missing values in irregular time series.

e We introduce a CD based recovery technique that learns from highly and lowly correlated

time series to recover blocks of missing values.

e We reduce the space complexity of the CD technique to linear to make it usable without

segmenting the time series.
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The research solutions proposed in this thesis are triggered by real world problems. The research
methodology is based on a formal description of the problem and its properties, an implementa-
tion of the solution and an empirical comparison against the state-of-the-art solutions using real
world data sets. Prototypes of the proposed algorithms have been implemented and source code

is made available'.

The remainder of this section describes in details the main contributions of this thesis.

1.2.1 REBOM Recovery of Missing Values

In the first part of this thesis we propose to recover blocks of missing values in irregular time
series. The recovery process is as follows. First, the missing values are initialized. Then, we
apply our technique to iteratively refine the initialized missing values. The desired recovery
should use the correlation between time series to perform a block recovery that satisfies the
following properties: (1) accurate reconstruction of the amplitude, shape and type of the missing

blocks; (2) parameter-free recovery; (3) independent recovery from the initialization method.

In order to achieve this goal, we present a Singular Value Decomposition (SVD) based greedy
approach, called REBOM, that uses two ranking vectors to learn from correlated time series to

recover missing blocks in time series.

Example 2. In Figure. 1.2 we consider the humidity time series displayed in Figure 1.1 denoted
as TS1 to which we add two other humidity time series measured in two different areas of the
region of South Tyrol during the same time period denoted respectively as TS2 and TS3. We
assume that TS1 contains a missing block for ts € [115,170]. The block recovery we want to
achieve should learn from the history of the time series that contains the missing block, i.e., TS1,

and the history of the correlated time series TS2 and TS3.

Figure. 1.3 shows the result of the application of REBOM to recover the missing block in TS1.
Our proposed solution uses the history of TS1 and exploits its correlation to TS2 and TS3 to
perform an accurate recovery of the missing block. In fact, REBOM detects that the first peak
of TS1 is more correlated to the first peak of TS2 than the first peak of TS3. It also detects that
the third peak of TS1 is more correlated to the third peak of TS3 than the third peak of TS2. The
shape of the missing peak is thus recovered by learning the second peak of TS2 and TS3 at the
same time. The amplitude of the missing block is recovered using the first and the third peaks of

Yhttp://www.ifi.uzh.ch/dbtg/research/amv/proto.html



1.2 Contributions 5

TS1 —— TS2 ——
Missing block - 1S3

value (val)
=)
(6]

0 40 80 120 160 200 240 280
timestamp (ts)

Figure 1.2: Example of Three Hydrological Time Series. TS1 contains a missing block for
ts € [115,170].

TS1.
TS1 —— TS2 ——
Missing block - 1S3
REBOM recov.
1.5 ‘ :
1 N
.05+ |
2o /]
S -0.5
g A J
-1.5 \

_2 b
0 40 80 120 160 200 240 280
timestamp (ts)

Figure 1.3: Recovery of the Missing Block using REBOM.

The greedy approach of REBOM is based on a global ranking vector, which ranks the top-k
correlated time series considering all observations of the time series, and a partial ranking vector,
which ranks the top-k correlated time series by considering only observations with timestamps
of missing values. The two ranking vectors are iteratively used to select the set of time series that
maximally reduce the recovery error. They are also used to terminate the iterative process, i.e.,

in case the two ranking vectors are equal.

The proposed recovery technique has been implemented as an online graphical tool?. In what
follows we present REBOM (REcovery of BlOcks of Missing values ), a tool for visualizing time

Zhttp://www.ifi.uzh.ch/dbtg/research/amv/proto/rebom.html
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series and recovering their missing values.

REBOM performs the

recovery of missing values on time series data preloaded into a database

server. The raw data can be normalized using two normalization techniques, i.e., z-score nor-

malization and the min-max normalization. The proposed tool offers the possibility to display

the time series before and after the recovery process. The recovery is performed by considering

time series from the same set, e.g., a temperature time series is recovered using only temperature

time series. REBOM offers also the possibility to navigate through missing blocks.

Select a Set of Series

800

LDBE Web

< | » | [ + @ http://witold.ifi.uzh.ch:8080/LDBE_WEB/LDBEstart.html ¢ | (@~ Google

&3 [ H# confv VISAv fellowshipsv Postdocv job searchv Hadoop-codev Hadoop-Setupv latexv tutorialv miscv study_planv Researchv »

Recovery Missing Blocks ~ Display Time Series )

Select Time Series

Id -~ | Category Granularity Normalization | # of Series Id ~  Description # of Observatio...| Granularity | Normalization
100 Temperatures in South Tyrol 2 Z_SCORE 79 163 Termometro aria Rovereto 36479 2 Z_SCORE [
101 Humidity in South Tyrol 1Z_SCORE 15 164 Termometro aria VoDestro 36479 2 Z_SCORE
102 Wind speed in South Tyrol 1Z_SCORE 4 165 Termometro aria Lisser 32289 2 Z_SCORE
103 Precipitation in South Tyrol 1Z_SCORE 69 166 Termometro aria Recoaro Ter.. 35662 2 Z_SCORE
104 Air pressure in South Tyrol 1Z_SCORE 3 167 Termometro aria Flitz-Funes 36468 2 Z_SCORE
105 Water levels in South Tyrol 1Z_SCORE 48 168 Termometro aria Gadera a M... 36468 2 Z_SCORE

169 Termometro aria Cornuda 36479 2 Z_SCORE
170 Tarmamatra aria \atrinin 26470 2 Z SCORE

2 Z_SCORE r

Value

2 Z_SCORE N
2 Z_SCORE
2 Z_SCORE

Y|

Original Time Series

-1.00
-125

8160 8180 8200 8220 8240 8260 8280 8300 8320 8340 8360 8380 8400 8420 8440
Relative timestamp

[ Termometro aria Rovereto — Termometro aria VoDestro - Termometro aria Cornuda

o)

Figure 1.4: Display of Time Series using REBOM.

REBOM offers the following key features:

Display of time series

REBOM supports the display of the entire history of multiple time series

at a time. Time series are graphically displayed with different colors using line charts where the

x-axis represents the timestamps and the y-axis represents the values. Figure 1.4 illustrates the
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graphical representation of three real world temperature time series measured in the region of
South Tyrol in Italy. The values are measured every 30 minutes. The display feature helps to

highlight the trend similarities between time series.

Recovery of missing blocks The main goal of REBOM is to recover missing blocks in real
world irregular time series. First, the time series are aligned to have the same starting timestamp.
Then, the recovery is performed using the time series that contains the missing blocks and its
most correlated time series. At the end of the recovery, all the time series used during the recovery
process are displayed in the same window. The right hand side picture of Figure 1.5 illustrates
the recovery of a missing block in the original black time series (middle picture of Figure 1.5)
using REBOM. The latter uses the black time series together with its 4 most correlated time

series to produce the block recovery.

KNN Interpolation 000 REBOM

Recovered Time Series Recovered Time Series
15
14
13

125
10 Original Time Series
075

12

050 15 1

025
10
000 100 09
-025
. 08
050 075 ’ 07

075

0 ] I

10 LEJ 05 |

125 i 04 |
8300 8350 8400 8450 8500 M 031 n/

Relative timestamp 000 2\ \ A

Linear Spline Interpolation g? “\ \“
Recovered Time Series o g;
4

-100 -05
-06

1% -07
-08
8260 8280 8300 8320 8340 8360 8380 8400 8420 8440 8460 8480 BS00 8520 8540 09

Relative timestamp 5
& Termometro aria VoDestro| -1l
-12
(@) “»r -13
N §260 8280 8300 8320 8340 8360 S350 8400 8420 8440 846D 8480 8500 820 8540
Next MV Block Relative timestamp

Value

Value

Value

-0.75

Value

\/

Previous MV Block

8300 8350 8400 850 8500
Relative timestamp — Termometro aria VoDestro — Termometro aria Rovereto — Termometro aria Sarche

| — Termometro aria VoDestro |— Termometro aria Borgo Valsugana — Termometro aria Trento

Figure 1.5: Recovery of a Missing Block using REBOM.

Browsing of missing blocks REBOM provides the user with navigational controls to browse
the missing blocks (see the middle picture of Figure 1.5). These controls allow browsing forward
and backward missing blocks in one time series. This feature helps the user (1) to directly access
the missing blocks and the recovered ones (2) to highlight the local trend similarities between

the time series that contains the missing blocks and its most correlated time series.
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Comparison with statistical recovery techniques REBOM displays also the block recovery
result of other statistical recovery techniques, e.g., linear spline interpolation, k nearest neighbors
(kKNN) interpolation, etc. Each recovery technique is displayed in a separate window. This fea-
ture helps to graphically compare the block recovery produced by our proposed approach against
some of the state-of-the-art recovery techniques. The left hand side picture of Figure 1.5 illus-
trates the block recovery produced respectively by the £NN interpolation and the linear spline

interpolation. These two techniques use only the black time series in the recovery.

1.2.2 Recovery using Mixed Correlated Time Series

In the second part of this thesis we introduce a recovery solution that learns from highly and
lowly correlated time series to recover missing blocks in irregular time series. Including lowly
correlated time series that exhibit trend and/or shape similarities in the recovery process could
increase the recovery accuracy. For example, Foehn is a warm wind that yields lowly correlated
temperature time series that exhibit shape similarities. These lowly correlated time series could
be exploited in the recovery process. However, lowly correlated time series should be given less
weight than the highly correlated ones in the recovery process. The Mean Squared Error (MSE) is

used to quantify the weight assigned to each of the input time series during the recovery process.

The proposed recovery solution is based on the Centroid Decomposition (CD) technique. Unlike
many other matrix decomposition techniques such as SVD, CD uses correlated input time series
to produce correlated output vectors. This key property follows from the fact that CD technique
does not perform a vector orthogonalization during the decomposition process. The correlated

output vectors are used to recover the missing blocks.

The proposed solution produces an MSE relative reduction of the recovered block proportionally
to the correlation of the columns of the input matrix. As a result, the proposed solution exploits
all the input time series while taking into account the initial correlation value of each of them.
This makes our solution suitable for learning from time series of different types, e.g., a humidity
time series measured at one place can be used to recover missing blocks in temperature time

series measured at the same place in case both time series exhibit some similarities.
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1.2.3 Scalable Centroid Decomposition

In the third part of this thesis we reduce the space complexity of CD technique. The original
algorithm to compute CD constructs a square correlation matrix that requires quadratic space
complexity. We propose an algorithm that reduces the space complexity from quadratic to linear.
This space reduction is important to be able to apply the CD based recovery using the entire
history of the time series and without the need to apply any prior segmentation. The space

reduction makes it possible to perform a block recovery on time series with a long history.

The key idea behind reducing the space complexity is to transform the optimization problem
that CD solves into a new and equivalent optimization problem that uses a sequence of weight
vectors instead of the correlation matrix. The weight vectors are iteratively computed using a
greedy process. At each iteration, the weight vector that produces the local optimum is chosen.
A key property of the proposed solution is that the local optimum is monotonically increasing

after each iteration. At the end of the process, the solution returns the global optimum.

Example 3. Consider a matrix X where each column represents the set of values of observations
of each time series. The values are ordered with respect to their timestamps. Figure 1.6 illustrates
the state-of-the-art solution, called QSV, to compute the Centroid Decomposition of X. In Step 1,
OSV takes the input matrix X and constructs a square correlation matrix X-X7. Therefore, the
space complexity of QSV is quadratic with the number of rows of X. In Step 2, OSV returns the

vector Z that solves the optimization problem.

-2 8§ -6 -12 -8 -1
Stepl Step2
0 3| ~ 6 9 6 15 PN 1
— —

-4 2 -12 6 20 6 1

1 5 -8 15 6 26 1
A ~~ g ~- "y \ ,

X X-XT Z
. ~ v N ~— , \ ,
Input Intermediate computation QSV output

Figure 1.6: Illustration of the State-of-the-art Solution.

Figure 1.7 illustrates our approach, called SSV, to compute the Centroid Decomposition of X.
In step 1, SSV takes the input matrix X and constructs a sequence of weight vectors V(). Note
that only one weight vector is stored in memory at a time. In Step 2, SSV returns the vector Z
that solves the optimization problem. The returned Z is the same as the one produced by QSV.

The space complexity of our solution is linear with the number of rows of X.
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Input

-26 -42 -1
Stepl Step2
15 27 1
gt gt
0 24 1
13 29 1
—— —— ——
v V(2 Z
N ~~ S/ H/_/

Intermediate computation SSV output

Figure 1.7: Illustration of our Solution.

To prove the correctness of the proposed solution, we first divide the optimization problem into

two sub-problems: the sub-problem that involves the initial solution and the sub-problem that

involves the remaining choices. Then, we prove that the initial choice of our solution is part of

the global optimal solution. Finally, we prove that by omitting the initial choice, the remaining

choices lead to the global optimum of the remaining sub-problem. As a result, our solution

computes the global optimal solution and thus, produces a correct result.

The greedy process used by our algorithm terminates. In fact, the local optima computed at each

iteration by our solution are increasingly monotonic. Thus, our solution terminates in all possible

cases.
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1.3 Organization of the Thesis

This thesis is based on a collection of papers. A bibliography for all chapters is given at the end
of the thesis.

In Chapter 2 and in Chapter 4, SVD and CD techniques are respectively defined. In Chapter 3,
the connection between the input matrix and the output vectors, produced respectively by SVD
and CD techniques, is defined and described more in details. In Chapter 2 time series are defined
using their timestamps and their values whereas in Chapter 3 time series are defined using only

their values.

The organization of the thesis is as follows:

Chapter 2 REBOM
Mourad Khayati and Michael H. Bohlen. REBOM: Recovery of Blocks of Missing Values

in Time Series. In Proceedings of the 18th International Conference on Management of
Data, COMAD ’12, pages 44-55, 2012.
DOI: http://dx.doi.org/10.5167/uzh-72323

Chapter 3 Using Lowly Correlated Time Series to Recover Missing Values

Mourad Khayati, Michael H. Bohlen, and Philippe Cudré-Mauroux. Using Lowly Cor-
related Time Series to Recover Missing Values in Time Series: a Comparison between
SVD and CD. Accepted at the 14th International Symposium on Spatial and Temporal
Databases, SSTD ’15, August 2015.

Chapter 3 Memory-efficient Centroid Decomposition

Mourad Khayati, Michael H. Bohlen, and Johann Gamper. Memory-efficient Centroid
Decomposition for Long Time Series. In Proceedings of the 30th IEEE International Con-
ference on Data Engineering, ICDE ’14, pages 100-111, IEEE Computer Society, 2014.
DOI: http://dx.doi.org/10.1109/ICDE.2014.6816643


http://dx.doi.org/10.5167/uzh-72323
http://dx.doi.org/10.1109/ICDE.2014.6816643
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CHAPTER 2

REBOM

Abstract

The recovery of blocks of missing values in regular time series has been addressed by model-
based techniques. Such techniques are not suitable to recover blocks of missing values in irreg-
ular time series and restore peaks and valleys. We propose REBOM (REcovery of BlOcks of
Missing values): a new technique that reconstructs shape, amplitude and width of missing peaks
and valleys in irregular time series. REBOM successfully reconstructs peaks and valleys by it-
eratively considering the time series itself and its correlation to multiple other time series. We
provide an iterative algorithm to recover blocks of missing values and analytically investigate its
monotonicity and termination. Our experiments with real world hydrological and synthetic data
confirm that the recovery of blocks of missing values in irregular time series of REBOM is more
accurate than existing methods.
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2.1 Introduction

Time series data arise in a variety of domains, such as environmental, telecommunication, fi-
nancial, and medical data. For example, in the field of hydrology, sensors are used to capture
environmental phenomena including temperature, air pressure, and humidity at different points
in time. For such data, it is not uncommon that more than 20% of the data is missing as blocks,

i.e., multiple consecutive measurements are missing.

Existing techniques effectively recover blocks of missing values in regular time series, i.e., time
series containing peaks and valleys with a possibly varying frequency or amplitude that follow
one or more periodic models, e.g., the sinus model where the frequency varies over time. The
recovery accuracy of these techniques decreases for irregular time series, i.e., time series con-
taining peaks and valleys that do not follow any model. In this work, we address the problem
of finding the optimal recovery of blocks of missing values in irregular time series. We propose
REBOM (REcovery of BlOcks of Missing values), a new data driven recovery technique for
blocks of missing values that is able to restore missing peaks and valleys. We use the correla-
tion [MNL10] between time series to recover blocks of missing values. Intuitively, time series
that tend to change their peaks and valleys simultaneously are correlated and we use the Pearson

coefficient to quantify this correlation.

REBOM is an iterated low rank Singular Value Decomposition (SVD). We decompose a matrix
M of correlated time series, where missing values have been initialized through linear interpola-
tion combined with nearest neighbor imputation, into the product of three matrices U x ¥ x V7
By nullifying the smallest singular value of 3, we emphasize the impact of the correlation be-
tween time series. The subsequent matrix multiplication yields an approximation of M that
better approximates the missing values. After each iteration, the ranking of the most correlated
time series with respect to the time series to recover, is updated. The iterative recovery termi-
nates if the total ranking, which is determined by considering all observations of the time series,
is identical to the partial ranking, which is determined by considering only observations with
timestamps of missing values. If the total and the partial ranking are equal, the correlation can

no longer be used to improve the recovery of missing values.

Problem definition: Assume a set of n irregular correlated time series X° = {X?, X9 ... X7}
where XY X9 ..., X? contain blocks of missing values. We propose a recovery method that
determines, in j iterations, a set of time series X/ = {X7, XJ ..., X7} where the missing
blocks of X7, X9 ..., X? have been restored.
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The result of REBOM for the recovery of peaks and valleys for two correlated time series is
illustrated in Figure 2.1. Each time series is displayed as a 2d plot where the x-axis shows the
timestamp ¢ and the y-axis shows the value v for a given . X represents an air pressure time
series and contains a missing block for the time range 190, 130[. X3 represents a temperature
time series that contains a missing block for the time range ]60,90[. REBOM can be used to

restore the missing blocks of X9 and X7.

missing block - X? _— recov. block

value
value

0O 20 40 60 80 100 120 140 0O 20 40 60 80 100 120 140

timestamp timestamp
(a) Original Time Series (b) Restoration of Missing Blocks of X f and X g

Figure 2.1: Recovery Performed by REBOM

Figure 2.1 illustrates that REBOM accurately recovers shape, amplitude and width of the missing
blocks. REBOM detects that the peaks and valleys of X and XY are correlated (high pressure
corresponds to low temperature and vice versa). The shape and the width of the missing block
are recovered from the position of the local extrema of X with respect to the local extrema of
the correlated time series XJ. The amplitude of the missing block of X is recovered based on

the two preceding peaks of X?.

At the technical level, we show how to iterate the low rank SVD and we analytically investigate

the main properties of the method. The main contributions are as follows:

e We propose REBOM: an iterated low rank SVD that iteratively refines the initial recovery

of missing values.

e We propose a greedy algorithm that repeatedly selects a time series with missing values
that have been initialized and uses the £ most correlated time series to iteratively refine the

recovery of the missing values.

e We prove that our greedy algorithm is stepwise monotonic, i.e., the accuracy of the re-

covery increases by choosing, at each step, the most correlated time series. The algorithm
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terminates when the set of the most correlated time series does not change anymore.

e We empirically show that the recovery accuracy of REBOM is invariant to the initial recov-
ery. Different initialization methods lead to the same recovery accuracy but with different

number of iterations.

e We present an experimental evaluation of the accuracy of our technique that compares
REBOM to the state-of-the-art techniques for the recovery of blocks of missing values.

The results show the superiority of our algorithm for the restoration of peaks and valleys.

The rest of the chapter is organized as follows. Section 2.2 reviews related work on reduction
methods and existing techniques for imputing missing values. Section 2.3 defines the initializa-
tion method and describes the basics of the low rank SVD. Section 2.4 introduces and discusses
REBOM and its properties. Section 2.5 empirically compares the results of REBOM to other

techniques proposed in the literature for the recovery of blocks of missing values.

2.2 Related Work

Prediction models such as Maximum Likelihood Estimation (MLE) [STPO7], Bayesian Net-
works (BN) [RS04, HCRC11] and Expectation Maximization (EM) [SJO3] were used to estimate
single missing values or small blocks of missing values in time series. These techniques are para-
metric and require a specific type of data distribution, e.g., Gaussian distribution. Therefore, they
only perform well for the recovery of blocks of missing values in regular time series where peaks

and valleys follow a periodic model of constant frequency and amplitude.

Li et al. [LMPFOQ9] presented an approach called DynaMMo that is based on Expectation Maxi-
mization (EM) and Kalman Filter [JCWO04]. This technique is intended to recover missing blocks
in non linear time series that contain peaks and valleys. DynaMMo allows to use one reference
time series in addition to the time series that contains the missing block. The Kalman Filter uses
the data of the time series that contains missing blocks together with a reference time series, to
estimate the current state of the missing blocks. This estimation is performed as a multi step
process that uses two different estimators. The first estimator represents the current state and the
second estimator represents the initial state and the error of the estimation. For every step of the
process, an EM method predicts the value of the current state and then the two estimators are used

to refine the predicted values of the current state and to maximize their likelihood. DynaMMo
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X? — missing block - X? — missing block -
X5 —— recov. block

X5 —— recov. block

value (val)
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(a) Linear Spline Recovery (b) k Nearest Neighbor Recovery
X¢ ——  missing blogk - X¢ ——  missing block
Xg recov. block Xg

Recov. block

value (val)
value (val)
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timestamp (ts) timestamp (ts)
(c) Polynomial Regression Recovery (d) Cubic Spline Recovery

Figure 2.2: Recovery using Different Techniques

does not allow to use more than one reference time series for the block recovery. DynaMMO
performs an accurate block recovery for any type of regular time series. The accuracy of the

block recovery decreases for irregular time series (cf. Section 2.5).

Techniques that rely on basic statistical methods such as mean imputation, piecewise approxi-
mation (linear spline, cubic spline, ...) [DTS*T08, CCL"07], regression [GHO7, YSJ*00] and k
Nearest Neighbors [SK98] have been proposed for the recovery of blocks of missing values. Fig-
ures 2.2(a) and 2.2(b) illustrate the block recovery performed respectively by linear spline and k
nearest neighbor using values at ts = 60 and ts = 90. The two preceding techniques are not able
to accurately recover any of the two missing blocks in X and X23. In Figure 2.2(c) we choose the
best order of polynomial regression for the the recovery of each missing block in XY, i.e., order
three for the first block and order four for the second one. The polynomial regression replaces
missing values by points lying on the line that minimizes the regression error of points. The

polynomial regression performs a bad recover of the first missing block and partially recovers
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the second missing block of X?. The cubic spline technique finds a third order polynomial that
connects three successive values. Figure 2.2(d) shows that the cubic spline replaces the missing
block by a block opposite to the one that precedes the missing block. Cubic spline partially re-
covers the first missing block of XV and performs a bad recovery for the second block. All basic
methods are not suitable techniques for block recovery in regular time series where peaks and

valleys follow a periodic model of varying amplitude or frequency, or in irregular time series.

Kurucz et al. [MKTO7] proposed a technique based on EM and Singular Value Decomposition
(SVD) [Mey00, Kal96, Bra02, ABBO0O] for comparing recommender systems where one of them
contains missing values. A recovery of the missing values is performed before the comparison
process. Each recommender system is represented by one column of values in a rating matrix
which is decomposed using SVD. The result of the decomposition is modified using a method
called gradient boosting [SZB"11]. The EM algorithm is then applied to refine the result of
gradient boosting. The proposed solution dynamically discovers data dependencies from co-
ordinate axes that represent the recommender systems and used more than one recommender
system. However, the application of gradient boosting on different recommender systems looses
the dependencies among the original values of recommender systems. Therefore, this technique
yields bad results for block recovery in case where more than one recommender system contains

missing blocks.

Tree-based methods were proposed to impute missing values. Ding and Simonoff [DS10], and
He [He06] present an overview of tree classification methods that are able to replace missing
values in time series. These trees find the optimal way to classify missing values using a regres-
sion approach and are called Classification and Regression Trees (CART). These techniques are
designed to create a classification of the missing values. Missing values that belong to the same
class will be recovered with the same value. Therefore, these methods are not able to effectively

restore missing peaks and valleys in regular and irregular time series.

2.3 Preliminaries and Background

2.3.1 Notation

We use the following notation: sets and vectors are upper-case, matrices are upper-case bold,

and elements of sets and matrices are lower-case. A time series X, = {x1,22,...,2,} is a set
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of n observations. Each observation x; from X is a pair (¢;, v;) where ¢; and v; are respectively
the timestamp and the value of the observation. 77 = {¢ |(¢t,_) € X;)} denotes the set of all
timestamps from Xi; M; = {v |(_,v) € X;)} denotes the vector of all values from the time
series X;. A time series X; with missing values that have not been recovered yet, is denoted as
X0,

2.3.2 Preprocessing of Time Series

The first preprocessing step uses basic statistical methods to initialize all missing values. After

the initialization, the timestamps of all time series are aligned.

Definition 1 (Missing timestamps). Given a set of n time series { XY, ..., X%}, the set of missing
timestamps of time series X! with respect to the timestamps of the other time series is 7)) =
{E1((t) € XDV ...V (t) € X0 A(t,_) & XD},

Note that missing timestamps of one time series have to be present in at least another time series.
Timestamps missing in all time series are not considered. An additional preprocessing step can

be added if such timestamps shall be recovered as well.

X1 ={(t1,v1), .., (tn,v,)} is the initial recovery of XV iff Vi € {1,...,n}

((ti,’(]i) lf (ti,Ui) c X?
((ti,0) if (s(t:),_) & XY,
(p(t:),v) € X7
(th Ui) = Else (tiu U) if (p(ti)v—) g X??
(8(251'),1)) € X?
(ti, (ti—p(;zzz§i(;)gzi_p(vi)) + s(vi))
otherwise

\

p(t;) = max{t; | (t;,_) € X} At; < t;} is the predecessor of timestamp ¢; in X and s(¢;) =
min{t; | (t;,_) € X At; > t;} is the successor timestamp of ¢; in X7. Similarly, p(v;) =
{vj | (tj,_) € XY At; = p(t;)} is the predecessor of value v; in X7 and s(v;) = {t; | (t;,_) €
XY N t; = s(t;)} is the successor value of v; in X7. Thus, the initial recovery of the missing

values is a linear interpolation. If the missing values occur as the first or the last elements of X7,
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we use the nearest neighbor imputation.

Two time series X| and X, with initialized missing values define a set of multidimensional
points: {(v,v") | (t,v) € X1 A (t,v") € X5}. The second preprocessing step constructs a matrix

with n m-dimensional points from m time series with n observation each.

Example 4. Figure 2.3 shows two time series X! and XJ with missing values, the initialized

time series X| and X, and the set of multidimensional points M. The initialized missing values

are highlighted in gray.

X9 X9 X} X3 M
t v v v v My | Ms
ofloflo] o oflollo] o o] o
10 | 1| 10 |-0.25 10 | 1| 10 |-0.25 1 [-025
2001 20] 0 2001 20] 0 0| o0
30 [ -1 30 025| = |30]|-1]30]025]| = 1| 025
40 o[ 40| 0 40 [0l 40| © 0| o0
50 | -1 50 | 0.25 50 | -1 50 | 0.25 -1 | 025
60 | 0| 60| 0 60 | 0| 60| 0 0| o0
70 | 1| 90 | 025 70 | 1 || 70 | 0.08 1] 008
80 [-1(/100| 0 80 | -1 (| 80 | 0.16 -1 | 016
90 | -1 || 110 | -0.25 90 | -1 || 90 | 0.25 -1 | 025
130 [-1]/120] 0 100 [-1{| 100 0 1 o
140 | 0 || 130 | 025 110 | -1 || 110 | -0.25 -1 | 025
150 | 1 {140 0 120 -1 (| 120| © 10
150 | -0.25 130 | -1 || 130 | 0.25 -1 | 025

140 [ 0 || 140 | 0 0| o0
150 | 1 {| 150 | -0.25 1 [-025

Figure 2.3: Original Time Series X9, X7; Initialized Time Series X{, XJ; Multidimensional
Points M.

From Definition 1 we get 77 = {100, 110,120} and 7% = {70, 80}.

2.3.3 Low Rank Matrix Decomposition
Singular Value Decomposition

The Singular Value Decomposition (SVD) is a matrix decomposition method that decomposes a

matrix M into three matrices L, X and R”. The product of the three matrices is equal to M.

Definition 2 (SVD). A matrix M = [M;|M,|...|M,] € R™" can be decomposed into a

product of three matrices:
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SVDM) = LxXxR"

01 [N 0 ‘/IT

0]...|on v
U(mxp) - JEEN ,
S(pxn) VT (nxn)

Where:

e p = min(m,n).

e U: is an m X p orthogonal matrix whose columns are the orthonormal eigen vectors of
MM (UTU = I, where [ is the identity matrix). The eigen vectors of MM are
computed by solving Det(cI — MMT) = 0 where Det(M) is the determinant of matrix
M.

3: is a p X m diagonal matrix that contains positive singular values of M. The diago-
nal entries o; of ¥ are the square roots of the eigen values of M?M and are ranked in

decreasing order such thatoy > 09 > ... > 0, > 0.

e V:isann x n orthogonal matrix having as columns orthonormal eigen vectors of M M.

The latter vectors are computed by solving Det(o1 — MTM) = 0.

A singular value o; defines the variance of vector U; along dimension V.7, i.e., var(U;) =

0;.

Example 5. Consider time series X and X, from Figure 2.3. Figure 3.1 illustrates the SVD of
M.

Dimensionality Reduction

SVD allows to perform a dimensionality reduction from a dimension 7 to a lower dimension 7.
The dimensionality reduction is performed by nullifying the n — r smallest singular values from
matrix X, where 0 < 0, < o,. Figure 2.5 illustrates the dimensionality reduction for r =n — 1,

i.e., the smallest singular value of X is nullified. We write SVD,.(M) for the result of a low rank
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0 0
0.31 —0.22
0 0
031 022
0 0
—0.31 022
0 0
SVDM) = ~030 011 | { 3.35 0 } y [ 0.99 —0.14 }
~0.30  0.04 0 051 014  0.99
~0.31 022
~0.30 —0.27 = Ve
~0.30 —0.75
~0.30 —0.27
031 022
0.00  0.00
031 —0.22 |
18)

Figure 2.4: Example of Singular Value Decomposition

SVD of a matrix M. REBOM uses the low rank SVD for improving the initial imputation of the

missing values as described in the next section.

g1 ce 0 0 ‘/1T
SVD, (M) = [Ul‘. 5 Up} X U IV
O|...]0o.]0
\ - VT
U(mxp) 0,000 )
N ~~ ~  VT(nxn)
2, (pxn)

Figure 2.5: Illustration of Dimensionality Reduction
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REBOM combines the characteristics of a time series with missing values with the characteristics

of its most correlated time series to recover blocks of missing values in irregular time series.

2.4.1 Correlation Ranking Matrix

We define the top-£ ranking matrix to capture the correlation between different time series. The

correlation is defined over all values of the first vector of the matrix with respect to all values
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of another vector. The Pearson coefficient is used as a correlation metric. Given two vectors
M; = [m;,,miy,...,m; ] and M; = [mj,,m,,,...,m; | of the same length n, the Pearson
correlation coefficient p of M; with respect to M; is defined as follows:

cov(M;, M;
P(Mi, Mj) = ( ])
\/var(Mi)var(Mj)
> (mi, — m;)(my, — my)
> (mi, —mi)*Y (my, —my)?
p=1 p=1
. - n - 1 n
with m; = — mi,, M; = — m;,
n n
p=1 p=1

p(M;, M;) is undefined if all values of M, and/or M; are equal. The vectors of the correlation
ranking matrix are ranked in decreasing order of the Pearson coefficient between the first vector
and the remaining vectors.

Definition 3 (Top-k ranking matrix). Let M = [M;, My, ..., M, ] be a matrix of n vectors.
MiPk = [M], M), ..., M;] is defined as the top-k ranking matrix of M with respect to a given
vector that contains initialized missing values Mp1 € M iff:

e M'"P* contains the k vectors that are most correlated to MZ}: VM € MP"PFYM; €
M\ M“PE s |p(M, My)| > |p(M;, M)

e The elements of M*P* are sorted by their correlation coefficient to Ml} V<1< k:

|p(M;, My)| = |p(M],y, M)

For each matrix M!P* we define a corresponding top-k ranking vector ppgeopk
[o(MY, M{P®), p(ME, My F), o p(ME, M{P™)] for M} with the I;-norm ||pygeors|| =
i (oM, M0)).

Example 6. Consider Figure 2.6 with M = [M;, My, M3, M| and top-3 ranking M3 =
[M4, ]\437 Ml] for M4.

We get PMtop-3 = [p(M4, M4), p(]\447 Mg), p(M4, Ml)] = [1, 093, 087} and ||thop-3 || = 2.8.
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46 3 2 2 3 4
Mo| 5T 13| g |3 10
6 79 8 8 9 6
7687 787

Figure 2.6: Example of M3
2.4.2 Stepwise Correlation Monotonicity

We prove that REBOM is stepwise monotonic, i.e, choosing a bigger correlation value in the
same iteration implies a bigger sum of variances. Lemma 1 states that the /;-norm of a ranking
vector pyp is proportional to the sum of the variance of vectors obtained by the application of the
low rank SVD. In what follows a submatrix M; = [M;,, M,,, ..., M; | that contains k different
columns of M is denoted as M, € M.

Lemma 1. Ler M, = [Mil, ]\41‘27 .. 7Mik

| and M; = [M;,,M,,,..., M, be two different
m X k matrices and let M be m x n matrix such that k < n and M;;M; € M. Let
N; = [N, Ni,,...,N;,] = SVD.(M;) and N; = [N;,,N,,,...,N;.] = SVD,.(M;) such
that M;, = M;,. The ly-norm of pnm, and pw, is proportional to the sum of the variances of N;

and N;:
k k

> |[pmy || = ZUCLT‘(NZ-p) > Zvar(ij)

p=1 p=1

||pMi

Lemma 1 states that choosing a matrix with a bigger /;-norm of the ranking vector implies a
higher sum of variances over the vectors obtained by the application of SVD. Therefore, more
correlated vectors of the input matrix yields a higher sum of the variances after the application

of SVD,(). Thus, by considering the top-k ranking matrix, the result of SVD,.() maximizes the

Z var(N;)

N;€SVD, (M)

following objective function:

Proof. We prove that our algorithm is stepwise monotonic. We perform this proof by showing
that the correlation matrix used is monotonic at every step of the algorithm. i) From Def. 2 (SVD)
we know that the singular values define the variances along the vectors. ii) From the definition of
the top-k ranking matrix we know that at every step of SVD, we take the matrix with the biggest

1-1 norm of correlation. iii) From the definition of SVD,() we know that only the smallest
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variance will be nullified and the biggest ones will be kept. Using i), ii) and iii) we can deduce
that our algorithm takes the biggest ||pny, || in order to compute the biggest )y o, var(Ni;)
where N; = SVD,(M,;). Therefore, the bigger the correlation is, the bigger sum of variances we

will obtain. This implies that the correlation used by the algorithm is stepwise monotonic.

]

Example 7. Consider matrix M = M;, My, M3, M, from example 6 and the result matrix of the
application of SVD, (M) as shown in Figure 2.7.

4 6 3 2 3.73 6.12 29 221
5 71 3 1 . 1 2.
M= N= 5.19 6.9 83
6 79 8 6.48 6.77 9.15 7.6
76 8 7 6.49 6.23 7.83 7.41

Figure 2.7: Example of a matrix and its SVD,.() transformation
Let’s take the example of M, My € M where M = { My, M3, M;} and My = { My, Ms, M},
and let Ny = SVD,(M;) and Ny = SVD,(Ms).

If we apply the computation with respect to vector My, we get ||[M;|| = 2.8,||Msy|| =
2.06, 5% svar(Ny,) = 18.5and 30 var(Ne,) = 7.6.

Lemma 1 holds for any other matrices M;, M; € M .

2.4.3 Iterative Recovery of REBOM

This section proves that REBOM terminates. In each step we compute the partial correlation
ranking for the time series based on the missing values. If this partial ranking is the same as the
global ranking, the recovery stops. For all missing values ¢ € T? (cf. Definition 1) the partial

correlation p(M;, M;) is defined as follows:

7|

Z(mit m;)(my, — my)
p(My, M) = ——==

|| ||
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Where |T?| is the length of T?. p(M;, M;) is undefined if all missing values of M; or M; are
equal. The partial ranking matrix contains the partially most correlated vectors to the vector that

contains the missing blocks to recover.

Definition 4 (Partial ranking matrix). Given a matrix M = [My, Mo, ..., M,| of n vectors,
Mtor+ — [M, M), ..., M] is defined as the top-k partial ranking matrix of M with respect to a
given vector MI} e M iff:

e M'P* contains the k vectors that are partially most correlated to MI}: VM! €
MUk € M\ M : G(M], M}) > 5(M;, M)

e The elements of M are sorted by their partial correlation coefficient to ]\/[; V1<i<
b OML M) = By, M)

The top-k ranking and the top-k partial ranking are used to terminate the iterative recovery pro-

CESS.

Lemma 2 (Termination Condition). Let N'”* = [N, | N;,,..., N | and let Ranking() be the
ranking of vectors inside a matrix. If Nf(’p * and its partial correlation matrix have the same
ranking then the algorithm can not anymore create a matrix N, 1 with bigger sum of variances

along its vectors. Formally:

Ranking(N'"*) = Ranking(N'"*) =

Z var(Ni,;) > Z var(Ngy1y;)

Nij S Ni N(i+1)j S Ni+1

Proof. We prove that our algorithm terminates after finding the matrix that has the maximum
sum of variances along its vectors. We perform this proof by showing that a) REBOM computes

a finite number of ranking; b) the matrix ranking determines the termination of the algorithm.

a) Finite number of rankings i) From Def. 2 (SVD) we know that the variance values obtained

by SVD are ranked in increasing order in matrix 3. ii) From [Lag91] we have that the
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singular values obtained by SVD are monotonic. Using i) and ii) it follows that the variance
obtained by the decomposition is monotonic and thus: Ny, € Ntf’p A Ny, & N;Op R
N;, ¢ NYP* where N§*"* = SVD,(N{"") and N§** = SVD,(Ny?*). Therefore, the
number of rankings generated by REBOM is finite.

b) Ranking determines termination Let R; be the ranking of matrix N;, ﬁz be the partial rank-
ing of matrix IN; and R;,; be the ranking of matrix N;,; where N;,; = SVD,.(N;). 1)
We have from Def. 3 that the correlation value determines the ranking inside a matrix.
= ||pNn,ia || = Ri = Riyq. ii) Since UMV algorithm (cf. Subsection 2.4.4)
is updating only the missing values of the matrix, then R; determines ||px, |- Tt fol-

Thus, ’ ’pNz

lows that R; = R; = || PN || = |lpN;., |- Using i) and ii) we deduce by transitivity that

i+1|

R, = EZ = R; = R, and the iterative process terminates.

Based on properties a) and b), it follows the proof for this lemma. ]

After each iteration, REBOM compares the ranking of vectors in the top-k ranking with the
ranking of vectors in the top-£ partial ranking. If the two rankings are equal, the recovery process
terminates. As long as the two rankings are different or one of the two rankings is undefined, the

most correlated time series can be used to further improve the accuracy of the recovery.

Example 8. Consider M, = [M,,, My,, My,, M,,, My,] and k = 3. After each iteration we
create matrix N; with recovered values and compare Ranking(N™P3) with Ranking(IN'P3).
Initially, p(M;, M;) and Rankmg(ﬁto”‘?’) are undefined and thus, REBOM iterates. REBOM
terminates after two steps since Ranking(NY?®) = Ranking(NYP®) = {My, M, Ms}. The
vectors of the top-k ranking and top-£ partial ranking are highlighted in gray and the recovered
values are displayed in bold.
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M1 Nl
My, My, My, | My, | Mg Ny, N1, Ni, N1, Nig
-1 0.5 0.25 0.75 1 -1 0.5 0.25 0.75 1
0 0 0.2 0 0 0 0 0.2 0
-1 0.5 0.25 0 1 -1 0.5 0.25 0 1
0 0.5 0 0.75 0 0 0.5 0 0.75 0
0 0 0 0 1 0 0 0 0
0 0 -0.25 0 0 0 0 -0.25 0 0
-1 0.5 0.25 0.75 -1 -1 0.5 0.25 0.75 -1
-1 0.2 0 0 0.7 -0.5 0.2 0 0 0.7
-1 0.4 -0.25 0 0.4 -0.8 0.4 -0.25 0 0.4
-1 0.2 0 0.75 0.8 -0.5 0.2 0 0.75 0.8
-1 0.5 0.25 0.75 1 -1 0.5 0.25 0.75 1
0 0 0 0 0 0 0 0 0 0
-1 0.5 0.25 0.75 1 -1 0.5 0.25 0.75 1
p(My,, M1,) |1 | 069 | 033 | 043 | 046 p(N1,,N1,) [0 | 2078 | -045 | 047 | 041
F(My, My) | - - - - - AN, N1, | 1 1 | 05 | 097
Ny
Na, | Na, Na, N2, | Nog
-1 0.5 0.25 0.75 1
0 0 0.2 0 0
-1 0.5 0.25 0 1
0 0.5 0 0.75 0
0 0 0 0
0 0 -0.25 0 0
-1 0.5 0.25 0.75 -1
-0.2 0.2 0 0 0.7
-0.8 0.4 -0.25 0 0.4
-0.2 0.2 0 0.75 0.8
-1 0.5 0.25 0.75 1
0 0 0 0 0
-1 0.5 0.25 0.75 1
p(Nay,No) |1 | 08 | 048 | 046 | -036
A(Nay, No,) [0 |t 1 05 | 097

Figure 2.8: Iterative Recovery of REBOM

2.4.4 Algorithm

Algorithm 1 implements the block recovery of REBOM. First, using the method described in

subsection 2.3.2, X! is created by initializing the missing values of X°. Then, the vectors repre-
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senting each time series of X! are inserted as columns in the matrix of vectors Nj.

Algorithm 1: REBOM’s Block Recovery
Input: A set of n time series X° = {X?, X9 ... X}
Output: A set of recovered time series X = {X7', X32, ... X/}

1 begin

2 | X' = Init(XO);

3 | foreach X} € X! do

4 X! = Extract_val(X});

5 j=1

6 N; = [Vi'];

7 for each X, € X'\ X} do

8 L V}, = Extract_val(X;);

9 Nj = [Nj7 ‘/201};

10 while Ranking(Né-Op'k) <> Ranking(ﬁzoz"k) or Ranking(N?p'k#NAN or
Ranking(ﬁ?Op'k) = NAN do

1 USVT = SVD(NI*H);

12 3., = Reduce_Dim (X, n,r);

13 P=UxZX, xVT;

14 N; = UMV(N* P);

15 j+=1;

16 X! = Add_ts(Ny,);

17 X7 = {X7} U{X/};

18 1+ =1;

19 return X/;

The vector to recover is inserted as the first column of N;. The order of the selected vector to
recover has no impact on the result of the recovery since only the original vectors are used in the
recovery process. Therefore, the proposed recovery is deterministic and does not depend on the
order of time series to recover. Next, if the ranking of the top-£ ranking matrix is different from

the ranking of the top-£ partial matrix or one of the rankings is undefined (NAN), the recovery is
top-k
into the set of recovered time series, i.e, X?. Once all time series have been recovered, X’ will

performed. If Ranking(N ™) is equal to Ranking(N;Op ") the recovered time series is inserted

be returned as the result of REBOM’s block recovery.
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Extract_val() and Add_ts() are used respectively to extract values from a time series and to

add time stamps to a vector.

The UMYV algorithm (cf. Algorithm 2) updates missing values. It accesses the database and uses
procedural SQL to determine the indexes of missing values (load_mv_indexes()). The code of

this function is described in the appendix.

Algorithm 2: Updating Initialized Missing Values

1 begin
2 for ecach V; € V, do
3 TP=load_mv_indexes(i);
4 for each v;, € V; do
5 if position(v;,) € T, then
6 Insert_element(Vs, v;;);
// Insert vj; € Vo in row i and column j of Vj
7 else
8 Insert_element(V3, v;,);
9 return Vj;

2.5 Experiments

2.5.1 Experimental Setup

For the evaluation we use real world datasets and synthetic data sets that describe hydrological
phenomena of up to 15 million observations produced by sensors in 242 mountain stations. Our
hydrological database contains 79 temperature time series, 69 precipitation time series, 48 water
level time series, 15 humidity time series, 4 wind speed time series and 3 air pressure time series.

The data was provided by an environmental engineering company [Hyd12].

We ran experiments to compare the recovery accuracy of REBOM against state-of-the-art tech-

niques.
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2.5.2 Experiments with Hydrological Time Series
Restoration of Peaks and Valleys

In the first set of experiments, we compare the accuracy of REBOM for the restoration of missing
blocks against a parameter-free recovery technique that is the (non-iterated) low rank SVD and
a parametric recovery technique that is DynaMMo [LMPF(09]. These two techniques are the
most accurate techniques for the recovery of blocks of missing values in time series. We ran our
experiment on a wind speed time series measured in the area of Adige a Lasa of the region of
South Tyrol during year 2001 and a humidity time series measured in the area of Col dei Baldi
in the same region during the same time period. Figure 2.9(a) graphically displays the two time
series. We drop a block of values for ¢t €]160, 220[ and restore it using the low rank SVD and
DynaMMo. The dropped block includes a valley with a small peak.

Wind speed Missing block - Wind speed SVD recov.
Humidity 1 Humidity 1 DynaMMo recov.
4 . . . . Missing block
4 . : :
3 .
= 3r
) =
E 1 / T o1f J
Y t W | i = /\/\r‘\ i
g0 \ Y @ 0 g r v
5] . =
> 4 F A T e S 4P
2 oL
0 40 80 120 160 200 240 280 0 40 80 120 160 200 240 280
time (every 15min) time (every 15min)
(a) Time Series Measured in Two Different Areas (b) Recovery of a Removed Block

Figure 2.9: Recovery using Low Rank SVD and DynaMMo

The recovery of the two techniques is shown in Figure 2.9(b). The low rank SVD is only able
to detect part of the trend of the missing block, i.e., only a valley is recovered. The shape of
the recovered valley resembles the shape of the block that belongs to the same time interval of
the missing block in the other time series. DynaMMo is able to detect the entire trend of the
missing block, i.e., a valley containing a small peak. However the shape of the original block
is not accurately restored. The recovered block looks similar to a smooth spline that contains a
small peak. Since we use only two time series REBOM will not iterate. Therefore, the recovery
of REBOM is similar to the recovery of the low rank SVD.

We add a second humidity time series to the experiment to compare the block recovery of RE-
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BOM against DynaMMo (see Figure 2.10). The second humidity time series, denoted as Humid-
ity 2, is measured in the area of Monte Piana in the region of South Tyrol during year 2001. The
result of Figure 2.10(b) shows that the recovery of DynaMMo does not change by the addition
of a third time series because DynaMMo cannot use more than one reference time series in the
recovery process. REBOM exploits the two humidity time series in the recovery process. It uses
the history of the wind speed time series together with the correlation with respect to the two
humidity time series to recover the missing block. Both the trend and the shape of the miss-
ing block are accurately recovered. Adding more correlated time series will further improve the
block recovery of REBOM (see Figure 2.12).

Wind speed Humidity 2 —— Wind speed Missing block -
Humidity 1 Missing block - Humidity 1 REBOM recov.
4 : : ; ; ; ; . Humidity 2 ——  DynaMMo recov.
4 ‘ ‘ ‘ ‘ ‘ .
3 L
= 3
£ 2 g 2
= <
£ 1 E 1
o =3
S 0y 2 0
[ =
>y g -
-2+ 2
0 40 80 120 160 200 240 280 0 40 80 120 160 200 240 280
time (every 15min) time (every 15min)
(a) Time Series Measured in Three Different Areas (b) Recovery of a Removed Block

Figure 2.10: Recovery Using REBOM and DynaMMo

We run a second set of experiments in which we compare the block recovery error using the
Mean Squared Error (MSE):

1 n
MSE:— i i+ 2
n;(w v; ")

where w is the recovered value, v is the original value and n is the number of deleted observa-

tions.

Figure 2.11 shows the cumulative recovery error for removed blocks of values of increasing
length: we set a starting timestamp, we vary the length of the removed block and we compute
the cumulative recovery MSE of each block. The z-axis represents the length (number of values)
of the removed block to recover and the y-axis represents the average cumulative MSE. The
experiments in Figures 2.11(a) and 2.11(b) are executed respectively on six different temperature
time series with 1000 values each measured in region of Alto Adige and four different humidity

time series with 1000 values each measured in the region of Vipetino. For these two experiments,
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we remove a block from one time series only while the other time series are complete. The results
in both experiments show that REBOM outperforms the low rank SVD and DynaMMo for the
recovery of successive blocks of missing values and cubic spline is off the scale. For blocks of
up to 100 removed values, the recovery error of REBOM slightly increases with the number of
removed values. For blocks of more than 100 removed values, the error becomes almost stable

and is not anymore affected by the number of removed values. In contrast, the recovery error
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midity time series used in the recovery contain missing

values.

Figure 2.11: Recovery of Blocks of Different Lengths

of DynaMMo and the low rank SVD increases with the length of removed blocks. The small
cumulative recovery error of REBOM is due to the use of different correlated time series at every
iteration of the algorithm. The experiment of Figure 2.11(c) is executed on four humidity time
series of 1000 values each. The first time series is complete, the second time series contains

a missing block in the time range [0, 100], the third time series contains a missing block in
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the time range [100,200] and the fourth time series contains a missing block in the time range
[200, 300]. We execute the same process performed in the experiment of Figure 2.11(b) for the
complete correlated humidity time series. The experiment shows that, compared to the result
of Figure 2.11(b), the recovery accuracy of REBOM, DynaMMo and low rank SVD gets worse
when using multiple time series with missing values. The recovery accuracy of REBOM is still

better than the one of the other techniques.

In the experiment of Figure 2.12, we use different correlation values and number of input time
series (n) to evaluate the impact on the recovery MSE. We vary n and we compute the MSE of
REBOM for the same block containing 90 missing values. Figure 2.12(a) shows that in the case
of time series of high correlation (1 > |p| > 0.7), the MSE of REBOM decreases only slightly as
n grows. REBOM is able to restore the missing block using a small number of highly correlated
input time series. This result is explained by the fact that, for highly correlated time series, the
starting top-k ranking matrix is similar to the partial ranking matrix. Therefore, the recovery
of REBOM converges quickly. Figure 2.12(b) shows that, using more time series of moderate
correlation (0.7 > |p| > 0.4), the MSE of REBOM decreases linearly. REBOM uses all the time
series to perform the most accurate recovery. Figure 2.12(c) illustrates that, the MSE increases

for input time series with low correlated time series (0.4 > |p| > 0).

In the experiment of Figure 2.13 we set nn to 10 and we vary the number of time series in the top-k
ranking matrix. In Figure 2.13(a) the minimum MSE is reached for k& € [2, 4]. In Figures 2.13(b)
and 2.13(c), the minimum recovery MSE is reached for a single value that is respectively k =
4 and k£ = 2. Again, the recovery accuracy of REBOM decreases for time series with low

correlation, i.e., 0.4 > |p| > 0, in the top-k ranking matrix.

Invariance to Initialization Method

We run this experiment to test the impact of the initialization method on the block recovery of
REBOM. Figure 2.14 shows that with different initialization techniques, REBOM needs more
iterations to reach the minimum recovery error. Compared to our initialization method, a linear
spline initialization needs twice the number of iterations to reach the minimum recovery error.
Using a k Nearest Neighbor initialization, REBOM needs 2.5 times more iterations than our
initialization technique to reach the same recovery error. Thus, the accuracy of REBOM is
independent from the initialization method. However, our initialization initialization method

provides a faster recovery of blocks of missing values.
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Figure 2.12: Impact of n in the Recovery MSE of REBOM

Running Time Performance

The REBOM implementation uses the Golub/Kahan decomposition algorithm [Kon05] and has
a run time complexity of O(#iterations x (4n’k + 8nk* + 9k3)), where n is the length of
the longest time series and k is the number of vectors of M!P*_ The complexity of building
MPk is the cost of computing k times p between two time series and that is O(kn?). Therefore,
the total complexity of using REBOM is O(#iterations x (5n*k + 8nk? + 9k?)). Table 2.1
compares the average running time of REBOM against DynaMMo that has a complexity of
O(#iterationsx (kn?)). 3000 different time series were created by extracting 1000 observations
from 15 different temperature time series. We drop from one time series a block of 200 values
and we recover it back using REBOM (containing 1000, 2000 and 3000 time series respectively)
and DynaMMo. We set the value of £ to four, since we reached the optimal recovery accuracy
with this value. The result of this experiment shows that up to 1500 time series, REBOM is faster
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Figure 2.13: Recovery MSE using Different Number of Time Series in the Top-k£ Ranking Matrix

than DynaMMo. With a higher number of input time series, the performance of REBOM starts

to be slower than DynaMMo.

Table 2.1: Average Running Time Comparison (sec).

REBO M3

REBOM?%

DynaMMo

REBOM?!"%

158

49

32

8

Recovery Using Linear Time Series

In the experiment of Figure 2.15, we show the impact of using extremely irregular time series.

We take as input a humidity time series measured in spring 2001 from which we drop a block for

ts €]120, 160[, a constant time series, and a monotonic time series. The result of Figure 2.15(a)
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Figure 2.14: Number of Iterations using Different Initialization Techniques

shows that, since the correlation between the humidity time series and the constant time series is

undefined (all values are equal), REBOM performs a bad recovery. In Figure 2.15(b), the humid-

ity time series and the monotonic time series are correlated. Therefore, both time series are used

to recover the type of the missing block. The recovered block has an increasing monotonic shape

that looks similar to the monotonic time series. In the experiment of Figure 2.15(b), REBOM

produces a good recovery of the type and the shape of the missing block. The application of

DynaMMo in the experiment would set all the recovered values to 0.

value (%)

REBOM recov.
Constant TS

REBOM recov.
Monotonic TS

Humidity ——
Missing block -

Humidity ——
Missing block e

value (%)

40 80 120 160 200 240 0 40 80 120 160 200 240

time (every 15min) time (every 15min)

(a) Recovery of REBOM using lines of function v = ¢,(b) Recovery of REBOM using lines of function v =

where c is a constant. The result of the recovery is theat + b, where a = 0.5 and b = —2.5

same for any given value of ¢

Figure 2.15: Impact of Extremely Irregular Time Series in the Recovery of REBOM
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2.5.3 Experiments with Synthetic Regular Time Series

This subsection describes a set of experiments conducted with synthetic data. We compare the
block recovery of REBOM against DynaMMo.

Different Amplitudes

Figure 2.16 compares the recovery of the two techniques for two regular time series having
different amplitudes. The first time series is a sin(t) wave and the second time series is a sine
wave multiplied by a negative scaling factor, i.e., —0.25 * sin(t). For ¢t €]70,110[, we drop a
block from sin(t) and we recover it using REBOM and DynaMMo. Both techniques are able to
accurately recover the missing block. REBOM uses the correlation between the two time series
in order to determine the shape of the missing block, i.e, a peak. The amplitude of the missing
peak is determined using the amplitude of the existing peaks from sin(¢). The two techniques

perform an accurate recovery in the case of multiplying the second wave by any scaling factor.

sin(t) —— Missing block n _— Recov. block
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(c) Recovery of DynaMMO

Figure 2.16: Recovery of DynaMMO and REBOM for Time Series of Different Amplitudes
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Shifted Peaks

Figure 2.17 shows two regular time series shifted in time, i.e., sin(t) and cos(t). For t €]70, 110,
we drop a block from sin(t) and we recover it using REBOM and DynaMMo. REBOM is
applied without initial alignment of the two time series. As expected, DynaMMo outperforms
REBOM in recovering the missing block. DynaMMo is able to compute the periodicity model
and performs a good block recovery. However, REBOM recovers a block that is only influenced
by the shape of the block in cos(t) for ¢ €]70,110], i.e., a peak followed by a valley. For
shifted time series, REBOM is not able to use the history of sin(t) in the recovery process. The
decomposition performed by our technique is sensitive to the row position of values inside the
MPk matrix. In order to overcome this problem, an initial alignment between the two time

series must be performed in a preprocessing step (cf. Subsection 2.3.2).
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Figure 2.17: Recovery of DynaMMO and REBOM for Shifted Time Series
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2.6 Conclusion

This chapter studies the recovery of blocks of missing values in irregular time series. We develop
an iterative greedy algorithm called REBOM, that uses at every iteration the most correlated time
series to the time series that contains the missing blocks to reconstruct missing peaks and valleys.
Empirical studies on real hydrological data sets demonstrate that our algorithm has the most
accurate block recovery among existing techniques. In future work, it is of interest to examine
the impact of using the recovered time series in the recovery process instead of the original ones.
It is also foreseen to investigate the impact of the global correlation on the recovery accuracy
together with the local correlation. Another promising direction, is to progress the interaction

with the database and develop an SQL based recovery solution that reduces the number of I/O’s.
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CHAPTER 3

Using Lowly Correlated Time Series to Recover Missing
Values

Abstract

The Singular Value Decomposition (SVD) is a matrix decomposition technique that has been
successfully applied for the recovery of blocks of missing values in time series. In order to per-
form an accurate block recovery, SVD requires the use of highly correlated time series. However,
using lowly correlated time series that exhibit shape and/or trend similarities could increase the
recovery accuracy. Thus, the latter time series could also be exploited by including them in the

TeCovery process.

In this chapter, we compare the accuracy of the Centroid Decomposition (CD) against SVD for
the recovery of blocks of missing values using highly and lowly correlated time series. We show
that the CD technique better exploits the trend and shape similarity to lowly correlated time
series and yields a better recovery accuracy. We run experiments on real world hydrological and

synthetic time series to validate our results.
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3.1 Introduction

In real world applications sensors are used to measure time series data of different types, which
are then collected, processed and stored in central stations. In the hydrological field, for instance,
weather stations collect measurements that describe meteorological phenomena, e.g., tempera-
ture, humidity, air pressure, precipitation, etc. These time series contain blocks of missing values
due to many reasons, e.g., sensor failure, power outage, sensor to central server transmission
problem, etc. In order to recover these missing values, existing recovery techniques use the
(base) time series that contains the missing values in addition to highly correlated (reference)
time series. However, these recovery techniques can not learn from the trend and shape sim-
ilarity of lowly correlated reference time series which are consequently not considered in the

TeCOVery process.

The Foehn, for instance, is a warm wind that reaches weather stations at different time points.
This environmental phenomenon yields time series with shape and trend similarities, but shifted
in time. For example, the Foehn yields shifted temperature time series with similar shapes, i.e.,
peaks that contain similar spikes. These shifted time series are lowly correlated. It is of interest
to benefit from Foehn based time series and include them, in addition to the highly correlated
time series, in the recovery process. In this chapter, we consider the category of lowly correlated
reference time series, e.g., Fohen based time series, that exhibit shape and/or trend similarities to

the base time series.

Matrix decomposition techniques decompose an input matrix into the product of k£ matrices
where k € [2,3]. The truncated Singular Value Decomposition (SVD) has been successfully
applied to recover missing values in time series [KB12]. The truncated SVD performs a decorre-
lation of vectors and subsequently an unweighted relative reduction of the Mean Squared Error
(MSE) to the reference time series. The unweighted MSE reduction yields a recovery that ignores
the correlation difference between the input time series. Thus, this recovery technique is not suit-
able to apply in case of using highly and lowly correlated reference time series (cf. Section 3.5).
To the best of our knowledge, there does not exist any technique that introduces different weights
in the decomposition process of SVD. In [LBKL15, HMT11, AMO07] fast approximations of the
truncated SVD have been proposed. Similarly to SVD, the latter approximations perform a

decorrelation of vectors and thus, produce an unweighted MSE relative reduction.

In this work, we are interested in the case of using highly and lowly correlated time series for the

recovery of blocks of missing values. Intuitively, in such cases, an accurate recovery technique
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should give different weights to the used time series. In contrast to the truncated SVD, the
truncated Centroid Decomposition (CD) technique gives a weight proportional to the correlation
between the base and the reference time series (cf. Section 3.5). Consequently, the obtained
recovery produces a relative reduction of the MSE to the highly correlated reference time series
more than to the lowly correlated one yielding a block recovery better than the one produced
by the truncated SVD. We assume that the lowly correlated time series that exhibit trend and/or
shape similarity are given as input. Searching for these time series is beyond the scope of this

chapter.

The main contributions of this chapter are:

e We prove that CD technique produces correlated output vectors while SVD technique pro-

duces uncorrelated output vectors.

e We empirically show that CD performs a weighted MSE relative reduction that is propor-
tional to the correlation of the input time series. The resulting recovery of missing values

uses the correlation difference between the input time series.

e We empirically show that SVD performs an unweighted MSE relative reduction. The
resulting recovery of missing values ignores the correlation difference between the input

time series.

e We present the results of an experimental evaluation of the recovery accuracy of the CD
and SVD techniques. The iterated truncated CD produces a better recovery accuracy in

case of using a similar number of highly and lowly correlated time series.

The rest of the chapter is organized as follows. Section 3.2 discusses related work. Section 3.3
describes the recovery process using SVD and CD techniques. Section 3.4 defines the un-
weighted recovery and the correlation based recovery respectively performed by SVD and CD
techniques. Section 3.5 reports the evaluation results. Section 3.6 concludes the chapter and

points to future work.

3.2 Related Work

The Singular Value Decomposition (SVD) is a commonly used matrix decomposition technique.

It computes the singular values with their corresponding right and left singular vectors. The trun-
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cated SVD, which is computed out of SVD by nullifying the smallest singular values, has been
extensively used in many fields, e.g., compression, noise reduction, etc. Khayati et al. [KB12]
applied the truncated SVD for the recovery of missing values in time series. The basic idea is as
follows: the truncated SVD is iteratively applied to a matrix that has as columns the time series
for which the missing values have been initialized through linear interpolation. The iterative
process refines only the initialized missing values and terminates when the difference between
the updated values before and after the refinement is smaller than a small threshold value, e.g.,
107°. The Mean Squared Error (MSE), between the real values and the recovered ones, is used

to evaluate the recovery accuracy [LMPF09].

The Centroid Decomposition (CD) is a matrix decomposition technique that decomposes an
input matrix into the product of two matrices. Chu et al. [CFO1] introduce an algorithm that
computes the CD of an input matrix in quadratic run time, but requires the construction of a
correlation square matrix that has a quadratic space complexity. Khayati et al. [KBG14] propose
an algorithm to compute the CD out of the input matrix using a weight vector instead of the
construction of the correlation matrix. They prove the correctness of the proposed solution.
The space complexity is thus reduced from quadratic to linear while keeping the same run time

complexity.

The Semi Discrete Decomposition (SDD) [KO98] is a matrix decomposition technique that de-
composes an input matrix into three matrices such that their product approximates the input
matrix, i.e., X ~ X’ - D - Y7, The resulting D is a diagonal matrix and the values of X’ and
Y are restricted to belong to the set {—1,0, 1}. The truncated SDD has been used as clustering
method [KOOO]. The non-zero elements of the matrix obtained from the product d;; x X, - Yg
are the elements of the input matrix X which have the closest values and thus can be clustered
together. Due to the set restriction of the elements of X’ and Y, the application of SDD for the

recovery of blocks of missing values does not produce accurate results.

In addition to matrix decomposition techniques, matrix factorization techniques have been also
applied for the recovery of missing values. The latter techniques start from k& random matrices
in order to approximate the input matrix. Stochastic Gradient Descent (SGD) [YHSDI12] is
a matrix factorization technique that approximates an input matrix X by the product of two
matrices P and Q, i.e., X ~ P - Q. SGD iteratively minimizes an error function by computing
the gradient. At each iteration, the gradient is computed using random sample square blocks of
the input matrix. The accuracy of the gradient increases with the size and the number of the used

blocks [GNHS11]. Thus, using an input matrix with high number of rows and columns yields
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an accurate gradient’s computation and subsequently a good approximation of the input matrix.
In [KBV09], SGD has been successfully applied to predict ratings in recommender systems
for a matrix of items as rows and users as columns. Balzano et al [BNR10] propose an SGD-
based solution, called GROUSE, for the recovery of blocks of missing values in an input matrix.
GROUSE performs an accurate recovery for matrices of a high number of rows and columns.
The recovery accuracy of the proposed solution deteriorates if the number of columns is much
smaller than the number of rows such as in the hydrology field where the number of time series

is much smaller than the number of observations.

3.3 Preliminaries

3.3.1 Notation

Bold upper-case letters refer to matrices, regular font upper-case letters to vectors (rows and
columns of matrices) and lower-case letters to elements of vectors/matrices. For example, X is a
matrix, X7 is the transpose of X, X, is the i-th row of X, X,; is the i-th column of X and z;; is
the j-th element of X,.

In multiplication operations we use the sign x for scalar multiplication and the sign - otherwise.

The symbol |||| refers to the [-2 norm of a vector. Assume X = [zy,...,x,], then || X|| =

vV Z?(%‘)Q-

3.3.2 Background

Time Series

A time series X;. = {(t1,v1), (t2,v2), ..., (tn, v,)} is a set of n temporal values v; ordered with
respect to their timestamps ¢;. We consider time series that have the same granularity of values.
Thus, we omit the timestamps and we write time series using only their ordered values, e.g., time
series X1, = {(1,4),(2,5),(3,1)} is written as X;. = {4,5,1}. Time series are inserted as

columns of the input matrix X.
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Pearson Correlation Coefficient

The definition of the Pearson correlation coefficient p(X,Y") between two vectors X and Y of
equal length n is introduced in Section 2.4.1. The absolute value of p ranges between 0 and
1 where p € [0.7, 1] stands for highly correlated vectors. The value of p is undefined if all x;

(and/or y;) are equal.

Initialization Strategy

The missing values of each time series are initialized as a preprocessing step before the applica-
tion of the recovery process. A missing value is initialized with a linear interpolation between the
predecessor and the successor values. If the missing value occurs as the first or the last elements

of the time series, we use the nearest neighbor initialization (cf. Section 2.3.2).

3.3.3 Matrix Decomposition
Singular Value Decomposition

The Singular Value Decomposition (SVD) is a matrix decomposition technique that decomposes
ann x m matrix, X = [X,]...|X,ny], into an n X p matrix, U, a p X m matrix, 3, and an m x m

matrix V, i.e.,
X=U-2 V7T

p
— Zgi X U*z ' (‘/*i)T’
i=1

where p = min(n, m), the columns of U and V are respectively called left and right singular vec-
tors, and X is a matrix whose diagonal elements, o;, are called singular values and are arranged
in decreasing order, i.e., oy > 03 > ... > 0, > 0. The obtained columns of U are orthogonal
to each other, 1.e., U,y L Uyn L ... L U,,. Similarly, the columns of VT are orthogonal to each
other. In order to guarantee the orthogonality of columns of respectively U and V, SVD requires
the use of the same input matrix [GVL96]. Since SVD decomposition is performed based on the

same input matrix X, we refer to SVD as a flat decomposition method.

Figure 3.1 illustrates the SVD decomposition of an input matrix X.
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4 0 -0.725 -0.307 e 0 0087 016
X=| 2 1/[|;:SVDX)=| 0333 0627 |,| o '
0 2.086 -0.16 0.987
3 -2 0.603 -0.716 -
> A\
U
such that

X =1 0333 0.627
0.603 -0.716

-0.725 -0.307
[ 0 2.086 0.16 0.987

5.445 0 ] y [ 0.987 -0.16 ]

> vT

Figure 3.1: Example of Singular Value Decomposition.
Centroid Decomposition
The Centroid Decomposition (CD) is a matrix decomposition technique that decomposes an
n X m matrix, X = [X,1]| ... |Xun], into an n x m loading matrix, L, and an m x m relevance
matrix, R, i.e.,

X = L . RT = Z L*i'(R*i)T7
i=1

where || L.1|| > ||Lie| > ... > ||Lum|| > 0. Figure 4.2 illustrates the CD of matrix X.

40 3.977  —0.43 0004 0L
X=|2 1[;CDX)=| 1878 1214 |,| '
-0.11 0.994
3 9 3.202 -1.658
R
L
such that
4 0 -3.977 —0.43
0.994 -0.11
X=|2 1|=]| 1878 1214
0.11 0.994
3 2 3.202 -1.658
RT
L

Figure 3.2: Example of Centroid Decomposition.

The CD technique applies an iterative process to compute matrices L and R. At each iteration

i, the input matrix X is updated by subtracting the product L,; - RL, from it. The columns of L



48 Chapter 3. Using Lowly Correlated Time Series to Recover Missing Values

(and L) are not orthogonal to each other. Since CD decomposition is performed by hierarchically

updating X, we refer to CD as a hierarchical decomposition method.

Chu et al. [CFO1] prove that the decomposition performed by CD best approximates the one
produced by SVD, i.e., L approximates the product U - 3 and R approximates V.

Truncation

The truncated SVD computes a matrix Xy, out of the SVD of X. It takes only the £ first columns
of U and V and the £ largest elements of X such that k < p, i.e.,

k
X =Y oixUsi- (V)" 3.1)
=1

Eq. (3.1) is equivalent to X;, = U - X, - VT where ¥, is obtained by setting the r — k smallest
(non zero) singular values of 32 to 0. Let rank p be the maximal number of linearly independent
rows or columns of X. Then, among all matrices with rank k£ < p, X}, is proven to be the optimal

approximation to the input matrix X in the Frobenius norm [Bj696].

The truncated CD computes a matrix Xy, out of the CD of X by setting to O the m — k (non zero)

last columns of L, with k& < m, in order to respectively get L and X, = L;, - R

3.4 Decomposition Comparison

In this section, we compare the decomposition produced by the truncated SVD against the one
produced by the truncated CD using the Mean Squared Error (M SE = % Zle(f:i — x;)%; ini-
tialized value x;; recovered value Z;; number of observations k) between the initialized values

and the recovered ones.

3.4.1 Recovery Process

Algorithm 3 describes the pseudo code of function RecM() that applies truncated SVD and trun-

cated CD to recover missing values. The algorithm takes an input matrix X where the missing
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values have been initialized, and returns a matrix with recovered values X. Different initializa-
tion techniques would lead to the same result but with a higher number of iteration [KBG14].
RecM( ) iteratively replaces the initialized missing values by the result of the truncation of a given
matrix decomposition technique. The algorithm terminates if the difference in Frobenius norm
(X = X||p = \/Z?:l > iy (wi5 — %45)%; @i element of X &;;: element of X) between the

matrix before the update of missing values, X, and the one after, X, is less than a small threshold

value, e.g., e = 107,

Algorithm 3: RecM(X, n, m, Tj")

Input: n x m matrix X; set of missing time stamps 7" in X.,;

Output: n X m matrix X of recovered values

1 repeat

2 X=X ;

// Apply truncated SVD or truncated CD
3 X, =Truncate(X);

// Update missing values

4 foreach ¢ € 77" do

5 Ty = Wejs

// wy element of X

=)

until | X — X||, < e
7 returni

In what follows we describe the recovery properties using respectively SVD and CD. We assume
the case where the correlation ranking between time series does not change over the entire history,
i.e., the most correlated reference time series has the highest correlation value to the base time
series all over the entire history. In case where the correlation ranking changes over the history,

then a segmentation of the time series has to be applied.

3.4.2 SVD recovery

Lemma 3. Given an input matrix X of m correlated columns. SVD(X) produces non correlated

vectors.

Proof. By definition of SVD, we have that U,; L U,, L ... L U,,. This implies that the
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pairwise dot product of columns of U is equal to 0 and thus, Va,b € [1,p] A a # b, we get
(U,o)T - U,y = 0. Using the fact that all input time series have been normalized to have mean
equal to 0, we assume v and u’ to be the i-th elements of respectively U,, and U,;, and get from

Equation (2.1) the following

D i (ui X )
\/Z?ﬂ(ui - ﬂ)z\/ZL (uj —u')?
_ (Usa)" - Us
\/Zyzl(ui - "1)2\/2;;1 (uf —u')?

p(U*a; U*b) =

As a result, the pairwise correlation between all columns of U is equal to 0. The previous

property holds also for the columns of V7. ]

Definition 5 (Unweighted Recovery). Let X be an input matrix that contains a base time series
B and k > 2 reference time series each with a correlation p; to B. An unweighted recovery of B

produces a similar relative reduction of the MSE between B and the reference time series.

Proposition 1. Assume ann x m matrix X = [B, Ry, ..., Ry_1]. A truncated matrix decompo-

sition of X that produces uncorrelated vectors performs an unweighted recovery of B.

Based on Lemma 3 and Proposition 1, we get that the truncated SVD performs an unweighted

recovery.

Example 9. Let’s take the example of a matrix X = [B, Ry, R, where initialized missing values

are marked in bold.

4 1 3
-1 3 -1
X =
2 6 6
5 3

R, is a highly correlated reference time series to B with p(B, Ry)= 0.88 and R is a lowly
correlated reference time series to B with p(B, Ry) = 0.32. The computation of the MSE before
the recovery gives MSE(B, R;) = 16 and MSE(B, Ry) = 8.
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The following matrix X = [B, Ry, Ry] is an example of an SVD based recovery of B.

41 3
- -1
<_| 03
46 6
5 5 3

The computation of the MSE after the recovery gives M SE (E ,R)=6.5and MSE (E , Ro) =

2.5. The percentage of the MSE relative reduction between B and R; is red(R;) = % X
100 = 60%. Similarly, the percentage of the MSE relative reduction between B and Rj is

red(Rs2) = 69%. As a result, we have red(R;) ~ red(R>).

3.4.3 CD recovery

Lemma 4. Given an input matrix X of m correlated columns. CD(X) produces correlated

vectors.

Proof. This proof follows directly from the proof of Lemma 3. On the contrary of SVD, the
columns of L and R” computed by the truncated CD are not orthogonal and thus, the pairwise

dot product and consequently the pairwise correlation values are different from O. U

Definition 6 (Correlation Weighted Recovery). Let X be an input matrix that contains a base
time series B and k£ > 2 reference time series each with a correlation p; to B. A correlation
weighted recovery of B performs a relative reduction of the MSE between B and the reference

time series proportionally to |p;|.

Proposition 2. Assume an n x m matrix X = [B, Ry, ..., Ry,_1]. A truncated matrix decom-

position of X that produces correlated vectors performs a correlation weighted recovery of B.

Based on Lemma 4 and Proposition 2 we get that the truncated CD performs a correlation

weighted recovery.

Example 10. Let’s take the example of a matrix X = [B, Ry, R»| used in Example 9. The
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following matrix X = [E, Ry, Ry is an example of a CD based recovery of B.

-4

o oY W
D

The computation of the MSE after the recovery gives M SE(B, Ry) = 1 and MSE(B, Ry) = 5.
The percentage of the MSE relative reduction between B and R; is red(R;) = 94%. The

percentage of the MSE relative reduction between B and R, is red(Rs) = 37.5%. As a result,
we have red(R;) > red(Ry).

3.4.4 Complexity

We compare the runtime and space complexity of CD based recovery against SVD based recov-

ery. We use the algorithm that computes the exact decomposition for each technique.

Run time

Consider an input matrix X with n rows and m columns. The number of arithmetic operations
to compute SVD of X, using Golub and Reinsch algorithm [GVL96], is 4n?m + 8mn? + 9m3.
The number of arithmetic operations to compute CD of X is 2pnm where p is the number of
iterations [KBG14]. At each iteration of CD, the input matrix is subtracted yielding an updated
matrix that contains negative elements. Thus, the value of p depends on the distribution of the
minus sign across the updated matrix. In practice, the value of p ranges between 7 and 3 (cf.
Section 3.5.5).

Space

CD technique requires the storage of nm values of X, nm values of L and m? values of R. No
data structure other than the input and the two output matrices is stored. Thus, the total number
values stored by CD is equal to m(2n + m) values. SVD requires the storage of nm values of

X, nm values of U, m values of ¥ and m? values of V. Additionally, SVD has to transform X
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to a bidiagonal matrix using Householder reduction [GS06] which requires the storage of three
additional matrices, i.e., the first matrix contains nm values and the two others contain m? values

each. The total number values stored by SVD is thus equal to m(3n + 3m + 1) values.

3.5 Experiments

The experiments are performed using real world datasets that describe hydrological time series
where each tuple records a timestamp and a value of a specific observation. Hydrological time
series with shifted peaks and/or valleys are lowly correlated. Our first set of time series, HYD',
contains 200 time series of six years length each, where measurements are recorded every five
minutes. The second set of time series we refer to, SBR?, contains 120 time series of twelve
years length each, where measurements are recorded every 30 minutes. The hydrological time
series have been normalized with the z-score normalization technique [JNROS5]. We consider
hydrological time series where the correlation ranking does not change all over the history. We
use also synthetic time series, where the correlation is constant all over the entire history. To
measure the recovery accuracy, we compute the Mean Squared Error (M SE = % Zle (T;—m5)%
original value z;; initialized value Z;; number of observations k) between the original and the

recovered blocks.

3.5.1 Recovery using real world TS
MSE relative reduction

In this experiment we compute the MSE relative reduction between a base time series B and two
reference time series. In Figure 3.3 we choose one highly and one lowly correlated reference time
series with the respective correlation values p(B, R;) = 0.83 and p(B, R2) = 0.18. The result of
this experiment shows that the iterated truncated CD produces a correlation weighted recovery
that reduces the relative MSE more to the highly correlated time series than the lowly correlated
time series. The iterated truncated SVD performs an unweighted recovery that produces an

almost equal reduction of the relative MSE to both reference time series.

I'The data was kindly provided by HydroloGIS (http://www.hydrologis.edu).
The data was kindly provided by Siidtiroler Beratungsring (http://www.beratungsring.org).
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(a) Iterated truncated CD. (b) Iterated truncated SVD.

Figure 3.3: MSE relative reduction of CD and SVD using highly and lowly correlated time series:

case 1.

In Figure 3.4 we consider one highly and one lowly correlated reference time series with a cor-
relation value p(B, R;) = 0.76. We add also a lowly correlated time series with a correlation
value p(B, Ry) = 0.62 that is higher than the one used in the experiment of Figure 3.3. As
expected, the MSE relative reduction of the iterated truncated CD is slightly higher to R; than to
R5. The MSE relative reduction of the iterated truncated SVD remains similar to both reference

time series.
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(a) Iterated truncated CD. (b) Iterated truncated SVD.

Figure 3.4: MSE relative reduction of CD and SVD using highly and lowly correlated time series:

case 2.
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Recovery accuracy

In this section we compare the recovery accuracy of the iterated truncated SVD against the iter-

ated truncated CD using highly and lowly correlated time series.

In the experiment of Figure 3.5, we use three temperature time series from HYD measured re-
spectively in Aria Borgo (), Ponte Adige (R;) and Aria La Villa (R;) in the region of South
Tyrol, Italy. B is highly correlated to Ry with p(B, R;) = 0.75. B is lowly correlated to R,
with p(B, Ry) = 0.32. However, the peaks of B and R, exhibit shape similarity, i.e., the peaks
contain similar spikes. The time shift is caused by the Foehn phenomenon (cf. Section 3.1). We
drop from the base time series, B, a block for ts € [45,95] and recover it using two reference
time series, 71 and R». The result of this experiment shows that the iterated truncated CD gives
a weight to the reference time series proportional to their correlation with B, yielding a good
block recovery accuracy, i.e., the amplitude and the shape of the missing block are accurately
recovered. On the contrary, the iterated truncated SVD performs a block recovery that gives the

same weight to both time series 1}y and 7, at a time yielding a bad block recovery accuracy.

Figure 3.6 shows the MSE for removed blocks of values of increasing length from a base time
series: starting from the middle of a block we increase the length of the removed block in both
directions and we compute the MSE for each block. We run the experiment on five different base
time series from HYD and we take the average of the MSE. For each run we use, in addition to
the base time series, one highly correlated and one lowly correlated time series. As expected, the
iterative truncated CD learns from the highly and lowly correlated time series at a time and thus,
produces a small recovery error that slightly increases with the length of the missing block to
recover. However, the recovery accuracy of the iterated truncated SVD considerably deteriorates

with the length of the missing block to recover.

Impact of the time shift

In Figure 3.7 we evaluate the impact of a varying time shift, denoted as s, on the recovery
accuracy of the iterated truncated CD and the iterated truncated SVD. We show that for a high
value of time shift, the two techniques produce similar block recoveries. In Figure 3.7(a) we
take three time series from SBR measured respectively in Kaltern (53), Kollman (/?;) and Ritten
(R>) in the region of South Tyrol, Italy. The peaks of B and R, have a similar shape, but with

a time shift. We drop one peak from B, we shift backwards R, with a value s and we compute
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(c) Recovery of iterated truncated CD.

Figure 3.5: Recovery using highly and lowly correlated hydrological TS.

the MSE recovery accuracy. The result of the experiment shows that starting from s = 30, the

iterated truncated CD is not able anymore to exploit the lowly correlated time series and produces

a block recovery similar to the one produced by the iterated truncated SVD.

3.5.2 Recovery using synthetic TS

For the following experiments, we consider a time series sin(t) that has a small valley at each of

the peaks, denoted as B, from which we drop a block of values for ¢ € [70, 110] that we recover

using both techniques.

Recovery accuracy

In Figure 3.8 we add to B one highly correlated time series —0.5 * sin(t) denoted as R; such

that p(B, R;) = 0.84. We add also a lowly correlated time series by shifting B and we denote
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Figure 3.7: Impact of varying time shift

it as Ry such that p(B, Ry) = 0.16. As expected, by giving a higher weight to R,, the iterated
truncated CD is able to perform a good recovery of the shape and the amplitude of the missing
block. The iterated truncated SVD fails to recover the shape and the amplitude of the missing
block.

Impact of Number of Input Time Series

In Figure 3.9 we evaluate the robustness of the recovery produced by both techniques using a
varying number of highly and lowly correlated time series. In Figure 3.9(a) we take B from the
experiment of Figure 3.8 and one highly correlated time series with p = 0.9 to which we add
a varying number of lowly correlated time series, by shifting sin(t), such that p € [0.2,0.6].
The latter time series are added in the decreasing order of their correlation. This experiment
shows that for p; < 4, the iterated truncated CD is able to use the most correlated time series
yielding a smaller MSE than the iterated truncated SVD. For p; > 4, the MSE of both techniques
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Figure 3.8: Recovery using highly and lowly correlated synthetic TS.

converges towards the same value. In the experiment of Figure 3.9(b) we take sin(t) and one
lowly correlated time series with p = 0.2 to which we add a varying number of highly correlated
time series such that p € [0.7,0.9]. The latter time series are added in the increasing order of
their correlation. In the presence of one lowly correlated time series, the iterated truncated SVD
requires at least three additional highly correlated time series in order to reach the same MSE as

one of the iterated truncated CD.

The experiment of Figure 3.9 shows that, for a close number of highly and lowly correlated
time series, the correlation weighted recovery helps the iterated truncated CD to produce a better
recovery than the one produced by the iterated truncated SVD. Otherwise, the two techniques
produce similar recovery of missing values. However, the iterated truncated CD technique is
computationally more efficient than the iterated truncated SVD, i.e., CD is linear with the number

of input time series while SVD is cubic with the number of input time series.
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Figure 3.9: Recovery accuracy using varying number of input TS.

3.5.3 Comparison to SGD based recovery

In the experiment of Figure 3.10 we compare the accuracy recovery of the iterated truncated CD

against GROUSE [KBV09] for the recovery of 20 missing values using an increasing number

of time series where each contains 200 values. We omit the iterated truncated SVD from this

experiment because of the high computational time. The result of this experiment shows that

the iterated truncated CD produces a more accurate block recovery for low number of input time

series. However, the recovery accuracy produced by GROUSE outperforms the one produced by

the iterated truncated CD as the number of time series approaches the number of observations

(cf. Section 3.2). In real world applications such as hydrology, the length of time series is much

bigger than their number and thus, CD based recovery outperforms GROUSE recovery.
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Figure 3.10: Recovery accuracy of CD against GROUSE.
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3.5.4 Approximation accuracy

Figure 3.11 compares the approximation accuracy of the iterated truncated CD and the iterated
truncated SVD to the input matrix. We use the Frobenius norm between the input matrix and the
one obtained after the decomposition as an approximation error (cf. Section 3.4.1). The input
matrix contains 10 columns where each one is a time series from HYD. This experiment shows
that by updating all values of the input matrix at a time (and not only the missing ones), the two
techniques perform similar approximation accuracy. The same result holds for different values

of the truncation parameter k.
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Figure 3.11: Approximation error.

3.5.5 Number of iterations of CD

In the experiment of Figure 3.12 we consider three temperature time series from HYD: a base
time series, one highly correlated reference time series and one lowly correlated time series. We
compute the number of iterations p required by the CD technique with an increasing number of

rows n. The result of this experiment shows that p ranges between 7 and 3.

3.6 Conclusion

In this chapter, we compare the CD and SVD techniques for the recovery of missing values using
time series with mixed correlation values. We empirically show that CD produces a weighted rel-
ative reduction of MSE that is proportional to the correlation of the input time series, while SVD

produces an unweighted relative reduction of MSE. Our experiments on real world hydrological
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Figure 3.12: number of iterations performed by CD.

and synthetic time series also show that the iterated truncated CD performs a better recovery in
case of similar number of highly and lowly correlated time series.

In future work, it would be of interest to compare the segmentation techniques that are applied
in cases where the correlation ranking varies along the time series history. Another promising
direction is to refine the definition of highly and lowly correlated time series.
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CHAPTER 4

Memory-efficient Centroid Decomposition

Abstract

Real world applications that deal with time series data often rely on matrix decomposition tech-
niques, such as the Singular Value Decomposition (SVD). The Centroid Decomposition (CD)
approximates the Singular Value Decomposition, but does not scale to long time series because

of the quadratic space complexity of the sign vector computation.

In this paper, we propose a greedy algorithm, termed Scalable Sign Vector (SSV), to efficiently
determine sign vectors for CD applications with long time series, i.e., where the number of rows
(observations) is much larger than the number of columns (time series). The SSV algorithm
starts with a sign vector consisting of only 1s and iteratively changes the sign of the element that
maximizes the benefit. The space complexity of the SSV algorithm is linear in the length of the
time series. We provide proofs for the scalability, the termination and the correctness of the SSV
algorithm. Experiments with real world hydrological time series and data sets from the UCR

repository validate the analytical results and show the scalability of SSV.
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4.1 Introduction

The Centroid Decomposition (CD) has been introduced as an approximation of the Singular
Value Decomposition (SVD). It decomposes an input matrix, X, into the product of two matrices,
X = L - R”, where L is the loading matrix and R is the relevance matrix (R” denotes the

transpose of R). Each loading and relevance vector is determined based on a maximal centroid

value, max | X”-Z||, which is equal to the norm of the product between the transpose of the
input matrix and the sign vector Z consisting of 1s and -1s. Finding the maximizing sign vector
Z that maximizes the centroid value is therefore at the core of the CD method. The classical
approach [KT98] enumerates all possible sign vectors and chooses the one that maximizes the
centroid value. This approach has linear space complexity since no data structures other than
the input matrix are needed. However, its runtime is exponential. A more efficient solution to
determine the maximizing sign vector has been introduced by Chu and Funderlic [CFO1] and
has quadratic runtime. The drawback of this solution is a quadratic space complexity since a

correlation/covariance matrix is needed in addition to the input matrix.

In this work, we address the scalability of the Centroid Decomposition technique for an n x m
matrix, X, that represents m time series with n observations each, where n is much larger than m
(i.e., n > m). We propose a greedy algorithm, termed Scalable Sign Vector (SSV), to compute
the maximizing sign vector. The basic idea is as follows: instead of searching for the maximiz-
ing sign vector using all elements of X, we search for it by rows of X. First, a sign vector Z is
initialized to contain only 1s as elements. Then, the algorithm iteratively updates the sign of the
element in Z that increases || X”-Z|| most. The relevant element can be determined efficiently
by checking all elements of a weight vector V', which is derived from X. Instead of enumerat-
ing all possible sign vectors, our strategy generates only the vectors that most increase Z7 - V.
At the end of this iterative process, the sign vector Z that yields the maximal centroid value is
found. The SSV algorithm has quadratic time (worst case) and linear space complexity. Com-
pared to the classical approach, SSV reduces the runtime of the CD method from exponential
to quadratic while keeping the same linear space complexity. Compared to the most efficient
algorithm [CFO1], SSV keeps the same quadratic runtime complexity, but reduces the space

complexity from quadratic to linear.

Matrix decomposition techniques are widely used for time series data in a variety of real world
applications, such as data prediction, recommender systems, image compression, recovery of

missing values, stocks, etc. In most of these applications, only very few and short time series can
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be considered for the analysis due to the computational complexity of current solutions for matrix
decomposition. As a consequence, not all relevant information of the original set of time series is
considered for the decomposition. This is an unfortunate limitation since it can be imperative to
use long time series to improve data analysis [LMP10]. For instance, in the recovery of missing
values the most correlated time series are used to capture similar trends, and the use of longer
time series improves the accuracy of the recovered values (as we will show in Section 4.6). Thus,

scalable solutions that avoid an a priori segmentation of long time series are needed.

At the technical level, we provide an analysis and proofs of the correctness, the termination
and the scalability of the SSV algorithm. The analytical results are confirmed by an in-depth

empirical evaluation. In summary, the main contributions of this paper are the following:

e We propose a sign vector computation algorithm, called Scalable Sign Vector (SSV), that
reduces the space complexity of the Centroid Decomposition technique from quadratic to

linear, while keeping the same runtime complexity as the state-of-the-art solution.

e We prove that the space complexity of the SSV algorithm increases linearly with the length

of the time series.

e We prove that the computation performed by the SSV algorithm is strictly monotonic. We

use the monotonicity property to prove the correctness of the proposed solution.
e We prove that the SSV algorithm terminates and performs at most n iterations.

e We present the results of an experimental evaluation of the efficiency and scalability of the

SSV algorithm on real world hydrological data and on datasets from the UCR repository.

The remainder of the paper is organized as follows. Section 4.2 reviews related work. Prelim-
inary concepts and definitions are provided in Section 4.3. In Section 4.4, we present the SSV
algorithm. Section 4.5 describes the main properties of the SSV algorithm. Section 4.6 reports

the results of our experiments. Section 4.7 concludes the paper and discusses future work.

4.2 Related Work

The Centroid Decomposition (CD) has been introduced as an approximation of the Singular
Value Decomposition [CFO1]. It computes the centroid values, the loading vectors and the rel-

evance vectors to approximate, respectively, the eigen values, the right singular vectors and the
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left singular vectors of SVD. Chu et al. [CFO1, CFG95] prove that the CD approximation of SVD
is the one that best minimizes the variance between corresponding elements. Thus, the variance

between the centroid values computed by CD and the eigen values computed by SVD is minimal.

The most challenging part of the CD of a matrix X is the computation of the sign vector Z,
consisting of 1s and -1s, that maximizes ||[X”-Z||, where X7 is the transpose of X and |||
denotes the norm of a vector. The classical approach is based on the centroid method [DMO1].
The centroid method uses a brute force search through an exponential number of sign vectors.
Thus, the algorithm has exponential time and linear space complexity. This method has been
used in various fields such as dimensionality reduction [PJR0O3], peak shift detection [RPBA09],

etc.

The most efficient algorithm to find the maximizing sign vector was introduced by Chu and Fun-
derlic [CFO1], which we refer to as Quadratic Sign Vector (QSV). It transforms the maximization
problem from max || X7 Z|| to max (Z7-(X-X7).Z) and achieves a quadratic runtime complex-
ity. The space complexity is quadratic as well due to the construction of X-X”. Figure 4.1
illustrates the main data structures of the algorithm for an n x 3 input matrix X. Step 1 applies
the transformation of the maximization problem, and Step 2 determines the maximizing sign
vector. The set of all possible sign vectors can be considered as an n-dimensional hypercube,
where each node represents a sign vector and is connected with all nodes representing a sign
vector that differs in exactly one element. The QSV algorithm performs a traversal along the
nodes of the hypercube, starting from the node that represents the sign vector Z = [-1,...,-1]T

until finding the node (and corresponding sign vector) that maximizes Z7-(X-X7)-Z.

3 3 n 1
Stepl ) ﬁ: Step?
3 xXT
n n n n_
X XT A
X — X-X . L
Input Transformed maximization problem QSV output

Figure 4.1: Illustration of the main data structures used by the QSV algorithm.

The Singular Value Decomposition (SVD) [GVL96, Mey00, SkiO7] is a widely used ma-

trix decomposition technique. SVD performs the decomposition by finding the eigen values
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with their corresponding left and right singular vectors. SVD has been used for dimensional-
ity reduction [KAES99, HKP11], image compression [YJL04, WR97], missing values recov-
ery [KB12, Bra03], etc. As most matrix decomposition techniques, SVD constructs a correla-
tion/covariance matrix to find the eigen values and their corresponding singular vectors. Several
algorithms have been proposed to make SVD for an n X m matrix faster for special cases of n
and m. For instance, for m > %n, the runtime of SVD is reduced from 4n’m + 8nm? + 9m3
to 2n%m + 2m3 [TB97]. Less attention has been given to reduce the space complexity while

keeping the same runtime complexity, which is the goal of this paper.

Rendle [Ren10, Ren13] introduces Factorization Machines (FM) that perform a decomposition of
large input matrices. Factorization Machines perform learning and prediction with input matrices
of millions of values. For specific input matrices, the result obtained by the application of FM
contains the decomposition matrices produced by SVD. The approach assumes the existence of
repeating patterns in the input matrix. Each repeating pattern is represented by a block of data,

and the decomposition is computed using these blocks of data.

Papalexakis et al. [PFS12] present a scalable solution to compute tensor (3d matrix in this work)
decompositions [KB09]. More specifically, a parallel approach to compute the PARAFAC de-
composition is proposed, which is a multidimensional generalization of SVD. The proposed
solution works in three steps: create random samples of the input tensor, apply a parallel decom-
position on each of them, and merge the result of each decomposition. This gives an approxi-
mation of the decomposition of the entire input tensor. The method scales linearly to millions of
values. However, it is applicable only to sparse tensors, where more than 90% of the elements of
the input tensor are equal to zero. Only the non-zero elements are used in the decomposition. In

contrast, our solution performs the matrix decomposition for any type of input matrices.

Gemulla et al. [GNHS11] propose a large-scale matrix decomposition technique that, similar
to CD, decomposes an input matrix into the product of two matrices. The proposed technique
implements a scalable distributed Stochastic Gradient Descent (SGD) method [ZWSL10]. The
latter computes a loss function that minimizes an error value between the input matrix and the
product of the two matrices. The method works as follows. First, the input matrix is partitioned
into blocks that are distributed across a MapReduce cluster. Then, the loss function is computed
as the sum of local loss functions, each of which is computed in parallel over a single data block.
This technique exploits the fact that the computation of local loss functions can be swapped
without changing the final result of the decomposition. This is possible since each local loss

function is computed over a different row and/or column of the input matrix. This technique
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scales to large input matrices consisting of millions of rows and columns. The technique we
propose in this paper cannot be distributed since it computes a sequence of vectors, where each

vector relies on the previous one.

Li et al. [LTS13] follow the same idea to distribute the computation of a matrix decomposition
across a MapReduce cluster. They propose a parallelizable computation of the SGD method
using Resilient Distributed Datasets (RDDs) [XRZ " 13], but investigate the case when the indi-
vidual blocks do not fit into the main memory of a node. The proposed solution is based on a
hash table that stores partitions of data blocks in memory. It scales to large data sets containing
millions of values. The work uses the fact that the decomposition can be performed in parallel
over separate rows and/or columns of data. Our solution cannot be computed over separate rows
and/or columns of the input matrix since the sequence of computed vectors requires the use of

the entire matrix.

The methods described in Gemulla et al. [GNHS11] and Li et al. [LTS13] implement a scalable
SGD method. They do not assume any constraints about the input matrix, but compute a decom-
position that is different from the one produced by SVD. The SGD method minimizes a given
error value, which is different from CD. This approach makes SGD suitable for applications

where an error value needs to be minimized, such as in recommender systems [KBV09] used in
Netflix [AT05, MMO09, BL0O7] or MovieLens [MAL*03].

The solution proposed in this paper describes a scalable implementation of the CD matrix de-
composition technique that approximates SVD. Our solution uses the entire input matrix for the
computation and can therefore not be computed over separate blocks of rows and/or columns
in parallel. Instead of distributing the decomposition across clusters, we propose to reduce the

space complexity of the decomposition method.

4.3 Preliminaries

4.3.1 Notations

Bold upper-case letters refer to matrices, regular font upper-case letters to vectors (rows and
columns of matrices) and lower-case letters to elements of vectors/matrices. For example, X is a
matrix, X, is the i-th row of X, X,; is the i-th column of X, (X;,)7 is the transpose of X, and

x;; 18 the j-th element of X,.
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Annxm matrix X = [X,q]...|X,,] contains as columns m time series X, ; and as rows n values
for each time series (cf. Section 3.3). Our database contains up to 200 real world hydrological
time series with each of them containing up to 120k values. Thus, we consider matrices where

the length of time series n is much larger than the number of time series m, i.e., n > m.

A signvector Z € {1,-1}"isasequence [21, ..., z,] of nelements, i.e., |z;| = 1fori =1,... n.

4.3.2 Centroid Decomposition

The Centroid Decomposition (CD) is a decomposition technique that decomposes an n X m
matrix, X = [X,1|...|X.n), into an n x m loading matrix, L = [L.1|...|L.ny], and an m x m

relevance matrix, R = [R.q| ... |R.nl, 1.,

X =LR"=) L(R.)"
=1

where R” denotes the transpose of R.

Algorithm 4: CD(X, n, m)
Input: n X m matrix X
Output: L, R

ot

L=R=1[;

2 fori=1tomdo
3 Z = FindSignVector(X,n,m);
4 C.=X".7,

5 R, = HS—H

6 R = Append(R, R.;);

7 L., =X"-Rg;

8 L = Append(L, L.;);

9 X :=X- L, -RL;

%19

10 return L, R

Algorithm 4 computes the CD of an input matrix X into matrices L and R. At each iteration 7,
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function FindSignVector() determines the sign vector Z that yields the maximal centroid value
|XT.Z]| (where ||XT-Z]| is equal to the square root of the squared elements of X”-Z). We call
7 the maximizing sign vector. Next, the centroid vector, C,;, and the centroid value, ||C.;||, are
computed. Finally, the vectors L,; and R,; are computed and added as columns to, respectively,
L and R. In order to eliminate duplicate vectors, the next loading vectors, L.;.1, and relevance
vectors, R,;.1, are computed from X — L,; - R*Ti. The algorithm terminates when m centroid

values and m loading and relevance vectors are found.

Example 11. Consider a matrix X and two sign vectors:

2 -2 1 -1
s |2 0 4
X: O 3 X = Z1: —1 Z2: 1

2 3 2
-4 2 1 1

The centroid values for the two sign vectors are computed as || X7-Z; || = \/(-2)2 + (-3)2 = V13
and || X7 Z,|| = \/(-6)? + 72 = /85. Since || X Z,|| > ||XT-Z1]|, Z5 is the maximizing sign

vector (among the two sign vectors).

4.3.3 Application of CD

The following example illustrates how to interpret the Centroid Decomposition of a matrix of m
time series. Let F' = {f1,..., fin} be the set of m factors that (most) influence the values in the

time series.

Example 12. Consider a 2 x 3 matrix X = {Xj, Xy} that consists of two time series X; =
{2,0,-4} and X, = {-2,3,2}. X is the temperature in Zurich, and X, is the temperature in
Basel. The CD method decomposes X by finding the loading and the relevance vectors with

respect to each time series as shown in Figure 4.2.

If ' = {nbrSunnyHours,amntRain} and if each temperature time series is mainly influenced
by the two factors of [, the Centroid Decomposition shows how to obtain the temperature values
in a specific city using these two factors. For instance, the first value of the temperature in Zurich
shown in gray color (i.e., 2) is obtained using a loading value of -2.820 for nbrSunnyH ours
with a relevance value of -0.651 to which we add a loading value of 0.217 for amnt Rain with a

relevance value of 0.759.

The result of the decomposition in Example 12 can be used to recover missing values. Let’s
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Figure 4.2: Example of Centroid Decomposition.

assume the second value of the temperature in Basel is missing. The first step of the recovery
process is to initialize the missing value using a classical imputation technique, e.g., linear inter-
polation. Then, we apply the Centroid Decomposition to learn the loading and relevance values
of the two factors to refine the initialized value. The refined values better approximate the miss-

ing value. We show the result of the recovery based on Centroid Decomposition in Section 4.6.2.

4.4 Scalable Sign Vector

This section presents a scalable sign vector (SSV) computation technique, which has the same
quadratic runtime complexity as the QSV algorithm [CFO1], but requires only linear space. The
core of the solution is the transformation of the maximization of the centroid values || X”-Z|| into

a new and equivalent maximization problem that can be computed efficiently.

4.4.1 Overview and Data Structures

Figure 4.3 illustrates the SSV computation method. We transform the maximization of the cen-
troid values to a new maximization problem that is based on a sign vector Z and a weight vector
V that is derived from X. More specifically, a sequence of vector pairs V *) and Z®) is iteratively
computed, beginning with Z() = [1,...,1]”. In each iteration, the sign vector is changed at the
position that maximizes the product of the two vectors. The last sign vector Z*) (1 < k < n) is

the maximizing sign vector.

Figure 4.4 illustrates the Centroid Decomposition of an input matrix X using SSV. In the first
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Figure 4.3: Illustration of SSV.

iteration of Algorithm 4, we use X and SSV to derive the first maximizing sign vector. We then
compute vector L,; and R, according to Algorithm 4. In the second iteration, we update matrix
X to X' = X — L,, - RY, and repeat the process, i.e., derive the second maximizing sign vector
7' and compute vectors Lo and R,s.

-2 -1 -2.820
-0.651
0O 3| —=>| 1|—1] 2278
0.759
4 2 1 4122 | L7
— — — R
X Z L

(a) Iteration 1

0.164 0.141 1 0.217
0.759
— 1482 1.270 | — 1| — 1.952
0.651
-1.317 -1.129 -1 -1.735
N ~~ N e R
X/ zZ' L*2

(b) Tteration 2

Figure 4.4: Illustration of Centroid Decomposition using SSV.

4.4.2 Transformation of the Maximization Problem

In this section, we present a transformation of the maximization of || X”-Z|| into a new and equiv-
alent maximization problem and we show that the new maximization problem can be efficiently

computed with linear space complexity.

The following auxiliary function is used: diag °(X) sets the diagonal values of an n x n matrix
X to 0.

The following lemma introduces a maximization equivalence, which states that maximizing

|XT-Z|| over all possible sign vectors Z is equivalent to maximizing the product of Z7 and
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the vector V = diag °(X-X") - Z. This maximization equivalence will be used to define the new

maximization problem.

Lemma 5 (Maximization Equivalence). Let matrix X = [X,q|...|X.n| be an n X m matrix and
V be the vector V = diag °(X-X")-Z. The following equivalence holds:

arg max | X”-Z|| = arg max Z7-V.
Ze{l,-1}n Ze{l,-1}n

Proof. We expand both sides of the equivalence and show that the expanded expressions are

equivalent.

The transformation of the expression on the left-hand side yields

arg max | X*-Z|| =

Ze{-1,1}n
= arg max | X" Z|?
Zef{-1,1}n
= arg max ( g T X2 E Tim X 2;)
ze{-1,1}~ =T

= arg max Zmﬂ s (Z Tim)?),
i—1

zZe{-1,1} T

where 7,; = x;; x z; for j = 1,..., m. Notice that the first step takes the square of the norm,
which has no impact on the vector Z that maximizes the norm. Next, we use the square of sum

rule

n n J—1

(;xl Zx +2><ZZ:E,><$J

7j=2 i=1
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and transform the above expression into

arg max || X Z|
Ze{-1,1}"
n j—1

= arg max szl + 2% szuxxﬂ +

Ze{-113" 5 j=2 i=1

n j—1

szm+2 X ZZ%mX%m

71=2 i=1

Since T;; = x5 x z with z; € {—1,1}, we have &}, = x7,. That is, the terms ) | 7,
for 7 = 1,...,m in the above expression are constant and independent of the sign vector Z.

Therefore, they can be removed from the maximization problem, which yields

arg max | X7-Z|| =

Ze{-1,1}n
n j—1 n j—1
= arg max ( Z T XTj + -+ TimXTjm))
Ze{-L1}n =2 i=1 j=2 i=1 .
~-
pIy 12 221 1Izk><$]k
m n Jj—1
= arg max ZXZZZ Tifg X Tj). “4.1)
Ze{-11}" k=1 j=2 i=1

Next, we transform the expression on the right-hand side. From the definition of V' we get

arg max Z'-V = arg max (Z7-diag *(X-X")-Z).

Ze{-1,1}" Ze{-1,1}n

The matrix representation of diag *(X-XT) using the rows of X is given as

0 Xy (X2)" - Xy (Xa)"

diag:()(X'XT) — X2*-(X1*)T 0 Ce XQ*'(Xn*)T

Xn*'(Xl*)T Xn*(X2*)T e O
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We use this representation and transform the argument of the arg max function as follows:

Z" diag *(X-X").Z =

[ 0 Xl*'(XQ*)T e Xl*'<Xn*>T-
— ZT. XQ*'(Xl*)T 0 e XZ*(Xn*>T A
Xn*'(Xl*)T Xn*(XQ*)T Tt 0

-O ‘I’ ZQX(Xl*'(XQ*)T) + - + ZnX(Xl*(Xn*)T>

— 7T, le(X2*'(X1*)T) +04+---+ ZnX<X2*'(Xn*)T>

_ZlX(Xn*'(X1*>T) + ZgX(Xn*-(XQ*)T) 4. a0

= 2 x(0 + ZQX(XI*'(X2*>T) +oeeet ZnX(Xl*'(Xn*)T)) +
29X (21X (Xgur (X1)T) + 04 - + 20X (Xour (X)) +

20X (21X (Xpe (X 10)T) + 22X (Xar (X)) + -+ +0).

The vector products in the above expression are replaced by a sum, ie., X - (X;.)7 =

> e, Tik XXy, Which gives

71 diag °(X-X1).Z =

m m
= 21 %X (0 4 23X E T XTop + -+ + 2, X E T X Tpk) +
k=1 k=1

m m
ZQX(ZlX E TopXT1e + 04 -4 2, X E ZL’QkXxnk)—f—
k=1 k=1

m m
ZnX(le E Tk XT1k + 22X E fL’nkX(L'Qk—I——f-O)
k=1 k=1
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Finally, we push the elements of the sign vector into the sum and replace z; X x;; by Z;;, which

gives
7" diag *(X-XT).Z =
=0+ Zflka% +---+ Zflkank +
k=1 k=1
D G X+ 04+ Y Eop X T +
k=1 k=1
D EaxFup+ Y Fpp Xk o +0
k=1 k=1
m n j—1
TP PN
k=1 j=2 i=1
We insert this expression in the arg max function, which gives Equation (4.1). ]

Lemma 5 forms the basis for a new and equivalent maximization problem. Instead of maxi-
mizing || X7-Z||, the product Z7-V is maximized over all sign vectors Z € {1,-1}". Since the
computation of V' = diag "(X-X")-Z has quadratic space complexity (due to the construction
of the matrix X-X*'), we proceed by showing how to avoid this product and how to compute V

directly from X.

Lemma 6. Let X = [X,q]...|Xun] be an n x m matrix and v; be the i-th element of the vector
V = diag °(X-XT)-Z. Then, the following holds:

V; = 2; X (Zi X XZ*ZTX — Xz*(Xz )T)
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Proof. We use the matrix representation of diag °(X-X) to compute V" as follows:

diag *(X-X").Z =

— X2*'<X1*>T 0

-Xl*'(O + ZQX(XZ*)T + e

_ XQ*'(21X(X1*)T+O+"'

0 Xl*-(XQ*)T

Xn*'<X1*>T Xn*(X2*)T e

Xl*' (Xn*)T

+ 2n X (Xn*)T)

+ Zp X (Xn*>T)

Xn*'(zl X<X1*>T + Z2X(X2*)T + -

+0)

21 % (21 X X 30000 (25 % (X)) = X (X1)T)

_ |z x (2 x Xz*'Z}Ll(zj x (X )T) - X2*'(X2*)T>

| 20 X (20 X X 30011 (27 X (X)) — X (X))

Since we have that Z7-X = 37", (2 x (X.)7), it follows that v; = 2; x (z; X X;-Z7-X —
X (X3)T). ]

Based on Lemma 6 we show that the space complexity of computing vector V' (i.e.,
diag *(X-XT).Z) is linear in the number of rows of X.

Lemma 7 (Linear Space). For an n x m matrix X, the computation of V = diag °(X-X")-Z
has O(n) space complexity.

Proof. The result of Z?Zl(zj X (Xj«)T) is computed by keeping in memory a single row X,
and one element of Z at a time, which requires O(m) space. This sum is computed only once.
To compute the individual elements v; = z; X (Xi*-ZT-X — X (X )T) of the result vector
of diag ®(X-X")-Z, X is read again, one row at a time. The result vector has length n. Since
n > m, the space complexity of diag *(X-XT)-Z is O(n). O
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4.4.3 Computation of Maximizing Sign Vectors

We present now an algorithm with linear space complexity to compute the maximizing sign
vector Z according to the maximization problem introduced in Lemma 5. The basic idea is
as follows. We begin with the sign vector Z = [1,..., 1] and iteratively change the sign of
one element in Z that increases Z7-V most. The algorithm terminates when Z7-V cannot be

increased further with this strategy.

Algorithm 5: SSV(X, n, m)
Input: n X m matrix X

Output: maximizing sign vector Z1 = [z;,. .., 2,]

1 pos = 0;

2 repeat

// Change sign

3 | ifpos=0then ZT =[1,... 1];

4 else change the sign of z,,,;

// Determine S and V

s | S =200k x (Xa)T);

o | V=1

7 fori: =1tondo

8 Lvi:zix(zixXi*-S—Xi*-(Xi)T);

Insert v; in V;

// Search next element

10 val = 0, pos = 0;

11 for: =1tondo

12 if (z; x v; < 0) then
13 if |v;| > val then
14 val = v;;

15 L pos = i;

16 until pos = 0;

17 return Z;

Algorithm 5 implements this strategy and computes the maximizing sign vector. Note that V' is
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computed directly from X by reading the matrix row by row, one row at a time: first to compute
the intermediate vector S and then to compute the individual elements of V. We search for the
index (pos) of the element v; € V' with the largest absolute value such that v; and z; € Z have
different signs, i.e., z; X v; < 0. If such an element is found, the sign of z; is changed. A new
vector V' is computed, which is different from the vector in the previous iteration due to the sign
change. The iteration terminates when the signs of all corresponding elements in V' and Z are

the same. The vector Z in the final iteration is the maximizing sign vector that maximizes Z7-V .

Example 13. To illustrate the computation of the sign vector using Algorithm 5, consider the

input matrix of our running example, i.e.,

vy = :2 -2] X ['32] _ [2 -2] x [_22] — 18
v =0 3] x [32] KR [2] ~0
w7 - [ g 5] -

i.e.,

Two elements of Z(") have a different sign from the corresponding elements in V(). Thus, the
algorithm iterates through the elements in V(1) to search for the index of the element v; € V(1)
with the largest absolute value, such that z; € Z (1) and v; have different signs. This search returns

pos = 1. In the second iteration, we change the sign of the element at position 1 in Z(!) and we
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use the new sign vector Z® to compute V(2| similar to iteration 1, and get

-1 -18
7@ = 11| and V® = |12
1 18

Since all corresponding elements in Z() and V(%) have the same sign, the algorithm terminates

and Z® is returned as the maximizing sign vector that maximizes Z7-V.

4.5 Properties of the Algorithm

This section works out the main properties of the SSV algorithm. More specifically, we prove

monotonicity, termination and correctness of our algorithm.

4.5.1 Monotonicity

Let Z®) and V(*) refer, respectively, to vectors V and Z in the k-th iteration of the SSV algo-
(k) (k)

the computation of the maximizing sign vector in the SSV algorithm is strictly monotonic, i.e.,

rithm. v,"’ and z,"’ denote, respectively, the i-th element of V(¥ and Z*). Lemma 8 shows that

each iteration increases the value of Z7 - V.

Lemma 8 (Monotonicity). For any two consecutive iterations k and k+1 in the SSV algorithm
the following holds:

(Z(k—i—l))T L) S (Z(’“))T LR

Proof. First, (Z*+NT.\/(k+1) . (ZK+HINT.1/ (k) j5 proven. Let i be the index of the largest

|vi(k)| such that vi(k) X zl-(k) < 0. Thus, we change the sign of zlgk) k) =

diag *(X-XT)-Z*+1) For the computation of v*"", we multiply =

i

and compute V'

(1) with the 4-th diago-

LW (k)

nal element of X-X7”. Since all diagonal elements are equal to 0 we get v;~ = v; . Next,

assume a unit vector U; with the same length as Z(*) where the i-th element is 1 and all other
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elements are 0. Using U; we compute Z*+1) as follows:

k1) — 7(k) _ 9 « U,
diag *(X-XT). 2" = diag *(X-XT)-(Zz®) — 2 x U;)
diag *(X-XT). 2 = diag *(X-XT).Zz® —
2 x diag *(X-XT)-U;

We substitute V*#+1) = diag™®(X-XT).Z*+1 and get:

VED — &) _ 9 diag *(X-XT)-U;

(Z(k+1))T.V(k+1) _ (Z(’““))T-V(’“)—
i “4.2)
9 « (Z(k+1))T'diag*O(X,XT)Ui

Let Y = (Z0+)T. digg®(X-XT). Since we changed the sign of 2" we have 2" < 0 and
get y; < 0. Since u; is the only element in U; that is equal to 1 we know that in Y"-U; only y; is

multiplied by 1, whereas all other elements of Y are multiplied by 0. We use Y-U; < 0 to get
2 x (Z*+NT. digg *(X-XT)-U; < 0. From (4.2), we get

(Z(k+1))T'V(k+1) > (Z k-l—l)) V(k (43)

Second, we show (Z*+T. (k) ~ (Z*)T'. /() By changing the sign of the element in Z*)

9 50

that corresponds to the largest |v§k)| such that vf < 0, we get:

S EFY <oy > 3T E <o)

1=1 )
(Z(k+1))T.V(k) > (Z(k))T.V(k) 4.4)

By transitivity using (4.3) and (4.4), the following holds:

(ZEFD)T Y ktD) 5 (ZENT k),
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4.5.2 Termination

Lemma 9 (Termination). Let X be an n X m matrix. SSV(X, n, m) terminates and performs at

most n iterations.

Proof. We show that each element in the sign vector, z; € Z, is changed at most once. Since Z

contains n elements, the algorithm performs at most n iterations.

To prove that each element in the sign vector is changed at most once, we show that any value
v; € V that increases Z7 - V most in one of the iterations does not change its sign in subsequent
iterations, i.e., v; < (. This prevents v; to be considered as candidate element in future iterations,
since the corresponding sign z; is changed from 1 to —1 and has the same sign as v;. From

Lemma 5 we have

U1 0 =12 ... Zin
v ...
vk | |t 0 Ton || (k)
Un _acnl Tn2 ... 0 |
diag °(X-XT)

We show two consecutive iterations, k + 1 and k£ + 2, and assume without loss of generality that

z1 and z,, are changed, respectively.

Let v%k) be the element that increases Z7 - V most at the k-th iteration and assume that z\") = 1
has not yet been changed. We have

vgk) = (zék) X x12)+ ...+ (zﬁf_)1 X Tip—1) + 1, < O. 4.5)

(k+1)

Next, consider iteration k£ + 1. Let v; < 0 with i # 1 be the element that increases Z7 - V

most (if no such element exists the algorithm terminates). Without loss of generality assume that

1 = n. Then, the sign of z, is changed from 1 to —1, i.e., szﬂ) = —1. Hence, in iteration k + 2
we get
U§k+2) = (Z§k+2) XT12) + ...+ (z,(fjlz) XT1n-1) — T1n- (4.6)

Now, we perform a case analysis on the element z1,, and prove that v§k+2) < 0 holds.



4.5 Properties of the Algorithm 83

(k) (k+2)

Case z1,, > 0 We have that ;7 = z; fort = 2,...,n — 1, thus the sum over the first

n — 1 elements in vik) (equation 4.5) and vikﬂ) (equation 4.6) is the same. Since x1, > 0 we

(k+2) (k)

can conclude that v, <wv’ <0.

Case x1, < 0 As in the previous case, let vik) and v£k+1) be the two elements that increase

Z" .V most at iteration k and k + 1, respectively. Since diag °(X-X”) is a symmetric matrix,
we have =, = x,,;. Again, we do a case analysis on z,, (for simplicity, we omit z elements in

the following equations):

o Case 1, < Tps + ...+ Tpy—1: By simple transformations and z1,, = x,,; we get

This leads to a contradiction with our assumption that o increases Z7 - V most in

iteration k£ + 1, hence vﬁfﬂ) < 0.

o Case r1, > XTpa + ...+ Tpp_1: Since v%k) increases Z' - V most at the k-th iteration, the

following holds:

ot < p®)
T+ ... T Tip—1 T Tin < Tin T Tp2 .- - + Tpp—1

Tio+ ...t Tin1 < Tpa+...+ZTn_1n

We substitute the right-hand side in the above equation by our assumption and get x5 +

e T T < T and further x12 + ... + Tin—1 — Tinp = U§k+2) < 0.

By using a similar reasoning, we can generalize the proof for iterations k£ and k£ + p with 1 <

p < n — k and elements v; and v;, i # j, that increase Z7 - V most, respectively. O]

4.5.3 Greedy Strategy

Lemma 10 (Local optimal choice). The SSV algorithm changes in each iteration the element of

the sign vector Z that most increases Z* V.

Proof. We perform a case analysis to prove that SSV makes the local optimal choice.
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(k)

Case 2\ x Uz(k) < 0 :The SSV algorithm changes in each iteration the sign of an element z;

i

that maximizes |z x v"|. Since diag™®(X-XT) is a symmetric matrix, we have

U1 0 T2 ... Tip-1 Tin
U2 T12 0 oo Top—1 Ton
V&) — _ 7(k)
Un—1 Tin—-1 Top—1 --- 0 Tn—1n
L Un ] L T1in Ton oo Tp—1n 0 ]

(. J/
-~

diag °(X-XT)

Without loss of generality assume that z%k) X UYC) <0, 25 x v < 0 such that |v§k)| > |U£Lk)|.
Let Z, and Z,, be the sign vectors resulting from changing the sign of z; and z, respectively.

Then, we have

)" vhe > (z)T vk =
(20T - (diag ((XXT) - Z0) > (Z,)7 - (diag *(X-XT) - 209) =
n—1 n—1
Zl'in > T1; (47)
i=2 =2

Let’s now suppose that we get a bigger benefit by changing the sign of z, instead of z;. Then,

we get

(Zl)T . ‘/1(k+1) <
<

n—1 n—1
E Tin < L1
=2 =2

Which contradicts (4.7). Therefore, we get a bigger benefit by choosing the element that maxi-

: (k) ®)) s
mizes |z, X v; |, i.e., z1.

Case 2\¥) x v,fk) > 0 : If instead we would change the sign of an element zz.(k) for which

i

28 o™ > 0 we get Z*HD = Z(®) £ 2 x U (cf. Lemma 8), which implies (Z*+D)7. (k1) <
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(ZWNT . V(%) Therefore, Z” - VV will not be increased. O

4.5.4 Correctness

In this section we prove that our greedy approach computes the optimal solution.

Lemma 11 (Global maximum). The SSV algorithm computes the maximizing sign vector for

which the final product Z*-V is globally maximal.

Proof. In order to prove the correctness of our greedy algorithm, we need to demonstrate that
our algorithm satisfies two properties that make any greedy approach optimal (see [CLRS09] for
further details).

1) Greedy Choice Property: This property states that an optimal solution exists that is consistent
with the first greedy choice. We demonstrate that there exists an optimal solution which includes
the first greedy choice.

Let Z = [z1,...,2,] be asign vector and P = {py,...,pxr}, k < n, be the ordered set of sign
change positions in Z as computed by the SSV algorithm. For instance, P = {2, 3,4, 1} indicates
that in the first iteration 2z, has been changed, in the second iteration z3, etc. We use Zp to refer to
the sign vector where the positions in P have been flipped. Furthermore, let P* = {p},...,p/}
be the ordered set of sign change positions in Z for the optimal solution. We can distinguish two

cases:

e p; € P*: The first greedy choice is included in the optimal solution, hence the greedy
choice property holds.

e p; & P*: The first greedy choice is not included in the optimal solution. Without loss of
generality we substitute the first element p; € P* by p; and get P’ = (P*—{pi})U{p1} =
{p1,p5,...,p}}. From the greedy strategy we know that z,, X v,, < 0 and that p; is the
position with the largest value, i.e., \vgf)\ > \vz(k)\ fori = 1,...,n. Therefore, by replacing
pt with p; in P’ the product Z7,-V will increase, which is a contradiction to the fact that

P~ are the positions of the optimal solution.

Thus, the first greedy choice is part of the optimal solution.
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2) Optimal Substructure Property: This property states that solutions to subproblems of an opti-
mal solution are also optimal. We demonstrate by contradiction that the optimal solution after a

greedy choice contains an optimal solution to the remaining subproblem.

Let P* = {pi,...,p;} be the ordered set of sign change positions in Z for the optimal solution
andlet P = P* — {pi} = {p?, ..., p}} be the ordered set of sign changes of all positions but p}.
Assume that P’ is not optimal. Then, there exists an optimal solution P” with |P”| = k — 1 and
p; ¢ P” such that

(Zp//)T -V o> (ZPI)T V.
By adding the position pj on both sides we obtain
(Zpnoi))" -V > (Zpogp)' -V = (Zp)" - V.

This contradicts our assumption that P* produces the optimal solution. Therefore, P’ is optimal.

Since the SSV algorithm satisfies the greedy choice property and the optimal substructure prop-

erty, we conclude that the result of the algorithm is a global optimum. O]

4.5.5 Complexity Analysis

The SSV algorithm keeps in memory the sign vector Z and V/, each with O(n) space complexity,

where n is the number of rows in X. Therefore, the total space complexity is O(n).

The total runtime complexity is O(zn), where z is the number of changed elements in the re-
turned sign vector Z. In the worst case, the sign of each element is changed, yielding a time
complexity of O(n?). The experiment in Figure 4.10 shows that the average number of sign

. m
changes in Z is 3.



4.6 Empirical Evaluation 87

4.6 Empirical Evaluation

4.6.1 Setup

We refer to SCD and QCD as the Centroid Decomposition (CD) using respectively SSV and
QSV. We implemented SCD, QCD and SVD algorithms in Java on top of an Oracle database.
We connect to the database through the 11.2 JDBC driver. For the experiments the client and the
database server run on the same 2.6 GHz machine with 4GB RAM.

The empirical evaluation is performed on real world datasets that describe hydrological time
series! where each tuple records a timestamp and a value of a specific observation. The hydro-
logical time series have been normalized with the z-score normalization technique [JNRO5]. The
values of the observations are stored as 4-byte floating numbers. We conducted also experiments

on raw time series from the UCR repository [KZH" 11].

In what follows, we evaluate scalability, efficiency and correctness of our algorithm. Further-
more, we empirically determine the number of iterations performed by the SSV algorithm and
we show the impact of the distribution of the sign of values across different time series on the
number of iterations. For each experiment, we display the average result over five runs of the

algorithms.

4.6.2 Experiments
Efficiency and Scalability

In order to evaluate the efficiency and scalability, we choose the longest time series from the
UCR repository. We concatenate the time series that belong to the same dataset to get time series

with the same length as the hydrological ones. Table 4.1 describes the used time series.

The experiment in Figure 4.5 evaluates the runtime of the SCD algorithm and compares it against
other techniques. The computation of the matrix X-X7 is included in the running times of
QCD. For each technique we implement the algorithm that computes the full decomposition. In

Figure 4.5(a), the number m of time series is four and the number n of rows varies between

'"The data was kindly provided by the environmental engineering company HydroloGIS
(http://www.hydrologis.edu).
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Table 4.1: Description of the First Set of Time Series.

Name Provenance Max_Length Number TS
Hydrological TS Hydrologis 120’000 217
MALLAT UCR repository 2345 1024
StarLightCurves (SLC)  UCR repository 8236 1024
CinC_ECG_torso (ECG) UCR repository 1380 1639

zero and 120k. This experiment shows that, for all time series, SCD has quadratic runtime with
respect to the number of rows of the input matrix X. Figure 4.5(b) compares the runtime of SCD
against QCD and SVD using hydrological time series. This experiment shows that SCD, QCD
and SVD have quadratic runtime. The QCD algorithm runs out of memory for n > 30k, whereas
SVD runs out of memory for n > 20k. In contrast, SCD performs the decomposition of a matrix

that contains four time series of 120k observations each in less than seven minutes.

120

120

110 | ‘ ‘ " Mallat TS —— | ] 110 1 ‘ ‘ ‘ 'SVD & ||

100 Hydrological TS - | | 100 QCD - | |
& SLC TS % = SCD —e—
g 90F ECG TS —a&— | g 90 ¢ 1
= 80 v = 80| .
S 70t S 70 —
= 60 ¢ = 60
£ 50 £ 50
c ) g %0
Z %0+ o ] 2 30¢

20 | ] 20 |

10 | ] 10 o &

0 EBR% L L L L 0 ﬂ - L L L L
0 20 40 60 80 100 120 0 20 40 60 80 100 120
# of input rowslk] # of input rows[k]

(a) Runtime of SCD using Different Time Series (b) Runtime of Different Techniques using Hydrological
Time Series

Figure 4.5: Runtime by Varying n.

In the experiment in Figure 4.6, n is set to 5k and m varies between 20 and 100. The results
show that the runtime of the SCD and QCD algorithms increases linearly with m. Using SCD,
the decomposition of a matrix of 100 time series with 5k observations each is performed in
approximately 80 seconds. We did not include SVD, which has a cubic runtime complexity with

respect to m.

Figure 4.7 compares the memory usage of SCD against QCD and SVD (notice the log-scale on
the y-axis). For each of the three algorithms we sum the allocated space for all data structures.

The results of the calculation of memory allocation confirm the linear space complexity of SCD
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Figure 4.6: Runtime by Varying m in Hydrological Time Series.

with respect to the number of rows of the input matrix X, whereas QCD and SVD have quadratic

space complexity. For n > 30k and n > 20k, respectively, QCD and SVD run out of memory.
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Figure 4.7: Memory Usage.

Algorithm Properties

The properties of the SSV algorithm are evaluated using the time series described in Table 4.1.

Figure 4.8 evaluates the trend of the product (Z®))T.V(*) computed by the SSV algorithm. This
experiment confirms the monotonicity property stated in Lemma 8. We extract 1000 values from
each time series and compute the product (Z®)” . V(%) for 20 iterations. The experiment shows

that (Z*))T.V/(*) computed by our algorithm is monotonically increasing.

In Figure 4.9, we compare the sign vectors computed by the SSV algorithm against those com-
puted by QSV algorithm. This experiment aims to confirm the correctness property stated in
Lemma 11. We compute the percentage of correct sign vectors, i.e., the sign vectors computed

by SSV that are equal to those computed by QSV. As expected, the experiment confirms that
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Figure 4.8: Monotonicity Property of SSV.

SSV computes the correct sign vectors in all cases.

% of correctness
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Figure 4.9: Correctness of SSV.

Type of time series

Number of Iterations

The time series from Table 4.1 are used. In the experiment of Figure 4.10, we show the number
of iterations in the SSV algorithm that are required to compute the maximizing sign vectors. For
all used time series, our algorithm performs on average 7 iterations, i.e., it performs only half of

the maximum number of iterations.

Impact of Sign of Values

We select three time series from the UCR repository in such a way that we have different dis-
tributions of negative values at the same timestamp across the selected time series. Table 4.2
describes the used time series, where the third column is the number of values with a negative

sign at the same timestamp in all time series.
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Figure 4.10: Number of Iterations in SSV.

Table 4.2: Description of the Second Set of Time Series.

Name Provenance length # negative rows (x)
Gun_Point UCR 150 90
Cricket_X UCR 300 21

Beef UCR 470 0

Figure 4.11 illustrates the impact of the number of negative rows (x) on the number of iterations,
and hence on the runtime. In the Gun_Point dataset, x is bigger than half of the input rows. The
number of iterations is on average equal to half of the input rows. In the Cricket_X dataset, z is
between 1 and half of the input rows. In this case, the SSV algorithm iterates on average = + 1
times. In the case where all values in all time series have the same sign, the number of iterations
is equal to 1 as expected. That is, if the sign of all elements is positive or negative, all elements of
the weight vector computed in the first iteration of the algorithm, i.e., V1), are positive. In both
cases the sign vector that contains only 1Is is the maximizing vector and our algorithm requires
only one iteration to find the maximizing vector. Figure 4.11 shows also that the increase in the
number of input rows together with a higher = implies a higher runtime. In the case where the
negative sign is randomly distributed across different time series, the number of iterations is on

average equal to 5 as shown in Figure 4.10.

In Figure 4.12, we used the Beef time series that does not contain any negative value and we
incrementally change the sign of 10% of input rows. This experiment shows that the runtime
increases with the number of negative rows. If all rows are negative, the runtime is the same as

when all rows are positive and the number of iterations performed by SSV is equal to 1.
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Length of Time Series

The final experiment shows the impact of using long time series for the recovery of missing
values [KB12]. We remove a block of 100 values from a temperature time series and recover the
removed block by an iterative computation of matrices L and R. The input matrix contains as
columns the time series with the removed block and three other temperature time series. Then,
we perform a one rank reduction, i.e., we compute only three vectors in the matrices L and R
instead of four, and we iterate until the difference in the Frobenius norm [MKW94] between
the matrix before the decomposition and the one after the decomposition is less than 10~°. To
measure the accuracy, we compute the Mean Square Error (M SE = % Zle (Z; — x;)?; original
value x;; recovered value z;; number of observations k) between the original and the recovered
blocks [LMPFO09], [KHQO1].

Figure 4.13 shows the result of this experiment. In Figure 4.13(a), the length of the time series
is varied. Longer time series significantly reduce the MSE. In Figure 4.13(b), we take different

time series of 200 values such that the absolute value of the Pearson correlation p between the
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Figure 4.13: Impact of the Length of the Time Series and the Correlation Between Them on the
Recovery of Missing Values.

time series with the missing block and the other time series varies, and we compute the MSE. The
experiment shows that the more correlated the time series are the better is the recovery. Finally,
Figure 4.13(c) shows that the correlation between the time series increases with the length of

time series (the same time series as in Figure 4.13(a) are used).

4.7 Conclusion and Future Work

In this paper, we introduced the Scalable Sign Vector algorithm that performs the Centroid De-
composition of a matrix in linear space complexity. We provided proofs that show the scal-
ability, the termination and the correctness of our algorithm. An empirical evaluation on real
world hydrological data sets and also on data sets from the UCR repository demonstrates that
our algorithm has the same runtime as the most efficient algorithm to compute the Centroid

Decomposition, but reduces the space complexity from quadratic to linear.
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In future work, we plan to investigate an incremental version of the Centroid Decomposition
that could be applied for dynamic time series. Another promising direction is to investigate

segmentation techniques of time series.
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CHAPTER 5

Conclusion and Future Work

In this thesis, we propose a parameter-free solution, called REBOM, that accurately recovers
blocks of missing values in irregular time series. REBOM learns the shape, the amplitude and
the width of the missing blocks from the time series that contains the missing blocks and its
correlated time series. Our approach is based on a greedy strategy that iteratively selects from
a set of time series the ones that locally reduce the recovery error. We empirically show that
the recovery result is independent from the initialization of the missing values. We implemented
REBOM as a graphical tool that currently performs the recovery of blocks of missing values
using real world hydrological time series, but can also be applied for any type of correlated time

series.

We introduce a Centroid Decomposition based recovery technique that produces an accurate
block recovery when using time series with mixed correlations. The proposed solution reduces
the recovery error to the used time series proportionally to their correlation. We compare the
decomposition process performed by the Centroid Decomposition against the one performed by
the Singular Value Decomposition that is used by REBOM. Our experimental results show that
for similar number of lowly and highly correlated time series, the recovery accuracy of the CD

based approach outperforms the one of REBOM.
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We propose a scalable implementation of the Centroid Decomposition technique. We show that
by mapping the optimization problem into an equivalent problem, we avoid the construction of
the square correlation matrix and thus, reduce the space complexity from quadratic to linear. We
prove that the proposed greedy approach computes the correct result and terminates. We run
extensive experiments on real world hydrological time series to support the scalability and the

correctness of the proposed solution.

Future Work We currently limit the block recovery to static time series. It is of interest to
apply the block recovery on streams of time series where the new data could be used to improve
former block recoveries. Recomputing the matrix decomposition from scratch once new data
(eventually a block of data) arrives, will be inefficient. An incremental computation will be

investigated.

Currently, we assume that the lowly correlated time series that exhibit shape and/or trend similar-
ities are given as input and we choose them using their graphical similarity. In order to automate
the selection of input time series we plan to refine the definition of lowly correlated time series

by investigating a measure that detects lowly time series with shape and/or trend similarity.

Another promising direction is to distribute the computation of the Centroid Decomposition tech-
nique for domains with long time series of fine-grained granularity, e,g,. finance. A straightfor-
ward distribution of the computation is inefficient due to the lineage of weight vectors that has
to be stored. An efficient distribution of the computation requires the parallelization of the opti-

mization problem.
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