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Abstract. The Singular Value Decomposition (SVD) is a matrix decom-
position technique that has been successfully applied for the recovery of
blocks of missing values in time series. In order to perform an accurate
block recovery, SVD requires the use of highly correlated time series.
However, using lowly correlated time series that exhibit shape and/or
trend similarities could increase the recovery accuracy. Thus, the latter
time series could also be exploited by including them in the recovery
process.
In this paper, we compare the accuracy of the Centroid Decomposition
(CD) against SVD for the recovery of blocks of missing values using
highly and lowly correlated time series. We show that the CD technique
better exploits the trend and shape similarity to lowly correlated time
series and yields a better recovery accuracy. We run experiments on real
world hydrological and synthetic time series to validate our results.

1 Introduction

In real world applications sensors are used to measure time series data of dif-
ferent types, which are then collected, processed and stored in central stations.
In the hydrological field, for instance, weather stations collect measurements
that describe meteorological phenomena, e.g., temperature, humidity, air pres-
sure, precipitation, etc. These time series contain blocks of missing values due to
many reasons, e.g., sensor failure, power outage, sensor to central server trans-
mission problem, etc. In order to recover these missing values, existing recovery
techniques use the (base) time series that contains the missing values in addition
to highly correlated (reference) time series. However, these recovery techniques
can not learn from the trend and shape similarity of lowly correlated reference
time series. Thus, the latter are not included in the recovery process.

The Foehn, for instance, is a warm wind that reaches weather stations at
different time points. This environmental phenomenon yields time series with
shape and trend similarities, but shifted in time. For example, the Foehn yields
shifted temperature time series with similar shapes, e.g., peaks that contain



similar spikes. These shifted time series are lowly correlated. It is of interest to
benefit from Foehn based time series and include them, in addition to the highly
correlated time series, in the recovery process. In this paper, we consider the
category of lowly correlated reference time series, e.g., Fohen based time series,
that exhibit shape and/or trend similarities to the base time series.

Matrix decomposition techniques decompose an input matrix into the prod-
uct of k matrices where k ∈ [2, 3]. The truncated Singular Value Decomposition
(SVD) has been successfully applied to recover missing values in time series [1].
The truncated SVD performs a decorrelation of vectors and subsequently an
unweighted relative reduction of the Mean Squared Error (MSE) to the refer-
ence time series. The unweighted MSE reduction yields a recovery that ignores
the correlation difference between the input time series. Thus, this recovery
technique is not suitable to apply in case of using highly and lowly correlated
reference time series (cf. Section 5). To the best of our knowledge, there does
not exist any technique that introduces different weights in the decomposition
process of SVD. In [3–5] fast approximations of the truncated SVD have been
proposed. Similarly to SVD, the latter approximations perform a decorrelation
of vectors and thus, produce an unweighted MSE relative reduction.

In this work, we are interested in the case of using highly and lowly correlated
time series for the recovery of blocks of missing values. Intuitively, in such cases,
an accurate recovery technique should give different weights to the used time
series. In contrast of the truncated SVD, the truncated Centroid Decomposition
(CD) technique gives a weight proportional to the correlation between the base
and the reference time series (cf. Section 5). Consequently, the obtained recovery
produces a relative reduction of the MSE to the highly correlated reference time
series more than to the lowly correlated one yielding a block recovery better
than the one produced by the truncated SVD. We assume that the lowly corre-
lated time series that exhibit trend and/or shape similarity are given as input.
Searching for these time series is beyond the scope of this paper.

The main contributions of this paper are:

– We prove that CD technique produces correlated output vectors while SVD
technique produces uncorrelated output vectors.

– We empirically show that CD performs a weighted MSE relative reduction
that is proportional to the correlation of the input time series. The resulting
recovery of missing values uses the correlation difference between the input
time series.

– We empirically show that SVD performs an unweighted MSE relative reduc-
tion. The resulting recovery of missing values ignores the correlation differ-
ence between the input time series.

– We present the results of an experimental evaluation of the recovery accuracy
of the CD and SVD techniques. The iterated truncated CD produces a better
recovery accuracy in case of using a similar number of highly and lowly
correlated time series.

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 describes the recovery process using SVD and CD techniques. Section 4



defines the unweighted recovery and the correlation based recovery respectively
performed by SVD and CD. Section 5 reports the evaluation results. Section 6
concludes the paper and points to future work.

2 Related Work

The Singular Value Decomposition (SVD) is a commonly used matrix decompo-
sition technique. It computes the singular values with their corresponding right
and left singular vectors. The truncated SVD, which is computed out of SVD by
nullifying the smallest singular values, has been extensively used in many fields,
e.g., compression, noise reduction, etc. Khayati et al. [1] applied the truncated
SVD for the recovery of missing values in time series. The basic idea is as follows:
the truncated SVD is iteratively applied to a matrix that has as columns the
time series for which the missing values have been initialized through linear in-
terpolation. The iterative process refines only the initialized missing values and
terminates when the difference between the updated values before and after the
refinement is smaller than a small threshold value, e.g., 10−5. The Mean Squared
Error (MSE), between the real values and the recovered ones, is used to evaluate
the recovery accuracy [2].

The Centroid Decomposition (CD) is a matrix decomposition technique that
decomposes an input matrix into the product of two matrices. Chu et al. [6]
introduce an algorithm that computes the CD of an input matrix in quadratic
run time, but requires the construction of a correlation square matrix that has a
quadratic space complexity. Khayati et al. [7] propose an algorithm to compute
the CD out of the input matrix using a weight vector instead of the construction
of the correlation matrix. They prove the correctness of the proposed solution.
The space complexity is thus reduced from quadratic to linear while keeping the
same run time complexity.

The Semi Discrete Decomposition (SDD) [8] is a matrix decomposition tech-
nique that decomposes an input matrix into three matrices such that their prod-
uct approximates the input matrix, i.e., X ≈ X′ · D · YT . The resulting D is
a diagonal matrix and the values of X′ and Y are restricted to belong to the
set {−1, 0, 1}. The truncated SDD has been used as clustering method [9]. The
non-zero elements of the matrix obtained from the product dii×X ′∗i ·Y T

∗i are the
elements of the input matrix X which have the closest values and thus can be
clustered together. Due to the set restriction of the elements of X′ and Y, the
application of SDD for the recovery of blocks of missing values does not produce
accurate results.

In addition to matrix decomposition techniques, matrix factorization tech-
niques have been also applied for the recovery of missing values. The latter
techniques start from k random matrices in order to approximate the input ma-
trix. Stochastic Gradient Descent (SGD) [10] is a matrix factorization technique
that approximates an input matrix X by the product of two matrices P and
Q, i.e., X ≈ P ·Q. SGD iteratively minimizes an error function by computing
the gradient. At each iteration, the gradient is computed using random sample



square blocks of the input matrix. The accuracy of the gradient increases with
the size and the number of the used blocks [11]. Thus, using an input matrix
with high number of rows and columns yields an accurate gradient’s computa-
tion and subsequently a good approximation of the input matrix. In [12], SGD
has been successfully applied to predict ratings in recommender systems for a
matrix of items as rows and users as columns. Balzano et al [13] propose an
SGD-based solution, called GROUSE, for the recovery of blocks of missing val-
ues in an input matrix. GROUSE performs an accurate recovery for matrices
of a high number of rows and columns. The recovery accuracy of the proposed
solution deteriorates if the number of columns is much smaller than the number
of rows such as in the time series field where the number of time series is much
smaller than the number of observations.

3 Preliminaries

3.1 Notation

Bold upper-case letters refer to matrices, regular font upper-case letters to vec-
tors (rows and columns of matrices) and lower-case letters to elements of vec-
tors/matrices. For example, X is a matrix, XT is the transpose of X, Xi∗ is the
i-th row of X, X∗i is the i-th column of X and xij is the j-th element of Xi∗.

In multiplication operations we use the sign × for scalar multiplication and
the sign · otherwise. The symbol ‖‖ refers to the l-2 norm of a vector. Assume
X = [x1, . . . , xn], then ‖X‖ =

√∑n
i (xi)2.

3.2 Background

Time Series A time series Xi∗ = {(t1, v1), (t2, v2), . . . , (tn, vn)} is a set of n
temporal values vi ordered with respect to their timestamps ti. We consider time
series that have the same granularity of values. Thus, we omit the timestamps
and we write time series using only their ordered values, e.g., time series X1∗ =
{(1, 4), (2, 5), (3, 1)} is written as X1∗ = {4, 5, 1}. Time series are inserted as
columns of the input matrix X.

Pearson Correlation Coefficient Given two vectors X and Y of equal length
n, with respective averages x̄ and ȳ, the Pearson correlation coefficient is defined
as,

r(X,Y ) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(1)

The absolute value of r ranges between 0 and 1 where r ∈ [0.7, 1] stands for
highly correlated vectors. The value of r is undefined if all xi (and/or yi) are
equal.



Initialization Strategy The missing values of each time series are initialized
as a preprocessing step before the application of the recovery process. A missing
value is initialized with a linear interpolation between the predecessor and the
successor values. If the missing value occurs as the first or the last elements
of the time series, we use the nearest neighbor initialization. Thus, the missing
values of a time series X∗1 are initialized as follows:

(ti, vi) =



(ti, v) if (s(ti), ) 6∈ X∗1,
(p(ti), v) ∈ X∗1

(ti, v) if (p(ti), ) 6∈ X∗1,
(s(ti), v) ∈ X∗1

(ti,
(ti−p(ti))(s(vi)−p(vi))

s(ti)−p(ti) + s(vi))

otherwise

where p(ti) = max{tj | (tj , ) ∈ X∗1 ∧ tj < ti} is the predecessor of timestamp
ti in X∗1 and s(ti) = min{tj | (tj , ) ∈ X∗1 ∧ tj > ti} is the successor timestamp
of ti in X∗1. Similarly, p(vi) = {vj | (tj , ) ∈ X∗1 ∧ tj = p(ti)} is the predecessor
of value vi in X∗1 and s(vi) = {tj | (tj , ) ∈ X∗1 ∧ tj = s(ti)} is the successor
value of vi in X∗1.

3.3 Matrix Decomposition

Singular Value Decomposition The Singular Value Decomposition (SVD)
is a matrix decomposition technique that decomposes an n × m matrix, X =
[X∗1| . . . |X∗m], into an n×p matrix, U, a p×m matrix, Σ, and an m×m matrix
V, i.e.,

X = U ·Σ ·VT (2)

=

p∑
i=1

σi × U∗i · (V∗i)T ,

where p = min(n,m), the columns of U and V are respectively called left and
right singular vectors, and Σ is a matrix whose diagonal elements, σi, are called
singular values and are arranged in decreasing order, i.e., σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.
The obtained columns of U are orthogonal to each other, i.e., U∗1 ⊥ U∗2 ⊥ . . . ⊥
U∗p. Similarly, the columns of VT are orthogonal to each other. In order to
guarantee the orthogonality of columns of respectively U and V, SVD requires
the use of the same input matrix [14]. Since SVD decomposition is performed
based on the same input matrix X, we refer to SVD as a flat decomposition
method.

Fig 1 illustrates the SVD decomposition of an input matrix X.



X =

 4 0
2 1
3 2

; SVD(X) =

 0.725 0.307
0.333 0.627
0.603 0.716


︸ ︷︷ ︸

U

,

[
5.445 0

0 2.086

]
︸ ︷︷ ︸

Σ

,

[
0.987 0.16
0.16 0.987

]
︸ ︷︷ ︸

V

such that

X =

 0.725 0.307
0.333 0.627
0.603 0.716


︸ ︷︷ ︸

U

×
[

5.445 0
0 2.086

]
︸ ︷︷ ︸

Σ

×
[

0.987 0.16
0.16 0.987

]
︸ ︷︷ ︸

VT

Fig. 1. Example of Singular Value Decomposition.

Centroid Decomposition The Centroid Decomposition (CD) is a matrix de-
composition technique that decomposes an n ×m matrix, X = [X∗1| . . . |X∗m],
into an n×m loading matrix, L, and an m×m relevance matrix, R, i.e.,

X = L ·RT =

m∑
i=1

L∗i·(R∗i)T , (3)

where ‖L∗1‖ > ‖L∗2‖ > . . . > ‖L∗m‖ ≥ 0. Fig. 2 illustrates the CD of matrix
X.

X =

 4 0
2 1
3 2

; CD(X) =

 3.977 −0.43
1.878 1.214
3.202 1.658


︸ ︷︷ ︸

L

,

[
0.994 0.11
0.11 0.994

]
︸ ︷︷ ︸

R

such that

X =

 4 0
2 1
3 2

 =

 3.977 −0.43
1.878 1.214
3.202 1.658


︸ ︷︷ ︸

L

×
[

0.994 0.11
0.11 0.994

]
︸ ︷︷ ︸

RT

Fig. 2. Example of Centroid Decomposition.

The CD technique applies an iterative process to compute matrices L and R.
At each iteration i, the input matrix X is updated by subtracting the product
L∗i · RT

∗i from it. The columns of L (and R) are not orthogonal to each other.
Since CD decomposition is performed by hierarchically updating X, we refer to
CD as a hierarchical decomposition method.

Chu et al. [6] prove that the decomposition performed by CD best approxi-
mates the one produced by SVD, i.e., L approximates the product U ·Σ and R
approximates V.



Truncation The truncated SVD computes a matrix Xk out of the SVD of X.
It takes only the k first columns of U and V and the k largest elements of Σ
such that k < p, i.e.,

Xk =

k∑
i=1

σi × U∗i · (V∗i)T . (4)

Eq. (4) is equivalent to Xk = U ·Σk ·VT where Σk is obtained by setting the
r − k smallest (non zero) singular values of Σ to 0. Let rank p be the maximal
number of linearly independent rows or columns of X. Then, among all matrices
with rank k < p, Xk is proven to be the optimal approximation to the input
matrix X in the Frobenius norm [15].

The truncated CD computes a matrix Xk out of the CD of X by setting to
0 the m − k (non zero) last columns of L, with k < m, in order to respectively
get Lk and Xk = Lk ·RT .

4 Decomposition Comparison

In this section, we compare the decomposition produced by the truncated SVD
against the one produced by the truncated CD using the Mean Squared Error
(MSE = 1

k

∑k
i=1(x̃i − xi)2; initialized value xi; recovered value x̃i; number of

observations k) between the initialized values and the recovered ones.

4.1 Recovery Process

Algorithm 1 describes the pseudo code of function RecM() that applies truncated
SVD and truncated CD to recover missing values. The algorithm takes an input
matrix X where the missing values have been initialized, and returns a matrix
with recovered values X̃. Different initialization techniques would lead to the
same result but with a higher number of iteration [7]. RecM() iteratively replaces
the initialized missing values by the result of the truncation of a given matrix
decomposition technique. The algorithm terminates if the difference in Frobenius

norm (‖X − X̃‖F =
√∑n

i=1

∑m
j=1(xij − x̃ij)2; xij : element of X; x̃ij : element

of X̃) between the matrix before the update of missing values, X, and the one

after, X̃, is less than a small threshold value, e.g., ε = 10 5.

In what follows we describe the recovery properties using respectively SVD
and CD. We assume the case where the correlation ranking between time series
does not change over the entire history, i.e., the most correlated reference time
series has the highest correlation value to the base time series all over the entire
history. In case where the correlation ranking changes over the history, then a
segmentation of the time series has to be applied.



Algorithm 1: RecM(X, n, m, Tm
j )

Input: n×m matrix X; set of missing time stamps Tm
j in X∗j

Output: n×m matrix X̃ of recovered values

1 repeat

2 X̃ = X ;
// Apply truncated SVD or truncated CD

3 Xk =Truncate(X̃);
// Update missing values

4 foreach t ∈ Tm
j do

5 xtj = wtj ;
// wtj element of Xk

6 until ‖X− X̃‖F < ε;

7 return X̃

4.2 SVD recovery

Lemma 1 Given an input matrix X of m correlated columns. SVD(X) produces
non correlated vectors.

Proof 1 By definition of SVD, we have that U∗1 ⊥ U∗2 ⊥ . . . ⊥ U∗p. This
implies that the pairwise dot product of columns of U is equal to 0 and thus,
∀a, b ∈ [1, p] ∧ a 6= b, we get (U∗a)T · U∗b = 0. Using the fact that all input
time series have been normalized to have mean equal to 0 (cf. Section 5), we
assume u and u′ to be the i-th elements of respectively U∗a and U∗b, and get
from Equation (1) the following

r(U∗a, U∗b) =

∑n
i=1(ui × u′i)√∑n

i=1(ui − ū)2
√∑n

i=1(u′i − ū′)2

=
(U∗a)T · U∗b√∑n

i=1(ui − ū)2
√∑n

i=1(u′i − ū′)2
= 0

As a result, the pairwise correlation between all columns of U is equal to 0.
The previous property holds also for the columns of VT .

Definition 1 (Unweighted Recovery) Let X be an input matrix that con-
tains a base time series B and k > 2 reference time series each with a correlation
ri to B. An unweighted recovery of B produces a similar relative reduction of
the MSE between B and the reference time series.

Proposition 1 Assume an n ×m matrix X = [B,R1, . . . , Rm−1]. A truncated
matrix decomposition of X that produces uncorrelated vectors performs an un-
weighted recovery of B.



Based on Lemma 1 and Proposition 1, we get that the truncated SVD per-
forms an unweighted recovery.

Example 1 Let’s take the example of a matrix X = [B,R1, R2] where initialized
missing values are marked in bold.

X =


4 1 3
1 3 1
2 6 6
5 5 3


R1 is a highly correlated reference time series to B with r(B,R1)= 0.88

and R2 is a lowly correlated reference time series to B with r(B,R2) = 0.32.
The computation of the MSE before the recovery gives MSE(B,R1) = 16 and
MSE(B,R2) = 8.

The following matrix X̃ = [B̃, R1, R2] is an example of an SVD based recovery
of B.

X̃ =


4 1 3
0 3 1
4 6 6
5 5 3


The computation of the MSE after the recovery gives MSE(B̃, R1) = 6.5

and MSE(B̃, R2) = 2.5. The percentage of the MSE relative reduction between
B and R1 is red(R1) = 16−6.5

16 × 100 = 60%. Similarly, the percentage of the
MSE relative reduction between B and R2 is red(R2) = 69%. As a result, we
have red(R1) ≈ red(R2).

4.3 CD recovery

Lemma 2 Given an input matrix X of m correlated columns. CD(X) produces
correlated vectors.

Proof 2 This proof follows directly from the proof of Lemma 1. On the contrary
of SVD, the columns of L and RT computed by the truncated CD are not orthog-
onal and thus, the pairwise dot product and consequently the pairwise correlation
values are different from 0.

Definition 2 (Correlation Weighted Recovery) Let X be an input matrix
that contains a base time series B and k > 2 reference time series each with
a correlation ri to B. A correlation weighted recovery of B performs a relative
reduction of the MSE between B and the reference time series proportionally to
|ri|.

Proposition 2 Assume an n ×m matrix X = [B,R1, . . . , Rm−1]. A truncated
matrix decomposition of X that produces correlated vectors performs a correlation
weighted recovery of B.



Based on Lemma 2 and Proposition 2 we get that the truncated CD performs
a correlation weighted recovery.

Example 2 Let’s take the example of a matrix X = [B,R1, R2] used in Ex-

ample 1. The following matrix X̃ = [B̃, R1, R2] is an example of a CD based
recovery of B.

X̃ =


4 1 3
2 3 1
5 6 6
5 5 3


The computation of the MSE after the recovery gives MSE(B̃, R1) = 1 and

MSE(B̃, R2) = 5. The percentage of the MSE relative reduction between B and
R1 is red(R1) = 94%. The percentage of the MSE relative reduction between B
and R2 is red(R2) = 37.5%. As a result, we have red(R1)� red(R2).

4.4 Complexity

We compare the runtime and space complexity of CD based recovery against
SVD based recovery. We use the algorithm that computes the exact decomposi-
tion for each technique.

Run time Consider an input matrix X with n rows and m columns. The
number of arithmetic operations to compute SVD of X, using Golub and Reinsch
algorithm [14], is 4n2m+ 8nm2 + 9m3. The number of arithmetic operations to
compute CD of X is 2pnm where p is the number of iterations [7]. At each
iteration of CD, the input matrix is subtracted yielding an updated matrix that
contains negative elements. Thus, the value of p depends on the distribution of
the minus sign across the updated matrix. In practice, the value of p ranges
between n

2 and n
3 (cf. Section 5.5).

Space SVD technique requires the storage of nm values of X, nm values of U,
m values of Σ and m2 values of V. Additionally, SVD has to transform X to a
bidiagonal matrix using Householder reduction [16] which requires the storage
of three additional matrices, i.e., the first matrix contains nm values and the
two others contain m2 values each. The total number values stored by SVD is
thus equal to m(3n+ 3m+ 1) values. CD technique requires the storage of nm
values of X, nm values of L and m2 values of R. No data structure other than
the input and the two output matrices is stored. Thus, the total number values
stored by CD is equal to m(2n+m) values.

5 Experiments

The experiments are performed using real world datasets that describe hydro-
logical time series where each tuple records a timestamp and a value of a specific



observation. Hydrological time series with shifted peaks and/or valleys are lowly
correlated. Our first set of time series, HYD3, contains 200 time series of six years
length each, where measurements are recorded every five minutes. The second set
of time series we refer to, SBR4, contains 120 time series of twelve years length
each, where measurements are recorded every 30 minutes. The hydrological time
series have been normalized with the z-score normalization technique [17]. We
consider hydrological time series where the correlation ranking does not change
all over the history. We use also synthetic time series, where the correlation is
constant all over the entire history. To measure the recovery accuracy, we com-
pute the Mean Squared Error (MSE) between the original and the recovered
blocks (cf. Section 4).

5.1 Recovery using real world TS

MSE relative reduction In this experiment we compute the MSE relative
reduction between a base time series B and two reference time series. In Fig. 3
we choose one highly and one lowly correlated reference time series with the
respective correlation values r(B,R1) = 0.83 and r(B,R2) = 0.18. The result
of this experiment shows that the iterated truncated CD produces a correlation
weighted recovery that reduces the relative MSE more to the highly correlated
time series than the lowly correlated time series. The iterated truncated SVD
performs an unweighted recovery that produces an almost equal reduction of the
relative MSE to both reference time series.
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(a) Iterated truncated CD.
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(b) Iterated truncated SVD.

Fig. 3. MSE relative reduction of CD and SVD using highly and lowly correlated time
series: case 1.

In Fig. 4 we consider one highly correlated reference time series with a cor-
relation value r(B,R1) = 0.76. We add also a lowly correlated time series with

3 The data was kindly provided by the environmental engineering company Hydrolo-
GIS (http://www.hydrologis.edu).

4 The data was kindly provided by the consultancy organization Südtiroler Be-
ratungsring (http://www.beratungsring.org).



a correlation value r(B,R2) = 0.62 that is higher than the one used in the
experiment of Fig. 3. As expected, the MSE relative reduction of the iterated
truncated CD is slightly higher to R1 than to R2. The MSE relative reduction
of the iterated truncated SVD remains similar to both reference time series.
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(a) Iterated truncated CD.
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Fig. 4. MSE relative reduction of CD and SVD using highly and lowly correlated time
series: case 2.

Recovery accuracy In this section we compare the recovery accuracy of the
iterated truncated SVD against the iterated truncated CD using highly and
lowly correlated time series.

In the experiment of Fig. 5, we use three temperature time series from HYD
measured respectively in Aria Borgo (B), Ponte Adige (R1) and Aria La Villa
(R2) in the region of South Tyrol, Italy. B is highly correlated to R1 with
r(B,R1) = 0.75. B is lowly correlated to R2 with r(B,R2) = 0.32. However, the
peaks of B and R2 exhibit shape similarity, i.e., the peaks contain similar spikes.
The time shift is caused by the Foehn phenomenon (cf. Section 1). We drop from
the base time series, B, a block for ts ∈ [45, 95] and recover it using two reference
time series, R1 and R2. The result of this experiment shows that the iterated
truncated CD gives a weight to the reference time series proportional to their
correlation with B, yielding a good block recovery accuracy, i.e., the amplitude
and the shape of the missing block are accurately recovered. On the contrary, the
iterated truncated SVD performs a block recovery that gives the same weight to
both time series R1 and R2 at a time yielding a bad block recovery accuracy.

Fig. 6 shows the MSE for removed blocks of values of increasing length from a
base time series: starting from the middle of a block we increase the length of the
removed block in both directions and we compute the MSE for each block. We
run the experiment on five different base time series from HYD and we take the
average of the MSE. For each run we use, in addition to the base time series, one
highly correlated and one lowly correlated time series. As expected, the iterative
truncated CD learns from the highly and lowly correlated time series at a time
and thus, produces a small recovery error that slightly increases with the length
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(c) Recovery of iterated truncated CD.

Fig. 5. Recovery using highly and lowly correlated hydrological TS.

of the missing block to recover. However, the recovery accuracy of the iterated
truncated SVD considerably deteriorates with the length of the missing block to
recover.

Impact of the time shift In Fig. 7 we evaluate the impact of a varying time
shift, denoted as s, on the recovery accuracy of the iterated truncated CD and
the iterated truncated SVD. We show that for a high value of time shift, the
two techniques produce similar block recoveries. In Fig. 7(a) we take three time
series from SBR measured respectively in Kaltern (B), Kollman (R1) and Ritten
(R2) in the region of South Tyrol, Italy. The peaks of B and R2 have a similar
shape, but with a time shift. We drop one peak from B, we shift backwards R2

with a value s and we compute the MSE recovery accuracy. The result of the
experiment shows that starting from s = 30, the iterated truncated CD is not
able anymore to exploit the lowly correlated time series and produces a block
recovery similar to the one produced by the iterated truncated SVD.
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Fig. 6. MSE for successive removed blocks.
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Fig. 7. Impact of varying time shift

5.2 Recovery using synthetic TS

For the following experiments, we consider a time series sin(t) that has a small
valley at each of the peaks, denoted as B, from which we drop a block of values
for t ∈ [70, 110] and we recover using both techniques.

Recovery accuracy In Fig. 8 we add to B one highly correlated time series
−0.5 ∗ sin(t) denoted as R1 such that r(B,R1) = 0.84. We add also a lowly
correlated time series by shifting B and we denote it as R2 such that r(B,R2) =
0.16. As expected, by giving a higher weight to R2, the iterated truncated CD is
able to perform a good recovery of the shape and the amplitude of the missing
block. The iterated truncated SVD fails to recover the shape and the amplitude
of the missing block.

Impact of number of input time series In Fig. 9 we evaluate the robustness
of the recovery produced by both techniques using a varying number of highly
and lowly correlated time series. In Fig. 9(a) we take B from the experiment of
Fig. 8 and one highly correlated time series with r = 0.9 to which we add a vary-
ing number of lowly correlated time series, by shifting B, such that r ∈ [0.2, 0.6].
The latter time series are added in the decreasing order of their correlation. This
experiment shows that for p1 < 4, the iterated truncated CD is able to use the
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Fig. 8. Recovery using highly and lowly correlated synthetic TS.

most correlated time series yielding a smaller MSE than the iterated truncated
SVD. For p1 ≥ 4, the MSE of both techniques converges towards similar value.
In the experiment of Fig. 9(b) we take B and one lowly correlated time series
with r = 0.2 to which we add a varying number of highly correlated time series
such that r ∈ [0.7, 0.9]. The latter time series are added in the increasing order of
their correlation. In the presence of one lowly correlated time series, the iterated
truncated SVD requires at least three additional highly correlated time series in
order to reach the same MSE as one of the iterated truncated CD.

The experiment of Fig. 9 shows that, for a close number of highly and lowly
correlated time series, the correlation weighted recovery helps the iterated trun-
cated CD to produce a better recovery than the one produced by the iterated
truncated SVD. Otherwise, the two techniques produce similar recovery of miss-
ing values. However, the iterated truncated CD technique is computationally
more efficient than the iterated truncated SVD, i.e., CD is linear with the num-
ber of input time series while SVD is cubic with the number of input time series.

5.3 Comparison with SGD based recovery

In the experiment of Fig. 10 we compare the accuracy recovery of the iterated
truncated CD against GROUSE [12] for the recovery of 20 missing values using
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Fig. 9. Recovery accuracy using varying number of input TS.

an increasing number of segments of time series from the same type where each
contains 200 values. We omit the iterated truncated SVD from this experiment
because of the high computational time. The result of this experiment shows that
the iterated truncated CD produces a more accurate block recovery in the case
where the length of the input time series is bigger than their number. However,
the recovery accuracy produced by GROUSE outperforms the one produced by
the iterated truncated CD as the number of time series approaches the number
of observations (cf. Section 2). In real world applications such as hydrology, the
length of time series is much bigger than their number and thus, CD based
recovery outperforms GROUSE recovery.
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5.4 Approximation accuracy

Fig. 11 compares the approximation accuracy of the iterated truncated CD and
the iterated truncated SVD to the input matrix. We use the Frobenius norm
between the input matrix and the one obtained after the decomposition as an
approximation error (cf. Section 4.1). The input matrix contains 10 columns
where each one is a time series from HYD. This experiment shows that by



updating all values of the input matrix at a time (and not only the missing
ones), the two techniques perform similar approximation accuracy. The same
result holds for different values of the truncation parameter k.
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Fig. 11. Approximation error.

5.5 Number of iterations of CD

In the experiment of Fig. 12 we consider three temperature time series from
HYD: a base time series, one highly correlated reference time series and one
lowly correlated time series. We compute the number of iterations p required
by the CD technique with an increasing number of rows n. The result of this
experiment shows that p ranges between n

2 and n
3 .
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Fig. 12. number of iterations performed by CD.

6 Conclusion

In this paper, we compare the CD and SVD techniques for the recovery of missing
values using time series with mixed correlation values. We empirically show that
CD produces a weighted relative reduction of MSE that is proportional to the
correlation of the input time series, while SVD produces an unweighted relative



reduction of MSE. Our experiments on real world hydrological and synthetic
time series also show that the iterated truncated CD performs a better recovery
in case of similar number of highly and lowly correlated time series.

In future work, it would be of interest to compare the segmentation tech-
niques that are applied in the case where the correlation ranking varies along
the time series history. Another promising direction is to refine the definition of
highly and lowly correlated time series.

References
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