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Abstract—Time series streams are ubiquitous in many appli-
cation domains, e.g., transportation, network monitoring, au-
tonomous vehicles, or the Internet of Things (IoT). Transmitting
and storing large amounts of such fine-grained data is however
expensive, which makes compression schemes necessary in prac-
tice. Time series streams that are transmitted together often
share properties or evolve together, making them significantly
correlated. Despite the rich literature on compression methods,
the state-of-the-art approaches do not typically avail correlation
information when compressing times series. In this work, we
demonstrate how one can leverage the correlation across several
related time series streams to both drastically improve the
compression efficiency and reduce the accuracy loss.

We present a novel compression algorithm for time series
streams called CORAD (CORelation-Aware compression of time
series streams based on sparse Dictionary coding). Based on
sparse dictionary learning, CORAD has the unique ability to
exploit the correlation across multiple related time series to
eliminate redundancy and perform a more efficient compression.
To ensure the accuracy of the compressed time series, we further
introduce a method to threshold the information loss of the
compression. Extensive validation on real-world datasets shows
that CORAD drastically outperforms state-of-the-art approaches
achieving up to 40:1 compression ratios while minimizing the
information loss.

Index Terms—Data Compression, Time Series Streams, Cor-
relation, IoT.

I. INTRODUCTION

Time series streams are widely used nowadays due to the
proliferation of sensor-generated data e.g., for transportation,
network monitoring, autonomous vehicles, or the Internet of
Things (IoT). In such applications, the data generated by
sensors may get very large by involving up to millions of
sensors [1]. Therefore, efficient means to store and analyze the
sheer amount of resulting time series data plays an important
role in practice.

Transmitting and storing large amounts of sensor data is
often prohibitively expensive due to the fine-grained granu-
larity of the transmitted data. For time series practitioners,
it is hence important to consider compression schemes in
order to reduce the sheer size of the data for transmission,
storage but also subsequent computations on the data. This

can be achieved by leveraging some of the salient features
of the time series. Compression methods are traditionally
organized in two broad classes: (1) lossless techniques, which
allow the exact reconstruction of the original time series
without any information loss, and (2) lossy techniques, which
involve some information loss but typically yield significantly
higher compression ratios. Sensor-generated time series are
often noisy, non-uniformly sampled and misaligned in practice
making an exact reconstruction of the data unnecessary. As a
result, we consider lossy schemes in the following.

We focus on sets of time series emerging as multiple
sequences emanating from the same source. These time series
tend to be correlated as they often capture multiple facets of
the same phenomenon. Take the example of the Inertial Mea-
surement Unit (IMU) in modern smartphones, which collects
multi-dimensional gyroscope, acceleration, and magnetometer
data, for a total of nine variables sampled at each time step.
These time series are likely to be recorded together, as each
one of them taken separately is insufficient to characterize
the phone’s motion. At the same time, the resulting time
series will be highly correlated, as the all describe the same
underlying phenomenon (i.e., a smartphone moving) from
different perspectives.

The characteristics of time series may change over time.
In fact, this is a key property of semi-infinite streams. The
correlation state between two time series may also change,
resulting in local correlations which are not persistent for the
entire time series (see Figure 1). Another key property of the
time series we consider is that they often exhibit repeating
and/or evolving patterns, making them a prime candidate for
sparse dictionary learning. The idea is to segment the data
and to express each segment as a weighted linear combination
of only a few basic elements of the dictionary called atoms
[2]. The atoms are learned from the data itself. Sparse coding
techniques have been widely used in a number of applica-
tions ranging from video processing to texture synthesis and
machine learning.

Taking advantage of both the high degree of correlation of
the time series we consider as well as of their recurring nature,



we introduce a new compression algorithm called CORAD
(CORelation-Aware compression of time series streams based
on sparse Dictionary coding). Our technique leverages both
the global and local correlation across time series to eliminate
redundancy for a more efficient compression. CORAD is also
able to bound the information loss of the compression in an
online manner and allows to execute analytical queries on the
compressed data directly.

In summary, the main contributions of this paper are as
follows:

• We introduce CORAD to effectively compress sets of
time series streams. It performs a compression that is
aware of the correlation across time series. We propose a
representation that is more meaningful, malleable, and
robust to noise than the ones obtained by traditional
methods. CORAD is, to the best of our knowledge,
the first sparse compression scheme to use correlation
information across time series to improve its compression
efficiency;

• We introduce a method for error-bounding the resulting
representation. Thanks to this method, one can bound
the maximum error yielded by our scheme on time
series, hence introducing a controllable trade-off between
accuracy and compression ratio;

• We demonstrate the performance of our technique on sev-
eral real-world time series data. We empirically show that
CORAD can achieve up to 40:1 compression ratios with
only minimal loss in terms of accuracy, outperforming
the state-of-the-art methods.

Fig. 1. Example of correlated segments in multiple time series

The rest of the paper is structured as follows. We start
by surveying related work in Section II. We introduce the
key concepts behind our method in Section III. We describe
our method, CORAD, along with each of its sub-components
in detail in Section IV. We present an extensive empirical
evaluation of CORAD and related methods on real-world
datasets in Section V before concluding.

II. RELATED WORK

In a previous paper, we introduced a dictionary-based com-
pression method called TRISTAN [2]. TRISTAN divides the
time series into segments of equal sizes before coding them
using a combination of atoms. It exploits sparse dictionary rep-
resentations for effective compression, compact storage, and
efficient query execution over the compressed data. TRISTAN
can execute queries on the compressed data directly. In terms
of compression efficiency, TRISTAN achieves compression
ratios between 2:1 and 20:1. TRISTAN is however agnostic
to the underlying correlation between sets of time series and
does not leverage this property in its compression.

Other dictionary-based techniques were proposed to per-
form time series operations on compressed representations.
For instance, the authors in [3] suggest a method that focuses
on executing similarity queries on compressed time series by
coding segments of time series into a dictionary. The result-
ing representation is a sequence of frequencies correspond-
ing to the occurrences of the segments. Similarly, Willis et
al. [4] introduce a similarity measure that uses the Limpel-Ziv
dictionary-based compression scheme for time series. Along
similar lines, Hu et al. [5] introduce time series classification
based on dictionary-compressed time series. These techniques
however do not support the reconstruction of the original data,
which is a key feature in our context.

The Discrete Wavelet Transform (DWT) has been exten-
sively used to compress time series data [6]–[9]. It uses a set
of basis functions called wavelets to decompose time series
into components. Time series data components are separated
into different frequencies at different scales by DWT. The
main purpose of DWT is to reduce the size of the data
and/or to decrease its noise by providing time and frequency
information. The DWT method is particularly efficient at
representing time series exhibiting discontinuities or sharp
peaks. It is able to achieve high compression ratios above
15:1. The DWT technique however lacks phase information,
which makes it sensitive to time shifts [10]. We experimentally
compare CORAD to a DWT-based approach in Section V.

Quantization algorithms [11]–[15] were also used to com-
press time series. They reduce multidimensional data into a
smaller number of dimensions or a lower resolution. The
Chebyshev algorithm is a widely known compression tech-
nique that employs vector quantization. In [16], the authors
applied this technique to compress time series data. This
compression applies the Chebyshev transform on data seg-
ments, resulting in matrix of Chebyshev coefficients. The
selected coefficients are then used to quantize time series
segments before being stored on top of a lossless compression.
The Chebyshev algorithm performs the same sequence of
computations on each data segment. The resulting compression
performance depends on the size of the segment, the threshold
to restrain specific coefficients, and the number of quantization
bits. In [17], the authors introduce an algorithm called Sen-
sCompr, which uses Chebyshev for compression to support
dynamically selected segment sizes. This method can achieve



a compression of data streams by more than 8:1. Chebyshev
compression does not however limit the error and may yield
significant information loss. We empirically compare CORAD
to a Chebyshev-based technique in Section V.

In [18], two piecewise linear approximation (PLA) filtering
methods were introduced, swing filter and slide filter. They
represent a time-varying numerical signal by a piecewise linear
function, consisting of connected line segments. The slide filter
method proved to have a better compression ratio than swing
filter, but it also has a higher space and time complexity.
In [19], Luo et al. introduce mixed-PLA, an algorithm based
on PLA with a guarantee of maximum error. In [20], the
authors implement piecewise constant approximation (PCA)
with an error bound. They show that PCA performs better
than PLA when the time series include many fluctuations and
important transitions. Another popular compression approach
consists in approximating the data as a sequence of low-order
polynomials [17], [21]–[24]. In [21], piecewise polynomial
approximation (PPA) was applied for searching in compressed
time series data. The authors use a dynamic algorithm that
selects the best of piecewise constant, linear, and polynomial
algorithm’s output for every segment. These approaches focus
on specific applications, namely similarity search, and incur a
significant error loss to obtain a good space reduction. The
paper [25] introduces Spritz, a compression technique that
employs integer compression algorithms such as SIMD-BP128
[26], FastPFOR [14], Simple8b [15]. These techniques focus
on local compression and thus cannot be applied on large time
series streams.

III. BACKGROUND

This section introduces the main concepts that we will use
throughout the paper. We use bold upper-case letters to refer
to matrices, regular font upper-case letters to refer to vectors
and lower-case letters to refer to elements of vectors/matrices.
For example, X is matrix, X is a set/vector and xi is the i-th
element of X .

A. Definitions

A time series X = {(t1, v1), . . . , (tn, vn)} is an ordered set
of n temporal values vi that are ordered according to their
timestamps ti. Time series can be univariate (2-dimensional)
or multivariate (multi-dimensional). In univariate series, a tem-
poral value is a scalar that refers to one specific phenomenon,
e.g., temperature. In multivariate series, a value is a vector that
refers to multiple phenomena, e.g., temperature, precipitation
and humidity.

The Pearson correlation coefficient (r) measures the linear
relationship between two time series. The absolute value of r
ranges between 1 (perfectly correlated) and 0 (not correlated).
The Pearson correlation is formally defined as:

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
(1)

where x and y are two time series segments to be compared,
and x̄ and ȳ are their respective means. The result of cor-

relation computation on each window is a correlation matrix
M ∈ Rn×n where n is the number of the input time series.

A dictionary D is a collection of fixed-length elementary
time series segments named atoms. A small number of atoms,
combined linearly, can represent most information of any time
series segment. A dictionary-based sparse representation (reps.
sparse approximation) is a linear combination of dictionary
atoms that accounts for all (reps. most) information from time
series segments.

B. Dictionary-based sparse coding

The aim of sparse coding methods is to represent time series
as a linear combination of few dictionary components (atoms)
(Figure 2). These atoms are not necessarily orthogonal. In fact,
we can have seemingly redundant dictionary components that
allow multiple representations of the same time series segment.
This provides an improvement in sparsity and flexibility of
the representation. Sparse coding is generally formulated as
an optimization problem that minimizes the error of the
reconstruction under a sparsity-constraint or under an error-
constraint problem.

a) Sparsity-constraint::

γ̂ = argmin
γ
‖x− Dγ‖22 s.t. ‖γ‖0 ≤ K

b) Error-constraint::

γ̂ = argmin
γ
‖γ‖0 s.t. ‖x− Dγ‖22 ≤ ε

The sparsity-constrained approach aims to represent the
time series by a linear combination of up to K known
atoms. This leads to more compact representations. The error-
constrained approach focuses on limiting the squared error of
the representation to a certain threshold. This avoids higher
representation errors. Both approaches are NP-hard problems
[27]. However, efficient techniques such as the matching
pursuit method [28] or its orthogonal variant [29], and basis
pursuit [30] provide accurate approximations of the optimal
solution.

Fig. 2. Example of dictionary atoms of length 256.



IV. METHOD

In this section, we describe CORAD, our new correlation-
aware compression method for time series data streams.
CORAD uses a novel sparse dictionary compression tech-
niques leveraging correlation to achieve high compression
ratios.

A. Framework

CORAD encodes segments of time series data by using
dictionary atoms and inter-time series correlation information.
It consists of two main phases: (1) Dictionary Sparse Coding
and (2) Compression. In the beginning of CORAD’s process,
the time series data is normalized, partitioned into segments
and the resulting correlation across segments belonging to the
same window is computed. In the Dictionary Sparse Coding
phase, we identify a small set of dictionary atoms that best
approximate each data segment, resulting in a significant
reduction in data size. Finally, in the compression phase, the
sparse coding and the correlation matrices of each window
are combined to achieve an optimal correlation-aware com-
pression. CORAD also allows to bound the maximum error in
the compressed data while achieving very high compression
ratios.

When new data emerges (Figure 3(a)), we check if the
new number of data points qualifies to constitute a new data
segment (i.e., if they reach a segment’s length). Once new
data qualifies to form a new segment, the linear correlation
across the related time series is computed. The result of
the correlation computation on each window is a correlation
matrix M ∈ Rn×n.

B. Sparse dictionary coding

We represent time series segments separately using a small
set of the dictionary atoms. The dictionary learning is con-
ducted as an initial configuration step of CORAD (Figure
3(b)). The necessary time for dictionary construction depends
on several application parameters (e.g., residual error thresh-
old, number of atoms, etc.). The quality of the dictionary can
be evaluated from a compression/querying point of view, the
quality of the storage of the compressed representations, and
the accuracy of the compressed data. A dictionary can be
updated for long time series.

The number of dictionary atoms is an important parameter
for its efficiency. A dictionary with redundant atoms allows
multiple representations of the same times series and provides
potential improvements in terms of the sparsity and flexibility
of the representation. When new segments are formed, a
dictionary-based sparse representation is determined from the
time series segments and stored in a database (Figure 3(c)).
The sparse dictionary representation boils down to a set of
atoms and their associated coefficients for each time series
segment.

Our dictionary sparse coding is derived from Orthogonal
Matching Pursuit (OMP) [29], a greedy heuristic to rapidly
find a nearly optimal weighted set of a dictionary atoms that
approximates each data segment (see Algorithm 1). The atoms

are selected incrementally. In each iteration, we select the atom
Dj that is most highly correlated to the input sample X or
to its residual part r (the current error). The coefficient αj ,
obtained by an orthogonal projection on the sub-space defined
by the atoms selected so far, defines the contribution of Dj

to reconstruct X . The process is reiterated until the maximal
number ρ of atoms is reached. This phase outputs a weighted
list of dictionary atoms (Atom ID, Coefficient).

Fig. 3. Schema of dictionary-based sparse coding

Algorithm 1: Dictionary Sparse Coding
Input : X, D, ρ
Output: Ω, α

1 r := X ;
2 Ω := {∅};
3 while |Ω| ≤ ρ do

// select the next atom Dj

4 Dj := argmaxj /∈Ω
rTDj

‖r‖‖Dj‖
// update the set of selected atoms:

5 Ω := Ω ∪ {j};
// update the coefficients

6 α := (DT
ΩDΩ)−1(DT

ΩX)
// DΩ is the sub-dictionary of the

selected atoms and α the related
coefficients;

// estimate the new residual
7 r := X −DΩα;

8 return Ω, α ;

C. Correlation-aware compression

Our final compressed representation uses sparse dictionary
coding and correlation information (Figure 4). We sort the
correlation matrix computed in the partitioning phase to obtain
the most correlated segments first (see Figure 4(b)). We use
the absolute sum of the correlation matrix rows as a metric
for the weight of a segment’s correlation with other segments.
The higher the absolute sum of a correlation matrix row, the
stronger the correlation of its corresponding segment with



other time series. The segments are then stored in reverse
order of the sorted correlation matrix rows. We use dictionary
representation solely for segments that are not correlated to
any other stored segment. We leverage correlation information
to store the rest of segments. The process continues until all
segments are stored, using either the dictionary atoms or the
correlation columns directly (see Figure 4(d)).

Fig. 4. Schema of CORAD compression algorithm

The representation resulting from algorithm 2 limits the
usage of dictionary atoms to the case where the data segment
is not correlated to other segments being inspected. In the
example of Figure 4(d), for instance, Segment 2 stores 1 value,
instead of 6 values (3 atoms × 2), reducing the size of stored
data.

D. Data reconstruction

CORAD allows to reconstruct the original time series
efficiently (Figure 5). In a first step, the dictionary-stored
segments are looked up using the correlation-coded segments
(see step 1 in Figure 5). Next, the correlation atom coefficients
are multiplied by the scale factor to obtain the current segment
coefficients (see step 2 in Figure 5). The relevant atoms are
next identified and retrieved from the dictionary (see step 3
in Figure 5). Finally, depending on the aggregation level, the
corresponding coefficients from the sparse representation are
multiplied by the corresponding atoms from the dictionary to
reconstruct the original time series (see step 4 in Figure 5).

Algorithm 2: CORAD Compression Pseudo-algorithm
Input : Dictionary D, Window Length l, Sparsity level

(Number of Atoms) α, Error threshold εmax.
Output: R
// correlation threshold from error

threshold (section IV-E)
1 cmin := correlation threshold(εmax)
2 while stream do
3 Scurrent := [];
4 D̃stored := [];
5 while length(Scurrent) < l do
6 Scurrent := Scurrent ∪ stream;

// correlation matrix with rows
reversely sorted by their sum

7 C := sort correlation(Scurrent, descending);
8 for t in C do

// select stored correlated segments
as candidates

9 candidates := {Ct | (Ct,c > cmin) ∧ (c 6= t) ∧ (c ∈
D̃stored)) };

10 if candidates = ∅ then
// no already correlated stored

segments
11 Rw,t := Dictionary Coding(t, D, α);
12 D̃stored := D̃stored ∪ t;
13 else
14 c := {i ∈ candidates | (Ci = max(Ct,candidates)

};
// store the segment c and its

scale factor in the correlation
segment

15 Rw,t := correlation coding(t, c);

16 return R ;

Fig. 5. Overview of query execution over CORAD compressed data



E. Error Thresholding

Dictionary-based compression is lossy, in the sense that the
compressed data is (very) similar but not identical to the orig-
inal data. One highly desirable property of lossy algorithms
is the ability to bound the error introduced. In order to do so,
one needs to specify not only the number of dictionary atoms
to use in sparse coding but also the correlation threshold we
use to consider two time series segments as correlated. The
correlation threshold is hard to determine beforehand, as it
depends on both the application needs and on the dataset at
hand.

The error bounding technique we introduce uses the max-
imum error threshold to determine the minimal correlation
threshold and to limit the loss of accuracy. Based on the
Pearson correlation coefficient described in Equation (1), and
the Mean Squared Error (MSE) equation.

MSE =
1

n

n∑
i=1

(xi − yi)2 (2)

Where x and y are the original and the reconstructed time
series segments respectively. We know that different sample
means have no influence on the correlation coefficient r.
Different means will, however, influence the mean squared
error across the segments. To better capture this difference,
CORAD uses Z-score normalization in order to bound the
data accuracy using the maximum error between the original
data and the compressed data. We use the fact that Z-score
normalized time series have a zero mean and a standard
deviation equal to 1 [31]:

1

n

n∑
i=1

xi = 0,
1

n

n∑
i=1

yi = 0,
1

n

n∑
i=1

y2i = 1,
1

n

n∑
i=1

y2i = 1

(3)
From the equations (1) and (3), we can simplify the Pearson

correlation coefficient as follows:

r =
1

n

n∑
i=1

xiyi (4)

From the equations (2), (3), and (4), we can simplify the
error measure as follows:

MSE = 2

(
1− 1

n

n∑
i=1

xiyi

)
= 2(1− r)

We obtain a relation between Pearson correlation coefficient
(r) and the mean squared error (MSE).

MSE = 2(1− r) (5)

CORAD uses the above relation to unify and create a simple
relation between the Pearson correlation coefficient and the
mean squared error. Z-score normalization is also useful as

it removes the shift difference between correlated time series
segments. This results in an even more compact representation
as the shifts do not have to be stored for each segment.
CORAD naturally uses the normalization information to re-
construct the original data.

V. EXPERIMENTAL EVALUATION

To assess CORAD’s performance, we compare it to state-of-
the art compression algorithms on a set of publicly available
datasets. We vary CORAD’s parameters and analyze their
effect on the compression performance. The code and raw
results are publicly available1. All experiments were run on a
machine with 2.8GHz quad-core Intel Core i7 processor and
16GB RAM.

A. Datasets

We run our evaluation on several real-world datasets col-
lected from several repositories: the UCR Time Series Clas-
sification Archive (UCR) [32], the UCI Machine Learning
Repository (UCI) [33], and the Swiss Federal Office for the
Environment(FOEN) 2.

The datasets were chosen in order to support different cases
in regard to the number of variables and their length. We
briefly describe each dataset below.

1) ACSF1. This dataset contains 100 time series compris-
ing 1460 data points each. The dataset contains the
power consumption of typical appliances. The record-
ings are characterized by long idle periods and some
high bursts of energy consumption when the appliance
is active. This dataset was obtained from the UCR
respository.

2) BAFU. This dataset contains 10 time series comprising
50’000 data points each. It contains hydrological data
collected across multiple stations during the period from
1974 to 2015. This dataset was obtained from the FOEN.

3) GSATM. This dataset contains 19 time series compris-
ing 4’178’504 data points each. The data originated from
gas sensors that were exposed to dynamic mixtures of
carbon monoxide (CO) and humid synthetic air in a
gas chamber. This dataset was obtained from the UCI
respository.

4) PigAirwayPressure. This dataset contains 208 time
series comprising 2000 data points each. This dataset
contains bleeding detection data from vital signs mea-
sured at high frequency (250Hz) using a bed-side hemo-
dynamic monitoring system. The data was collected
from a cohort of 52 healthy pigs subjected to induced
slow bleeding. This dataset was obtained from theUCR
respository.

5) SonyAIBORobotSurface2. This dataset contains 953
time series comprising 65 data points each. This dataset
represents the X-axis of a robot that rolls/pitches/yaws
(measured with accelerometers). The associated task

1https://github.com/eXascaleInfolab/CORAD
2https://www.bafu.admin.ch/bafu/en/home.html



is to detect the surface being walked on (cement or
carpet/field). This dataset was obtained from the UCR
respository.

6) Yoga. This dataset contains 3000 time series comprising
426 data points each. It captures two actors transiting
between yoga poses in front of a green screen. Each
image was converted to a one dimensional series by
identifying an outline and measuring the distance of the
outline to the centre. This dataset was obtained from the
UCR respository.

Our experiments aim at illustrating the performance of
CORAD in terms of: (1) compression ratio, (2) accuracy, (3)
runtime, and (4) usability, where usability refers to the ability
of a compression algorithm to produce usable compressed data
for an application. We use 3 datasets to compare amongst
algorithms of different sizes: medium (ACSF1), large (BAFU)
and very large (GSATM). We also run tests on 5 datasets
of different sizes (ACSF1, BAFU, PigAirway, Sony, Yoga)
varying parameters of the algorithm.

B. Compression ratio
We start by studying the compression ratio of CORAD. We

measure the compression efficiency using the ratio between
the original data size and the compressed size.

Compression ratio =
Original Data Size

Compressed Data Size
We first study CORAD’s performance by running tests

and compare its performance with three baselines techniques,
TRISTAN (our former sparse compression technique described
in [2]), DWT (a compression technique using wavelets to de-
compose time series into frequency components) and Cheby-
shev (a widely used piecewise compression technique that is
vector quantization based). The window length selected for
this experiment is 20 values, with a maximum MSE error
bound equal to 0.4 and a sparsity level (number of dictionary
atoms used for sparse coding) equal to 4 atoms. Figure 6
illustrates the compression ratio results of CORAD along with
the baseline techniques. CORAD outperforms all the baseline
techniques.

Fig. 6. Compression ratios.

We now vary the parameters of CORAD and observe their
effect on the compression ratio. We first vary the maximum

error threshold. We use a 20 values segment length and 4
dictionary atoms for the sparse coding. Figure 7(a) illustrates
how the compression ratio varies with the maximum error
threshold. We observe that the larger the maximum error
threshold, the higher compression ratios CORAD yields. This
is due to the increasing usage of correlation encoding as
opposed to dictionary sparse coding, which results in a better
utilization of storage.

We now vary the sparsity level. We use a 20 values segment
length and a maximum MSE error bound of 0.4. Figure 7(b)
illustrates how the compression ratio varies with the sparsity
level. When the number of atoms used to represent one time
series segment increases, it results in more information stored
in the sparse coding, and the compression shall be negatively
impacted.

Next, we analyze how CORAD’s compression ratio behaves
when the window length varies. We vary the window length
while using a maximum MSE error bound equal to 0.4 and a
sparsity level equal to 4 atoms. Figure 7(c) shows that the
compression ratio increases when the segments are longer.
This is because our segmented windows do not overlap, and
an increase in the size of a window thus results in having a
lower number of windows. This reduction in the number of
windows lowers the amount of data stored and therefore the
compression gain increases. This could, however, result in a
larger loss in accuracy, which highlights the need for our error
bounding method.

C. Accuracy

We turn to the study of the loss in information caused
by the compression. In order to quantify the accuracy of a
reconstruction, we use the Mean Squared Error (MSE) which
is the sum of the squares of the differences between the
original and the reconstructed values. We analyse the Mean
Squared Error (MSE) achieved by each baseline compression
algorithms TRISTAN, DWT and Chebyshev, along with that of
CORAD. The segment length used is 20 while the maximum
error threshold is 0.4 and the sparsity level corresponds to 4
atoms. Figure 8 demonstrates that our previous method, TRIS-
TAN, introduces slightly less error than CORAD, especially on
the GSATM Dataset. This slight increase in error is expected
due to the weak correlation in this dataset and its relatively low
number of time series. We can notice the effect of our error
thresholding method, in fact, none of the 3 datasets results in a
larger error than the input maximum error thresold (Maximum
Error Threshold = 0.4). CORAD outperforms the Chebychev
algorithm for all datasets and outperforms the DWT approach
in both the BAFU and ACSF1 Datasets. The Wavelet-based
technique yields however a more precise representation on the
GSATM dataset, due to its weak correlation.

Next, we evaluate the optimal number of atoms to use for
a one segment representation. More precisely, we compute
the minimum number of atoms to use to approximate the
segment properly. The segment length used is 20, with a
maximum MSE error threshold equal to 0.4 and a sparsity level
equal to 4 atoms. Figure 9 shows that for the three datasets,
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Fig. 7. CORAD Compression Ratio.

Fig. 8. Accuracy Loss of Different Algorithms.

increasing the number of dictionary atoms to use for a one
segment representation does not have an observable impact
when [3 − 6] < sparsity level. This result points us to the
minimum number of atoms one can use to obtain a reasonable
representation of the original data.
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Fig. 9. Accuracy loss vs. Sparsity Level.

D. Runtime

We now turn to the time necessary for compression and
decompression. Even though CORAD is capable of executing
queries on the compressed data directly (similarly as in [2])
extremely efficiently, we aim to measure the time needed for
both compressing and decompressing the data and compare
it to existing baselines. The runtimes reported below are
averaged over ten consecutive runs.

We consider the runtime of compression and reconstruction
achieved by each baseline compression algorithm: TRISTAN,
DWT and Chebyshev, and we compare them to that of
CORAD. We run our tests on 3 datasets. The segment length
used is 20, with a maximum error threshold equal to 0.4
and a sparsity level equal to 4 atoms. Figure 10 shows that
CORAD’s runtime is faster than DWT and Chebychev ap-
proaches. CORAD computes the correlation matrix in addition
to TRISTAN method and requires two lookups instead of
one when reconstructing the data. This implies, naturally, that
TRISTAN’s runtime would slightly outperform it.

Fig. 10. Runtime of Different Algorithms.

We now evaluate the effect of the sparsity level and of the
window length on the compression and reconstruction runtime.
Figure 11(a) illustrates that the runtime is proportional to
the number of atoms. This is due to the fact that having
more atoms for one segment would imply more computation
for the compression and decompression. This is yet another
reason to use a low number of atoms. On the other hand,
increasing the time series segment length results in a lower
number of windows and therefore fewer computations for both
compression and decompression as Figure 11(b) illustrates.

E. Analytics on compressed data

To evaluate the end-to-end accuracy of our compression
scheme in practice, we consider the sample task of recovering
missing value from time series. We incrementally delete 20%
of the original data, which we recover using some state-of-the-
art missing values recovery techniques. We use TKCM [34]
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Fig. 11. CORAD Efficiency.

and TRMF [35] as recovery methods on the BAFU dataset
on both the raw and the decompressed data. Table I shows
that the precision results from both versions are very similar
to each other. This results validate the assumption that our
reconstruction is almost identical to the original data, and that
CORAD can be highly effective in a practical setting. As a
result, one can use the highly effective representation resulting
from our technique without introducing any noticeable artifacts
in real-world applications.

TABLE I
RECOVERY ACCURACY ON REAL-WORD DATASETS

varying % of miss. val.
Method 20 % 40 % 60 % 80 %

O
ri

gi
na

l TRMF 0.246 0.379 0.363 0.338

TKCM 1.283 1.421 1.261 1.248

C
om

pr
. TRMF 0.246 0.379 0.363 0.338

TKCM 1.283 1.421 1.261 1.248

VI. CONCLUSION

We introduced CORAD, a new real-time technique to ef-
fectively compress time series streams. CORAD relies on a
dictionary-based technique that exploits the correlation across
time series. In addition, CORAD allows to adjust the degree
of accuracy that is acceptable depending on the use-case.

We extensively evaluated our method on several real-world
datasets and showed that it drastically increases the compres-
sion ratios (up to 40:1) compared to state-of-the-art techniques
with no significant information loss. As future work, we
plan to combine other compression approaches with CORAD
such as scalar quantization compression schemes. As scalar
quantization is local, it can be run on top of CORAD to further
increase the compression ratio. We also plan to identify the
types of queries that are the most efficiently executed on our
compressed representation directly.
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