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ABSTRACT

Transaction logging and log shipping are standard techniques to
provide recoverability and high availability in data management
systems. They entail an update to a local log file and a remote site at
every transaction. Modern databases have leveraged technologies
such as Persistent Memory (PM) and RDMA-enabled networking
to perform these updates as fast as possible. This mix of technolo-
gies, however, presents several drawbacks: lack of portability, the
complexity of the data path, and interoperability.

To address these issues, this paper introduces the X-SSD, a new
SSD architecture that mixes NAND Flash and PM memory classes.
AX-SSD device can take transaction log writes on a fast, PM-backed
data path and be responsible for propagating the operation to re-
mote sites and eventually to NAND Flash storage. We design and
implement an actual reference X-SSD device called Villars to vali-
date this new architecture. Our experiments show that the Villars
device can offer a more straightforward and robust way to manage
PM on behalf of the database and achieve equally fast results.
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1 INTRODUCTION

Database replication is often performed by copying transactions’
changes into a secondary site before committing these changes
into local storage [41, 62]. Such a mechanism is called (transaction)
log shipping and is present almost universally in databases that
offer replication, (e.g., [3, 56, 63]). If the primary database site goes
down, the secondary one can serve as a hot backup, as it caught
up with all the primary database changes. Achieving this level of
robustness, however, comes at a cost. Transaction logging and log
shipping require writing to storage and exchanging data over the
network, both relatively expensive operations.

Two technologies reached maturity recently that can be rele-
vant in this scenario. The first one is Persistent Memory (PM), and
more specifically, PM in a DIMM form factor that replaces server
memory and can be accessed by an application via load and store
instructions. PM comes in many flavors such as Intel Optane [31]
or battery-backed DRAM [16]1. Optane class PM has for instance
proved to be useful in mixed memory indices [4, 50, 57], and can of-
fer alternative ways to build a database system [5]. Battery-backet
class PM behaves as regular DRAM but is not volatile. The sec-
ond technology is RDMA-enabled networks [30]. These networks
transport data with negligible overhead and have been useful, for
instance, in query execution [22, 49, 64]. Just as with PM, RDMA-
enabled networks have also fostered new database designs [11].

PM and RDMA-enabled networks can also help to record and
propagate transaction log updates [75, 78]. In particular, we con-
sider the case of Main-Memory Databases [19]. They can reach
unprecedented performance levels because they maintain all their
data in DRAM and persist only the transaction log, which there-
fore becomes their main bottleneck [51]. Figure 1 (left) depicts
how a typical system can perform log writing and shipping with
PM and RDMA. We can observe in the figure that the database
system is responsible for coordinating several different steps, some-
times targeting local PM, sometimes remote PM or memory via an
RDMA-enabled NIC, and lastly, fast SSD devices.

Each of these technologies offers a specific API and presents
some restrictions. The combination of these restrictions creates a
number of issues, including:
• The interaction of RDMA and PM is complex and poorly under-
stood. For example, using RDMA to update a PM-backed address
on a remote machine may make the update visible, but it does not

1The JEDEC standard, which supports DRAM interoperability, calls these NVDIMM-P
and NVDIMM-F types of persistent memory, respectively [23].
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Figure 1: (Left) Logging and replication path using PM and RDMA. (1) The database writes log data into the PM. (2) It then ships

the data to remote PM via RDMA. (3) It uses a second RDMA operation to make the change the log describes into the remote

host’s memory (e.g., using Active-Memory techniques [78]). Eventually, both hosts will need to make space on PM. (4a/b) They

do so by copying some of its contents into an SSD. (Right) Logging and replication path using a X-SSD device. The sequence of

steps is the same, but the X-SSD device takes responsibility for propagating data in steps (2) and (4a/b), while the update of the

remote memory is done by the remote Database (3).

guarantee that that update is persistent [37]. If a machine crashes,
a replication operation’s correctness can be compromised.

• While PM can be accessed with simple load/store memory
instructions, programming correct, persistent data structures is a
daunting endeavor. A software crash can leave a structure in an
arbitrary state, from which the database then needs to recover.

• Every DIMM slot used for PM is not used for DRAM. This forces
the system designers to choose between DRAM or PM capacity.

• Optane and battery-backed DRAM require specific server support
and cannot be ported across servers without certain characteris-
tics. Optane, in particular, is not supported on AMD platforms.

To address these issues, this paper presents a new SSD design
that allows database logging and replication to benefit from PM and
fast networking, but without the above drawbacks. In summary,
our design is based on a deceptively simple decision: it moves PM
out of the CPU path and into the SSD, and it lets the latter manage
the access to PM, locally or remotely, on behalf of the database.
Specifically, we devise a new storage architecture that contains PM-
and NAND Flash-based storage that is natively networked. The
architecture provides a separate, fast data path and interface fully
dedicated to transaction log writes and offers Data Propagation
Services, including across servers, upon which database replication
can be built. We call our storage architecture the X-SSD2. Figure 1
(right) shows how the logging and replication data paths can be
simplified with a X-SSD device.

Moving PM into a X-SSD device frees DIMM slots for DRAM and
restores the ability to deploy PM on vendor-independent server-
class machines without special-purpose DIMM slots or battery-
backing features. One can then use PM on an AMD server simply
by plugging in this new NVMe device. The device also avoids in-
teroperability problems between RDMA and remote PM. These
problems occur because the RDMA writes may be routed to the
CPU caches in a process called Data-Direct IO (DDIO) [21], before
they reach the PM. Our system can resort to low-level mechanisms
to request the NIC to deliver messages directly to storage, which
would be impractical at the application level.

2The ’X’ stands for “cross” for reasons that will become apparent shortly.

We design and implement a X-SSD device using an actual SSD
prototyping platform [44]. We call this device Villars. The Villars
device is fully compatible with the NVMe standard [55], the de facto
standard for fast SSDs, even with our extensions. The Villars is
the first in what we expect to be a series of X-SSD devices with
increasing application functionality. We also provide a set of drop-
in system call replacements, e.g, pwrite(), that make it easy to
convert existing code to use our device. These syscall replacements
can detect, with low overhead, when a previous write is persistent
or is in-processing within a local device or a remote device, allowing
the database to implement different replication flavours.

In summary, we make the following contributions:
• We propose a new SSD architecture that mixes PM and NAND
Flash storage in a way that naturally matches transaction logging
and replication behavior (§ 3).

• We describe a reference design of our architecture that presents
precise durability semantics to the application (§ 4).

• We describe how to integrate data propagation services in an
existing database as well as suggest how a new database can
explore alternative designs (§ 5).

• We quantify the benefits of shifting data movement (across mem-
ory types and local and remote servers) to the storage, freeing
application cycles in the process (§ 6).

• We present several use cases that can benefit from X-SSD devices’
existing and potential features (§ 7).

• We position our solution relative to the state of the art (§ 8).

Before describing our architecture in detail, we start below by
presenting the background necessary to follow our discussions.

2 BACKGROUND

The X-SSD device extends traditional SSDs with data propagation
services exposed through a new interface. To understand the impli-
cations of such an extension, we revisit how data flows between a
database and a storage device (§ 2.1) and, once it reached the latter,
the path the data follows within a conventional SSD (§ 2.2). Lastly,
we introduce two standard but little-known technologies called
CMB and NTB upon which our architecture is based (§ 2.3).
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Figure 2: Top: Hardware and software stacks between a Data-

base and an SSD. (1) The Database requests storage services

through the NVMe driver. (2) The driver uses the PCIe system

to send control and data requests to an SSD. CMB opens a

second communication path—still using PCIe but now via

memory mapping. Bottom: A traditional SSD Architecture

(adapted from [44]). (3) The Host Interface Controller re-

ceives the host’s commands through NVMe or the CMB fea-

ture. (4) The Firmware coordinates several aspects of the de-

vice, such as the scheduling of operations, the management

of the Data Buffer, or themapping of physical to logical pages.

(5) The Storage controller interacts with the Flash Arrays and

deals with aspects such as low-level operations scheduling

and error correction. Note that the PCIe subsystems of differ-

ent hosts can be interconnected via a technique called NTB.

2.1 Connecting the Database and SSDs

Today’s main “conduit” between devices and the OS/applications is
a standard protocol called NVMe [55]. Mainly, NVMe determines
how commands to a device should be issued and how data is trans-
ferred. As these transfers are commonly performed in fixed-sized
blocks, this kind of device is said to be a block device. A typical
software stack that uses NVMe devices is depicted in Figure 2 (top).

When the OS wants to send work to the device, it encodes it
as an NVMe (read or write) command and places it in a command
submission queue shared with the device. The OS signals the device
whenever it adds new commands through a mechanism called a
doorbell. In turn, the device transfers data in and out of the OS cache
(or application areas in case of Direct IO). When a transfer is fin-
ished, the device adds a command completion entry to a completion
queue and notifies the NVMe driver via an interrupt.

Applications need not interact with NVMe devices directly—at
least, that is the standard practice. They interact with the OS instead
via calls such as pread() and pwrite(), which abstract away the
details of the communication using a file-system interface.

The PCIe subsystem is the backbone interconnecting the host’s
memory and peripheral devices [33]. This subsystem has a long
history. In its initial forms, called PCI and PCI-X, the subsystem was
strictly a peripheral bus. As a consequence, only one device could be
using it at a time. The protocol has dramatically changed over time,
and PCIe became a family of protocol layers that communicate
through packets. In other words, PCI may have been a bus, but
PCIe is a full-fledged networking system. Each device receives an
address based on the slot it is connected to, while the CPU receives
a unique address.

The packets in this network are called Transaction Layer Packets
(TLPs) and mainly carry read or write operation requests. These
operations allow hosts and devices to access each other memory
regions. For example, an NVMe device can read the submission
queue in the host via TLP packets. It can also transfer the data to
which the commands refer in the same way.

2.2 The Life of a Log Write

An SSD is usually divided into three main subsystems. The top
subsystem is the Host Interface Controller (HIC), which implements
the NVMe protocol and PCIe messaging. The bottom subsystem
is the Storage Controller, which manipulates actual Flash arrays.
We call the middle subsystem Firmware3; it performs several tasks
necessary to convert NVMe commands into Flash operations. These
subsystems are depicted in Figure 2 (bottom).

We explain how these components interact by following the
path a log write takes inside an SSD. A log write starts as an NVMe
command sitting on the OS driver submission queue. The HIC is
capable of fetching these commands and recognizing the NVMe
vocabulary. Given that the log command is a write, the HIC uses
a Direct Memory Access (DMA) engine to bring the data into the
device. The data is placed into a temporary Data Buffer area. It is
very common for an SSD to cache data in this temporary area.

From this point on, the Firmware coordinates all aspects nec-
essary to save the log record(s). Most notably, the Firmware runs
the Flash Translation Layer (FTL), which is responsible for finding
empty Flash page(s) in which to place the log data. By determining
that page set, the Firmware chooses a physical address to save the
data. However, the actual Flash write is yet to take place.

The Flash Storage Controller (FSC) monitors when the Flash
Array units become available for work and keeps them busy with
ongoing requests. In the case of our log write, the FSC checks if no
other operation is using the destination Flash array, which contains
many pages. Once the FSC finds the opportunity, it moves the data
to the proper array and issues the Flash program (write) operation.

Once the FSC finished thewrite operation, it signals the Firmware.
In turn, the latter asks the HIC to place a command completion
in another NVMe queue called the completion queue and issues a
completion notification. This is achieved via an interrupt generated
after the completion command is stored in the completion queue.
By processing the interrupt, the NVMe driver understands that our
log write is complete.

We observe that there is a long data path a write command
should follow before its data can be persisted. Fortunately, there
are ways to shorten this data path.

3In our device, this module is indeed implemented as embedded software.
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2.3 CMB and NTB

The NVMe standard allows a device to optionally expose an inter-
nal memory area to applications via memory mapping (MMIO).
This feature is called Controller Memory Buffer (CMB) in the stan-
dard [10]. Reads or writes performed against the area are automati-
cally translated to PCIe messages directed towards the device. A
X-SSD device uses CMB to expose a second, byte-addressable data
path, in addition to the conventional block-based one.

Moreover, another relevant NVMe feature exists that is called
Persistent Memory Region (PMR). It can expose yet another mem-
ory area but assumes the device persists the operations against that
area. The difference between CMB and PMR is that the latter has
additional configuration possibilities. For our purposes, we con-
sider CMB and PMR as functionally equivalent and refer to them
henceforth only by CMB.

Another technology that X-SSD devices utilize is offered by the
PCIe system. As mentioned above, PCIe is a networking system, and
therefore it also supports interconnecting different hosts’ systems.
This technology is called Non-Transparent Bridging (NTB) [29]. In
practice, the devices on a server equipped with NTB can be seen
by any other NTB-connected servers. NTB is little known, but it
has long been supported in mainstream OSs.

Our interest in NTB comes from its lower latency and faster
bandwidth when compared to other networking technologies [43,
52]. Unlike Ethernet or Infiniband network cards, NTB cards do not
have to convert PCIe traffic into other packet types. PCIe itself is
used for networking; there is no conversion overhead.

Speed is a welcome feature but our interest in using NTB has
more to do with its simplicity. As we develop the hardware logic
that is involved in the implementation of our device, we naturally
have to deal with low-level aspects of PCIe. In other words, we
already deal in logic that manipulates PCIe’s TLP packets. Using
NTB to bridge two PCIe systems involves very little additional effort,
mainly address translations and sometimes minor formatting—but
nothing as complex as what would be required to implement an
RDMA stack client inside the device.

3 THE X-SSD ARCHITECTURE

The transaction log workload presents a unique set of challenges
for storage as it is central to database performance and robustness.
We can summarize these challenges as follows:
(A) Log writes must incur low-latency, since flushing log records

is on the critical path of transactional systems [34];
(B) These writes must have clear semantics in crash scenarios in

order to facilitate crash-consistent behaviors;
(C) Log writes are likely to be replicated and, therefore, remote

data paths—potentially leveraging modern networking [30]—
must be considered.

Using current state-of-the-art storage leaves the database de-
signer with at least two choices for implementing fast logging and
replication. She can use PM directly from the database, as Figure 1
(left) shows. As discussed above, this option offers low-latency
writes (A), but brings a complex data path with several issues re-
garding (B) and (C). This option also sacrifices the ability to port the
database to other servers that do not support the particular kind of
PM adopted.

Alternatively, she can avoid PM in favor of traditional NVMe
SSDs, such as the one in Figure 2 (bottom), by using many SSDs.
This alternative offers equivalent throughput but not the latency
advantages of PM. The setup to take advantage of many SSDs at
once is somewhat complex (as it involves using some sort of IO
framework), and may require specifically designed crash-consistent
measures. Granted, this would be portable in that it would not
depend on PM support. In short, both alternatives introduce com-
promises. We believe a new SSD architecture can bridge this gap.

The first goal of this new architecture is to combine the alter-
natives above, offering the best of both worlds. In other words,
we seek a data path for transaction logs that, first and foremost,
meets the three log workload challenges listed above. We believe
that solving these challenges alone justifies a new storage design.
However, a new design creates the possibility of solving other is-
sues beyond performance and robustness. Specifically, we wish to
address two additional problems: to gain back both the portability
and ease of programmability that were lost by the introduction of
PM. Therefore, we consider two additional goals as follows.

The second goal of the new architecture is to conform to existing
standards as a way to foster portability. In particular, we believe
that the NVMe standard [55] has proven flexible enough to support
current and future hardware evolution trends. We cite as evidence
the Open Channel SSDs [13] and Zoned Namespaces [12] efforts,
which were developed under the standard. These efforts can be
seen as ways to give applications better control over storage, which
is, in spirit, what we are trying to achieve for database logging.

The third goal of our architecture is to find a balance between
application control and programming difficulty. Currently, getting
good performance out of modern storage requires the database
architect to use and combine several complex libraries such as
SPDK [77], NVML/PMDK [73], ibverbs [30], or io_uring [7], to
name but a few. We believe that there ought to be a simpler way to
give control over storage to the database architect, without burying
that control under layers of APIs and requiring long learning curves.

3.1 The X-SSD Features

To achieve these goals, we propose an architecture that combines
two distinct sides within the same device: a conventional side and a
fast side. Figure 3 depicts the two sides and how they interact. The
conventional side is an independent SSD device whereas the fast
side can be seen as a high-performance staging area for append-
only workloads. Our design rationale is to give applications a choice
between two IO profiles but using a single device and making sure
the profiles are seamlessly integrated.

We introduce theX-SSD architecture in more detail by describing
its key features below.

Byte-addressable Interface for Append-only Workloads. The X-
SSD offers a second-interface that complements that of a traditional
Flash-based SSD. Block-device operations are treated normally by
the latter. Byte-level operations are handled by the second, CMB-
based interface. The CMB interface consists of an MMIO region that
an application can access via load and store instructions. Some
form of PM backs the CMB area. We evaluate the feasibility of two
types of memory, SRAM and DRAM, made persistent by assuming
battery backing (§ 4.1).
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Figure 3: Logical X-SSD architecture. The device is divided

into two sides, a Flash-based side and a PM-based side. The

Flash device is primarily a conventional SSD. The PM device

persists data coming from a byte-addressable interface on a

circular buffer. It eventually destages that data to a designated

circular buffer on the conventional side (and optionally to

peer X-SSDs). The fast side is backed by capacitors that allow

destage data even in a sudden power interruption. Therefore,

fast-side writes can be acknowledged to the application be-

fore reaching the conventional side.

Data Propagation Services. The semantics of a write on the fast
side is different from that on the conventional side. A fast write
against CMB will be eventually destaged into the conventional side
of the device in the same order it was issued (§ 4.3). The destaging
occurs without any intervention from the application that issued
the writes, as follows. The fast side is conceptually a ring to which
the application writes. In the background, the device is constantly
moving data from this ring onto the conventional side. The con-
ventional side of a X-SSD device also maintains a destaging area
in the shape of a ring, but much larger than the one on the fast
side (cf. Figure 3). Optionally, that fast write can also be sent to
Villars devices configured as secondary (replicas). We evaluate
remote connections using PCIe NTB as an interconnect, but other
networking technologies such as RDMA are possible (§ 4.2).

Crash Consistency. The battery-backing allows the device to offer
a predictable behavior w.r.t. the data that was in transit should a
sudden power interruption occur. The extra power supply allows
the device to finish destaging any data present on the fast side. In
practice, an application will see the data in transit during a crash
on the conventional side of the device after a reboot (§ 4.1).

Logging Status Monitor. A X-SSD device provides a control inter-
face used by applications to inquire about the progress of the data
movement above. For example, an application can check whether a
given write was already persisted on a remote X-SSD device (§ 4.2).
Applications can use the provided conventional-style system calls
replacements to obtain the same guarantees (§ 5.1).

Device Setup Interface. An additional control interface allows
an application to configure the device (e.g., size of the PM area
or the area on the conventional side used for long-term storage)
and identify and connect to peer X-SSD devices. We also discuss
how advanced setups allowing multi-threaded or multi-client use
of X-SSD devices can be supported (§ 7).
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Figure 4: Physical X-SSD Architecture. The fast side consists

of three modules (in red). The CMBmodule exposes the CMB

backing memory to the database. The Destage module moves

the latter’s contents to the conventional side. The Transport

module (on a primary device) propagates the fast writes to

remote devices and monitors their progress.

4 VILLARS: A X-SSD REFERENCE DESIGN

This section introduces a reference design for the X-SSD architec-
ture, which we call the Villars device. As mentioned above, we
expect this to be only one in a series of devices that implement our
architecture in a particular way. The design of the Villars device
is geared towards meeting the goals described in Section 3. The
design roughly consists of three modules, as Figure 4 shows: the
CMB, Transport, and Destage modules. The CMB module is the
top-level module, and it handles the byte-addressable interface that
the application uses (§ 4.1). The Transport module is responsible for
connecting to remote peer Villars devices and replicating the CMB
writes stream across them (§ 4.2). The Destage module connects
the two sides of a Villars device and, as its name implies, destages
data from CMB’s PM backing memory into the conventional side’s
NAND Flash (§ 4.3).

4.1 The CMB Module

The CMBmodule gets its name from a little-known NVMe standard
feature [55] called Controller Memory Buffer (§ 2.3). The standard
is liberal in how the area can be used. In the Villars device, the
CMB module is backed with Persistent Memory, and the module
allows the database to read and write to the backing area via an
MMIO interface. Figure 5 depicts the CMB’s internal components
and its data and control paths.

Persistent Write Semantics. The CMB module receives applica-
tion data as PCIe TLP packets. The module tries to make the path
to persistence as short as possible, but it takes as many steps as
necessary to achieve this safely. The arriving data is placed on an
SRAM-based queue with a pre-negotiated size with the database.
The importance of this queue’s size will become clear shortly. The
CMB module proactively dequeues elements and places them in
the backing memory.
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reaching backing memory—but never before—a counter is

incrementedwith the size of the datawritten. (4) This counter

is available for the database to read (4).

The Villars device has two alternative implementations for the
backing memory, one using SRAM and the other using DRAM. We
assume that the device is guarded against power losses by super-
capacitors [9]. Other types of memory could be easily supported,
such as small-block Flash (e.g., Samsung’s Z-NAND) and Storage
Class Memory, such as Intel’s Optane DC Memory.

Logically, the device treats the backing area as a ring and ex-
pects the database to write to the tail addresses of the area mostly
sequentially. By mostly sequential, we mean that the Villars de-
vice can tolerate data arriving at the tail of the queue out of order
within established bounds. Our decision follows some experiments’
results in which the database sends one or very few bytes at a time
through the interface. These bytes could arrive out of order. The
real problem with this approach is the low performance obtained.

We, therefore, evaluated ways to have the application send
chunks of bytes at once. An application can benefit from an existing
chunking mechanism inside CPUs if the device classifies the CMB
region to the system as aWrite Combining (as opposed to an Un-
cached) region [32]. We discuss experiments in Section 6.1 in which
writing in a few bytes’ chunks using this mechanism improves the
CMB performance considerably.

We offer the following semantics for writes: writes to a Villars
device are considered persistent once they reach the backing mem-
ory’s ring. The CMB module maintains and increments a credit
counter with the number of bytes written to the ring. The counter
and the queue’s size are, as mentioned above, the cornerstone of a
flow-control mechanism between the application and the device.

Credit-based Flow Control. The device may wish to exert back-
pressure on the database on certain occasions. In other words, the
database may be asked to pause writing until the previously accu-
mulated data on the queue has become persistent, either locally
or on a secondary host’s device (for replication). To this end, the
Villars device allows the database to monitor when its pending
writes become persistent without necessarily resorting to calls such
as fsync(). (In fact, the mechanisms we describe here can be used
to implement an fsync() replacement (§ 5.1). The monitoring is
done by exposing the credit counter via a control interface (also
utilizing MMIO).

The mechanism works as follows. If there are enough outstand-
ing writes to fill up the queue, whose size the database was notified
about initially, the database should assume it needs to pause its
writing momentarily until a portion of the queue gets persisted.
For example, if the queue is 4096 bytes and the application has not
yet written anything, it may write 4096 bytes without checking
the credit counter. Once it finished writing, the counter may have
advanced but not by the entire 4096 bytes; some writes may still
be making their way through the data path. For the sake of this
example, let us assume that the application reads the credit counter,
and it comes back at 4000 bytes. It means that 96 (tail) bytes are still
in flight. Therefore, the application can write at most 4000 bytes
before rechecking the counter. The back-pressure mechanism is
advisory and requires the application to adhere to the protocol if it
wishes to benefit from the Villars device’s guarantees.

Crash Consistency Behavior. The CMB module is responsible
for implementing a crash protocol. When it detects that the device
suffered a sudden loss of power, it uses the Destage module (§ 4.3)
to destage the CMB ring in full. In practice, when the device (or
database process) reboots, a certain additional amount of writes
from the tail of the ring will appear on the conventional side. The
device will stop Destaging if it encounters a gap in the data. This is
consistent with the increment of the credit counter. The counter can
only be incremented when contiguous chunks of data are formed.

4.2 The Transport Module

The Transport module is optional. When inactive, the Villars
device works in stand-alone mode, which means only the CMB
and Destaging modules are fully operational. When active on a
primary Villars, the Transport module inserts itself into the data
and control paths of the device. It does so to receive a mirror of the
stream of writes directed at the fast side, and to ship these writes
across to other X-SSD devices it considers its peers. Note that the
data transfer across devices may be slower than the CMB intake,
which is why the Transport module may also insert itself into the
back-pressure mechanism we discussed above. Figure 6 shows both
the data and back-pressure flows.

We assume the transport module has access to a network adapter
card and is designed to shield the rest of the device from the net-
working details. For simplicity, we designed the Villars device’s
Transport module to use the PCIe system itself as an interconnect,
through NTB. As we explain in Section 2.3, the PCIe system is, in
fact, a comprehensive networking system and NTB is its native
internetworking mechanism.

Networking. To use NTB means that we interconnect our servers
via Non-Transparent Bridging adapter cards. The Transport module
receives its input by mirroring the TLP packets that arrive on the
CMB interface. From there, the module repackages the traffic and
sends the resulting TLP packets to the address of the secondary
hosts. NTB adapters have hardware support for multicasting, which
alleviates the load on the primary device should many secondaries
be deployed. However, for simplicity we chose not to use it. The
primary Villars device’s Transport module creates one mirror flow
per secondary. While this may cause scalability issues when using
many secondaries, it allows each secondary to receive traffic at an
independent pace.
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Figure 6: Data and control paths between the primary and

secondary Villars devices. (1) The primary receives mirror

streams of the writes against CMB, one for each secondary.

(2) It redirects each stream to a secondary X-SSD device. (3)

The latter receives the writes through its CMB interface and

(4) persists them to the backing memory, updating the local

credit counter. (5) The secondary’s transport occasionally

updates a shadow copy of its counter in the primary. (6) The

device uses a combination of shadow counters to respond

depending on the replication protocol implemented.

Each secondary Villars’s Transport module receives the TLP
packets from the primary in the same way it would receive byte-
addressed traffic from the local database: through the CMB module.
The difference with a secondary device is that the Transport module
periodically reports its credit counter to the primary.Wewill discuss
the behavior of credit counters in a secondary setting shortly.

Turning a Villars device’s Transport module on, either in pri-
mary or secondary mode, can be done with an NVMe command.
To put it differently, changing the networking mode for a Villars
device or its peers is done via software and does not require any
change to its hardware. The NVMe protocol supports a type of
command extension called vendor-specific, in which a device manu-
facturer can include pre-defined commands that are shipped with
a device, and the results can be returned to the caller to verify a
successful execution. As we mentioned before, the Villars device
is a fully conformant NVMe device, and the commands we added
are sent using vendor-specific features of the regular NVMe drivers
that come in a “vanilla” Linux distribution.

Shadow Counters and Replication. As mentioned above, a
secondary will send updates about its credit counter to the primary.
The frequency with which it does so is adjustable, and we will
discuss the implications of these adjustments experimentally (§ 6.5).
The primary keeps a copy of each secondary counter, called shadow
counters, where it applies the credit updates received. The counters
can be used to implement different replication protocols.

The Villars device implements a primary-secondary eager repli-
cation scheme via log-shipping [38]. A transaction’s log entries get
recorded locally and remotely on the secondary server(s). However,
when the database reads the credit counter, the value that the Vil-
lars device returns is the counter with the most significant delay
among the secondaries. The database, therefore, only considers a
log entry persisted if it is persisted in all secondaries.

Other replication schemes can be implemented simply by chang-
ing which counter or combination thereof the database sees, for
example:
• Lazy replication [58] can return the primary counter, allowing
the database to proceed independently of the secondaries’ speed.

• Chain replication [72] can return the counter of the last secondary
in the chain. In that case, all but the last server would have a
single shadow counter from the server in the chain.

More sophisticated commit protocols such 2PC [24], Quorum [2],
Replicated-StateMachine [59], or even deterministic commit schemes
(e.g., [69]) can also be supported. However, they require additional
coordination and promise-rollback mechanisms. These mechanisms
are exciting additions to our current design, and we plan on explor-
ing them in future X-SSD devices.

4.3 The Destage Module

The Destage module is a Firmware extension that moves data from
the fast to the conventional side. It monitors the amount of data on
the CMB backing memory and schedules Flash write operations in
small batches. From that point on, the data path for CMB data is
almost the same as the data path for conventional data. The only
difference is that the Destage module uses a predefined range of
logical blocks on the SSD and, as described above, implements a
ring buffer over that area. Figure 7 shows how the Villars device
implements the Destage path.
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Figure 7: (1a) TheDestagemodule notifies the schedulerwhen

a new chunk of log data is available. (1b) The scheduler con-

siders the data on both the CMB and Data Buffer areas, and

(2) determines which one to save in Flash next.

Detailed Path. The Destage module maintains a range of Logical
Block Addresses (LBAs) to store CMB data to be destaged. It treats
that area as a ring also. For every new page, the module assigns the
next LBA on the ring to that page and, if the ring wrapped around,
it adjusts its head. The ring’s head (and tail, if the ring is not full)
can be accessed via the log control interface.

To fill in a new Flash page, the unit of Flash write on the Villars
device, the Destage module monitors CMB’s backing memory area
regularly via that ring’s head and tail. Occasionally, it bundles a
portion of the ring’s head data as a Flash data page. The module
may also decide to destage less data than a page in order to meet
a given latency threshold. It uses filler data to complete a page’s
worth of data, in case the ring’s head area is not large enough.
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The actual destaging, i.e., moving a data page from the fast to the
conventional sides, can be done in different ways. The reason is that
the device may also have pages from the conventional side sitting in
the Data Buffer that need to be made persistent. The Villars device
can be configured to operate with different policies via a Destage
Priority, Conventional Priority, or Neutral scheduling modes.

In each mode, the device’s scheduler will prioritize a different
source of write requests. The neutral scheduling is that of a tradi-
tional device, i.e., it tries to divide the writing opportunities equally.
The Destage (Conventional) priority gives precedence to pages
coming from the fast (conventional) side. In the Destage (Conven-
tional) mode, the scheduler will only place low-priority requests in
the “gaps” of the high priority ones, i.e., the brief moments where
a Channel has nothing scheduled for a given array. We call this
type of scheduling Opportunistic Destaging. Note that, other than
in the scheduler, practically no additional change is necessary to
the Storage Controller (§ 2.2) to implement a Villars device.

Destaging Efficiency. Performing destaging inside the storage
device saves some host memory’s bandwidth. The reason is that if
an application were to perform destaging (cf. Figure 1 left), it would
move data unnecessarily, spending precious bandwidth as follows.
The application would first write data to NVM memory. Assuming
the NVM is connected to the CPU’s memory controller, this rep-
resents one data movement. A second and third data movement
would be to read the data from NVM and sending it to a storage
device. As discussed in Section 2, the data would be copied into the
device’s data buffer. A fourth data movement would occur when the
device reads the data buffer and writes it to Flash. An application
performing logging in NVM and its destaging has no option but to
trigger these data movements.

In contrast, a X-SSD device, and the Villars in particular, al-
lows the application to write to the backing memory in one data
movement and allows the device’s Storage Controller to read that
area directly. To put it differently, the Villars device can perform
in two data movements what the application does using four. The
memory bandwidth it saves in the process can then contribute to
the database’s performance [14].

5 THE DATABASE-VILLARS INTERFACE

The database and the Villars device interact on at least two data
paths. The first one is when a primary or stand-alone server requests
the Villars device to write log data (cf. step (1) in Figure 1 right).
The second data path is when a secondary server requests the
Villars device to read log data coming from the primary server
(cf. step (3) of the same figure). In these cases, we offer drop-in
APIs that interact with the Villars device and replace the familiar
read and write system calls (§ 5.1). We also offer an alternative,
advanced API with no equivalent system call that exports a view
of the Villars’s fast side as memory, rather than a file (§ 5.2).

5.1 Drop-In Replacement API

We describe how alternative calls to pwrite() and fsync() for
writing and pread() for reading can be implemented in the Vil-
lars device. These calls are naturally blocking and, therefore, can
transmit back pressure when necessary (cf. Section 4.1).
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Figure 8: Villars’s API implementation. Top: the x_pwrite()
call starts at time 𝑡0. It knows the CMB queue size, 512

bytes in this example (cf. Section 4.1). The implementation

writes chunks of buff to CMB until there is no more queue

space left, at time 𝑡𝑖 . It then issues a read against the con-

trol interface, and discovers that, in the meantime, 400 bytes

were retired into CMB, leaving 112 bytes still in flight. The

x_pwrite() implementation alternates between checking

credits and writing until it processed buff, at time 𝑡 𝑗−1. Bot-
tom: the application issues an x_fsync() to verify that all the

prior writes are persistent. The VillarsAPI implementation

reads the counter until it sees that it was incremented by the

same amount of buff’s size, at time 𝑡𝑘 , and then returns.

Substituting pwrite() and fsync(). A pwrite() takes as pa-
rameters a descriptor, buffer, size, and offset. It writes the size’s
worth of data from the buffer into the descriptor. Our x_pwrite()
alternative does not require a descriptor as it implicitly writes only
to the fast side. The call copies the buffer into CMB in small iter-
ations, occasionally checking if it needs to back off via the credit
counters. Figure 8 depicts this scenario. We tried alternative ways
and frequencies to check the credit counter during the copy. The
best performance was obtained when using all the credits available
without intermediate checks then pausing to read the credit anew.

An fsync() takes a file descriptor and blocks until all the bytes
written against that descriptor were flushed. Our x_fsync() im-
plementation performs a similar wait until the credit counter sig-
nals that all bytes written by x_pwrite() were retired to PM. The
x_pwrite() and x_fsync() share an internal counter that keeps
track of the bytes written. We note that our implementation of
x_pwrite() and x_fsync() are not system calls and therefore do
not incur the penalty of context switching into the OS.
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Substituting pread(). A pread() takes as parameters a descriptor,
buffer, size, and offset. It reads the size’s worth of data into the
buffer, starting at offset (relative to the start of the file). This exact
semantics are challenging to implement on a circular file because its
start keeps moving. We implement, instead, an operation with tail
read semantics. Our x_pread() takes a special offset flag to indicate
it wants to read the tail of the log as it grows. Again, we do not
require a descriptor as the call implicitly accesses the destage area
on the conventional side. Internally, the implementation keeps track
of the last read area on the destaged ring; a subsequent call returns
the next adjacent area. The implementation obtains information
about the destage’s progress (§ 4.3) and blocks if not enough data
reaches the conventional side to fill the read buffer.

5.2 Advanced API

The CMB implements the file interface above for backward compat-
ibility purposes. However, that area can be exposed as a memory
abstraction just as well. The important condition is to establish a
destaging criterion in the device. In other words, in a ring abstrac-
tion, the head of the ring can be destaged. In another abstraction,
the Villars device needs to be able to decide when to move entries
from the CMB region into Flash.

To illustrate one of many possible advanced APIs, we show how
to use an allocator’s pair of calls, x_alloc() and x_free(), to
export CMB functionality. The allocation call determines an area in
which the application can write randomly. The area would be active,
i.e., not destage-able, until it is freed. The ring abstraction is still
valid in this scenario; the next allocated area can be adjacent to the
previous one on the ring. There are examples of database systems
that use PM for logging purposes in this way [39, 75]. Different
database worker threads request transaction log buffer this way
but fill the areas in parallel. Such a scheme is known as one of the
fastest ways to write to a transaction log [34].

6 EXPERIMENTS

To validate the X-SSD architecture and the design decisions we built
into the Villars device in particular, we carried out five sets of
experiments. The first set contrasts logging locally to the Villars
device’s conventional side versus logging to its fast side (§ 6.1). The
second set evaluates to which extent the size of the writes against
the fast side influences the throughput (§ 6.2). The third set looks
into how different options to implement the fast side contribute
to performance (§ 6.3). The fourth set evaluates the efficiency of
different opportunistic destaging policies (§ 6.4). Lastly, we discuss
the delays caused by the underlying replication mechanisms (§ 6.5).
We start by describing our implementation of the X-SSD along with
details of our experimental environment.

Implementation and Environment Details. We implemented
the Villars device using the Cosmos+ OpenSSD [44]. The Cosmos+
is a full-fledged SSD prototyping platform built over a Xilinx Zynq
Z-7045 SoC FPGA. It hosts 2 TB of Hynix NAND-Flashmemory. Our
Villars device’s conventional side reuses the HCI, Firmware, and
Storage Controller components (cf. Figure 2) of the Cosmos+ almost
without modifications. The Villars device’s fast side components
were all implemented from scratch. Of particular relevance are the
details on how CMB support was added to the Cosmos+.

First, we decided to constraint the original Cosmos+’s PCIe in-
terface from ×8 Gen2 to a ×4, i.e., 2 GB/s for the CMB experiments.
The rationale behind this decision is that the CMB traffic shares
bandwidth with the traditional NVMe interface, and our imposed
lane restriction better reflects the fact that the full PCIe bandwidth
may seldom be available for CMB to consume.

The second relevant detail is how we experiment with different
kinds of CMB backing memory. We selected two types of memory
to evaluate, SRAM and DRAM, and created a scenario in which we
may consider them to be persistent, as we describe shortly. The
SRAM memory is provided by BlockRAM in the FPGA in which
the Cosmos+ is implemented. This kind of memory runs at the
same 250 MHz clock rate as the FPGA and, given that we use a
128-bit wide bus to access it, its bandwidth is 4 GB/s. The DRAM
memory comes from the Cosmos+ Data Buffer (cf. Figure 2). We
allocated part of that memory pool exclusively for CMB use during
the experiments. The DRAM’s type is DDR3 and its controller
provides a maximum bandwidth of 4 GB/s. However, given that in
our setup we access it through a 64-bit wide bus at 250 MHz, the fast
side only uses 2 GB/s. The DRAM access is shared with the device’s
regular data buffering activity. In terms of sizes, the capacity used
for CMB in our setup is 128 KB and 128 MB, for SRAM and DRAM,
respectively. We could increase this capacity by making certain
compromises in terms of how to allocate FPGA resources, but we
thought these quantities were appropriate for our experiments.

We note that the Cosmos+ device is powered independently
from the server. In other words, the Cosmos+ board does not need
power coming from the PCIe slot; it uses its own power source
through a small transformer connected to a separate 120/240V
outlet. In case of server crashes, the power can be maintained
while the Villars implementation destages the contents of CMB and
achieves a consistent state even if the database is no longer online.
In case of sudden power failures, some groups have experimented
with adding supercapacitors that can provide additional power
beyond the power source and keep the device online for a while
longer [36, 67]. In our experiments, we assume the supercapacitors
to be present but have not implemented them. Since this allows
CMB’s SRAM and DRAM backing to be destaged, they behave
effectively as persistent memory.

We use three Xeon-SP 4110 servers, each with 8-cores, 128 GB
of RAM, and one X-SSD device. The servers were connected via a
RoCE RDMA network using Mellanox ConnectX-5 cards and an
Ethernet switch, and via an NTB network using Dolphin PXH830
adapters in a daisy-chained setup.

The servers run ERMIA [39], an open-source in-memory data-
base, to produce WAL transaction logs. ERMIA can generate trans-
actional workloads upwards of 300 ktxn/s using the TPC-C bench-
mark [70]while performing replication via log-shipping over RDMA
and PM [75]. In particular, ERMIA emulates PM in the same way we
do: it assumes that the servers’ DRAM DIMMS are battery backed,
thus supporting NVDIMMs. This assumption allows ERMIA (and
us) to conduct all experiments as if DRAM were persistent, even if
in practice the servers have regular DIMMs.

ERMIA’s logging system is considered to be state-of-the-art. We
integrated the X-SSD device’s logger into that system by having
ERMIA call our drop-in version of pwrite() and fsync() (cf. Sec-
tion 5.1). ERMIA pins each of its log writers to a core, therefore the
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experiments can scale to up to 8 threads in our servers. Unless men-
tioned otherwise, we run the TPC-C workload with 16 warehouses.
Our goal is to generate the log as fast as the original ERMIA log
shipping work [75], which we do.

6.1 Logging to Local Storage

In this experiment, we measure the impact of mapping CMB to dif-
ferent types of backing memory—i.e., as FPGA Block RAM (Villars-
SRAM) or DRAM (Villars-DRAM)—and measure the performance
of a transaction log over this area. We also compare the cost of writ-
ing log records directly to NVDIMM (Memory), against the X-SSD
conventional side (NVMe), or not writing log records altogether
(No Log).

Figure 9: Comparison of latency (left) and throughput (right)

with an increasing number of log writes and under different

local logging setups. The log workload in this experiment

was generated with ERMIA [39, 75].

Figure 9 shows the latency and throughput of the different meth-
ods. The x-axis shows the number of workers (threads) the database
uses to process transactions, and thus generate log records. The
y-axis shows the average transaction latency in log-scale, and the
average transaction throughput in terms of committed transactions
per second.

For latency, the experiment shows that logging against NVMDIMM
or logging against SRAM via CMB yield similar results. The CMB
path overhead is compensated by the faster SRAM speed. We note
that the transaction latency decreases as the number of workers
increase. The reason is that the system waits until it has 16 KB
worth of log records before it commits. With additional threads,
that threshold is reached earlier.

Logging against DRAM backed CMB is also advantageous if com-
pared with logging to the conventional side. The latency remains
relatively constant up to 4 threads. With 8 threads, we start seeing
back-pressure build-up with DRAM-backed CMB, which reflects
on the time transactions need to wait until they can get written.

In terms of throughput, the four methods perform almost equally
up until 4 worker threads. With 8 threads, something curious takes
place. The logging workload has a queue depth of 1. Given the
long latency, the conventional side of the device cannot achieve
anything better than approximately 200k transactions per second.

6.2 Effects of Write Combining

The fast side is a byte-addressable interface, i.e., it does not require
data to be put in a block before writing (§ 4.1). Technically, even 1-
byte writes could be performed in some implementations. However,
writes through the fast side become PCIe TLP packets (§ 2.1), and
we expect that the overhead of these packets can be significant.

We quantify the overheard through this experiment by sending
increasingly large write operations through the fast side and mea-
suring the obtained throughput. To control the amount of bytes
written at once to the PCIe subsystem, we use Write Combining
(WC) memory regions [32]. When WC is on, the MMIO subsystem
block writes before issuing them. When the same memory region
is in Uncached (UC) mode, no blocking occurs.

Figure 10: Comparison of different write sizes under write-

combine and uncached when writing to device SRAM (left)

and DRAM (right).

We show the throughput variations we obtained when using an
SRAM backed CMB in Figure 10 (left) and when using a DRAM-
backed CMB (right). We normalize the results according to the best
throughput, which occurs when we write 64 bytes at once. WC is
faster than UCmode in all sizes we tested. For SRAM, the maximum
throughput can only be achieved when sending 64 bytes at once.
For DRAM-backed CMB, the maximum throughput is reached with
16 bytes or more.

6.3 Effects of CMB Queue Size

The CMBmodule uses a queue to receive writes before staging them
to PM (§ 4.1). The queue’s size is important because it determines
how much data the database can write over the fast side before
checking if the device requires time to catch up with the writes.
This experiment sends a controlled workload through the fast side
while varying the CMB queue size. The workload’s write sizes are
also varying to simulate, for instance, larger log records or some
form of group commit [27].

We show the latency variations we obtained in Figure 11 (top).
As we expected, the latency is primarily dominated by the size of
the writes, when the queue size is at least as big as the write size.
We expect the majority of log records from OTLP workloads such
as TPC-C to be less than 20KB [15]. A queue of 32KB can allow for
these records to be sent through the fast side without needing to
check the credit counter during those writes.
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Figure 11: Latency (top) and throughput (bottom) of different

group commit sizes (x-axis) with varying device queue sizes

(colors) when writing to device SRAM.

We show the throughput variations we obtained in Figure 11
(bottom). A queue with 32KB achieves the best throughput across
all the group commit sizes we tested. We note that the platform
upon which we built the Villars device is sized to accommodate a
maximum of 2GB/s of data transfers [44].

6.4 Effects of Opportunistic Destaging

To test the Destage Priority feature of the Villars device (§ 4.3),
we send two workloads to it at once. The first workload uses the
conventional side, andwe sized its throughput at approximately 50%
of the device’s bandwidth. We sent the second workload through
the fast side, and we varied it from 30 to 60%. The experiment’s
idea is to observe whether the workloads get the correct priority if
that feature is turned on.

We show the results in Figure 12, with neutral priority on the
right and conventional priority on the left. We observe that with
neutral priority, the device services bothworkloads until its capacity.
At which point, the workloads start interfering with one another,
and both suffer reduced bandwidth. With conventional priority,
the conventional throughput is preserved independently of the fast
workload. We obtained a similar result when using destage priority
and omit the results for brevity.

6.5 Replication Delay

We implemented a micro-benchmark to evaluate the delay intro-
duced by the shadow counter mechanism (cf. Section 4.2). As de-
scribed in that section, if a pair of Villars devices are set up as
primary and secondary, the former will forward all CMB updates
to the latter. In turn, the secondary will periodically update the
shadow counter the primary keeps.

Figure 12: Opportunistic Destaging. Left: The device takes

a conventional workload corresponding to 50% of its band-

width and a varying fast workload. Interference occurs when

the device has less bandwidth than requested. Right: The

same scenario using conventional priority, in which the de-

vice is instructed to protect the conventional side’s workload.

In this experiment, we vary how frequently the secondary issues
these counter updates. We measure the delay between (a) a write
against the CMB area of the primary Villars device and (b) receiv-
ing the corresponding shadow-counter updates. In other words, we
measure the time it takes to the primary to confirm that a write
has reached the secondary’s CMB area, i.e., the write was safely
replicated. Figure 13 presents the results of the experiment.

Figure 13: Effect of increasing the frequency in which the

secondaryX-SSD forwards its credit counter to primary. (Left

y axis / candlesticks) Latency taken by the primary X-SSD to

update its shadow counter. (Right y axis / horizontal lines)

Percentage of bandwidth that credit counter updates require

at a given update frequency.

We can observe that updating the shadow counter at higher
frequencies, e.g., every 0.4 `s, allows the primary to refresh its
shadow counter with low latency variance, between 4.5 and 5.2 `s.
Decreasing the frequency, e.g., every 1.6 `s, causes a much higher
latency variance, between 4.6 and 7.3 `s. The difference is due to
the amount of time between the secondary getting new data and
the time until the next counter update cycle4.
4We found the 1.2 `s frequency to be an anomaly. The average latency is higher than
with higher latencies, which is expected, but the variance is lower.
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The choice of update frequency is a tradeoff between the fresh-
ness of the shadow counter and PCIe bandwidth usage. On the one
hand, too frequent updates may consume bandwidth that would
otherwise be used for CMB writes. For instance, the chart shows
that having the secondary send updates every 0.4 `s consumes
2.35% of the available PCIe bandwidth. For a single replica, this
may be a reasonable tradeoff. However, as the number of replicas
increases, the shadow counter update traffic may start competing
with the (user data) CMB traffic. On the other hand, too infrequent
updates may compromise the freshness of the shadow counter,
introducing replication delays from the database point of view. Ul-
timately, an increase in bandwidth usage is the price for a tighter
latency variance on the primary.

7 USABILITY

We have explained how a single database system interacts with
a Villars device during normal operation. This section presents
different utilization scenarios, divided into two themes. The first
one discusses advanced interactions such as error handling and
potential multi-threaded access, still considering a single database
instance (§ 7.1). On the second theme, we discuss multiple applica-
tion utilizations, such as in virtualized scenarios (§ 7.2).

7.1 Single Database-Device Interactions

Errors on the conventional side of a Villars device are handled
the same way they would in regular devices. The device marks a
page/block as bad and reports the error to the OS/application, e.g.,
through an error return code. The fast side, however, brings three
additional error scenarios: a destage may fail, an entry may fail to
propagate from a primary to a secondary, and a credit counter may
fail to be forwarded from a secondary into a primary.

In the case of the destage, a failure indicates that the device
was trying to write log entries to a bad block. This case is handled
internally by picking a new block to write.

In the replicated scenarios cases, the database perceives the error
as an indeterminate delay in updating the credit counter. Rather
than forcing the database on a counter read loop, the Villars
device keeps a status register for the transport module’s state. An
implementation of pwrite() and fsync() (cf. Section 5.1) may
check that register if it suspects the credit counter to be stale.

Upon encountering a replication error, a database system would
want to (re-)configure a device’s transport module. That module
is responsible for the replication status. As mentioned before, the
transport module can be controlled via extended NVMe admin
commands (§ 4.2). We added commands to turn an existing or new
device from a stand-alone into a primary state, from a primary into
a secondary, and from a secondary into a primary. We note that,
currently, it is the database system’s responsibility to decide when
to perform such promotions/demotions, including the transfer of
data into or out of the device, if necessary. In a future device, we
intend to automate these tasks via hardware/firmware, but this
ability was outside the scope of the Villars device.

Another scenario worth mentioning is that of an application
that wishes to have several CMB writer threads. The issue with this
scenario is that it cannot be supported adequately with a single
credit counter. There would be no way to tell which specific writer

caused the counter to increase. While the Villars device has not
addressed this case, a simple approach is to keep several counters,
potentially one per core, and pin writers to the cores. This is akin
to maintaining several NVMe work submission queues. Once again,
this is a simple extension to the X-SSD architecture.

7.2 Multiple Databases Scenarios

Arguably, a specialized device such as the Villarsmay be attractive
to hyperscalers. These vendors offer database cloud services and
could reap substantial savings at scale, thanks to logging acceleration,
by deploying X-SSD devices at these services. In this context, one
may wish to have many virtual databases share a single device.

While not currently implemented by the Villars device, nothing
on the X-SSD architecture prevents a device from supporting a vir-
tualization mechanism such as SR-IOV [66]. SR-IOV allows several
virtual devices to be exported by a single peripheral, which can
then be used separately by different virtual machines. For instance,
this mechanism is pervasive in network cards virtualization [17].
In our case, an SR-IOV implementation could simply segment the
CMB across smaller, independent regions. The device would create
and maintain individual replication configurations for each region,
which would then be assigned to different virtual machines.

We note that X-SSD devices may also be beneficial for different
workloads than database logging. We consider different scenarios,
depending on the use of replication. If the replication mechanism is
turned off, the CMB area acts as a low-latency append feature with
precise crash semantics. Some usages may include, for instance,
transactional services such as Google’s Percolator [61]. This system
deploys append-only logs but is not exactly a complete database.
For another instance, the workload of journaled file systems such as
ext4’s JBD2 also behaves as a log and can arguably take advantage
of CMB for fast writes to that area [54]. If the replicationmechanism
is turned on, different systems may benefit from a X-SSD device if
it could support other replication schemes (§ 4.2). As mentioned
then, combining the shadow counters in specific ways may support
additional schemes such as chain-replication [72].

8 RELATEDWORK

SSDs have long been considered beneficial to databaseworkloads [46],
and the literature discussing their convergence is extensive. To
the best of our knowledge, however, the X-SSD is the first archi-
tecture and Villars the first device to seamlessly integrate data
propagation services, both locally and across devices, tailored for
transaction logging workloads.

Many similar techniques to those we applied in our device were
studied before. We discuss three areas in particular: approaches
that streamline the transaction log’s (or journaling’s) write paths
(§ 8.1), approaches that facilitate replication of that workload (§ 8.2),
and techniques that can move application logic into SSDs, adapting
them to specific workloads, including databases workloads (§ 8.3).

8.1 Fast Logging

Several fast transaction logging primitives were proposed that allow
the database to make direct use of battery-backed DRAM [26],
Optane (commercial PM) [71], or some form of simulated PM [6,
20, 28, 40, 60, 74]. They all achieve better speeds than logging to
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conventional storage. Several of those schemes are compatible with
a X-SSD device’s fast side and could be implemented atop such a
device leveraging that side’s API (§ 5.2). By doing so, they would get
several benefits automatically, such as destaging and replication.

Other approaches propose to manage PM within the storage
instead of exposing it directly to the database. Kang et al. [36] use
battery-backed DRAM inside an SSD, specifically in the device’s
Data Buffer (cf. Figure 2). The data is persistent upon reaching the
data buffer. The device provides a flusher module, the equivalent of
our destaging (§ 4.3). A X-SSD device adopts a similar technique,
co-locating a battery-backed DRAM area beside the data buffer (cf.
Figure 4). This co-location opens up new opportunities, e.g., we can
separate workloads that need or need not immediate persistence.

Bae et al. [8] propose the 2B-SSD, a device that, like ours, presents
a block- and a byte-addressable side to an application. In the 2B-
SSD, the application is responsible for issuing a new command in
the software layer to “move” a given block from the conventional to
the fast side, or vice-versa. Once again, we adopt some of the same
ideas but use fixed semantics for destaging, obviating the need to
move data explicitly. This allows us to offer faster coordination
such as opportunistic destaging and log shipping since there is no
software (delay) involved in those paths.

When performing transaction logging on traditional SSDs, other
workloads such as checkpoints or sorted batches can be the source
of interference, causing performance loss [48]. Several techniques
investigate how to provide workload isolation in this context via
scheduling [68], resource allocation [45] or via NVMe directives
such as streams [35, 76] and Predictable Latency Mode [1]. Even
if the log workload is naturally isolated in a X-SSD device, these
techniques remain helpful, as they apply when data is destaging.

8.2 Replication Support

Modern log shipping techniques such as Query Fresh [75] and Ac-
tive Memory [78] have been proposed that leverage direct access
to PM via RDMA. They support hot-standby replicas via a mix of
updating remote auxiliary structures on the replicas and by chang-
ing the remote query execution engine to consider data in those
structures when answering queries. The remote engine occasion-
ally merges the data from the auxiliary structures into the base
tables. However, updating the remote PM regions via RDMA can
be problematic in crash scenarios. In certain situations, updates can
be visible but not necessarily persistent [37], especially without
proper hardware support [18].

The Villars device utilizes an equivalent sequence of operations
to support log shipping but stops short of updating remote memory.
The advantage of this approach is twofold. First, storage-managed
PM, i.e., using PM inside an SSD, can offer a more precise crash
behavior. Second, the approach is portable in that it only requires
simple NVMe support rather than a CPU of a particular brand
or a motherboard with support for battery-backed DRAM. The
compromise is that, in this particular version, the Villars device
supports eager replication rather than a hot-standby solution.

NVMe devices can be visible and accessible to a remote server via
numerous ways. The NVMe-over-Fabrics standard [55] considers
different types of interconnects, include RDMA-capable networks.
There are approaches that provide added functionality, such as

ReFlex [42] which is similar in spirit to NVMe-oF but adds isolation
between workloads. There are also ways to utilize interconnects
not covered by the standards such as NTB and offer device sharing
capabilities [53]. These protocols are useful to the conventional
side and are orthogonal to the automatic replication that X-SSD
devices implement across the fast sides of several devices.

8.3 SSD Extensions

Several proposals exist to turn SSDs into user programmable plat-
forms, such as Willow [65] and Biscuit [25]. While these platforms
allow moving several application computations into SSD devices,
they do not fundamentally support altering its data and control
paths. In contrast, the X-SSD architecture may be seen as building
block—a domain-specific language of sorts—that gives databases
the ability to express logging and log shipping schemes atop of it.

Lerner and Bonnet [47] offer a taxonomy of techniques to extend
SSDs. Devices under the X-SSD architecture are considered co-
designed devices in that they present themselves as standard devices
but offer special semantics when they detect the workload they are
built to optimize–the workload sent to the fast side, in the case of
the Villars device.

9 CONCLUSION

In this paper, we introduced the X-SSD architecture, a class of
SSDs designed with transaction log workloads in mind. A X-SSD
device presents one fast side that accepts byte-addressable requests
at low latency, used for transaction logging, and a conventional
side offering a traditional SSD block interface to accept regular
workloads. The two sides are tightly integrated, allowing data to
move seamlessly from the fast to the conventional side. Moreover,
the fast side of different device instances can also communicate,
allowing the log workload to be shipped remotely with low latency
across X-SSD devices. Databases can use these data propagation
features to build different transaction logging and log shipping-
based replication schemes.

This paper also presented the Villars device, a reference design
for the X-SSD architecture. The Villars is a full-fledged NVMe de-
vice, the standard for direct-attached PCIe (fast) SSDs. We showed
that the Villars device can absorb transaction log workloads from
a modern database with several advantages—simpler interface, com-
parable latency, and clearer crash behavior semantics—over having
the database directly manipulate PM.
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