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Motivation
• Flash memory provides better cost/performance than RAM for DB systems.
• Solid-State Drives (SSDs) are the dominant way to package Flash memory.

=> SSDs are crucial for modern DB systems, but ...
… choosing an SSD model for given workload is not trivial.

• There are so many of them. What are the design choices?
• How to navigate the design space?
• How is the design space evolving?

… designing SSDs for a given workload is now possible and desirable.
• How to design workload-specific SSDs? How to co-design DBMS and SSD?
• DBMS/SSD co-design requires the federation of expertise from Flash, Hardware, Operating 

System, Storage and DB experts. 

This tutorial is our attempt at engaging the DB community!



Why Should You Care?
• You use SSDs in your experiments.
• You want to better understand a device’s performance level and when it fails 

to deliver.

• You design SSD-Based DBMS.
• You want to better understand advanced storage protocols and devices, and

be able to tell when and how to resort to them.

• You are willing to be convinced that DBMS/SSD co-design is worth 
your time and energy.
• You may want to hear about open problems and existing approaches for 

building such protocols, devices, or both.



What This Tutorial is Not
• This tutorial is not a complete coverage of the domain.
• The 1.5 hours format constraints both breadth and depth of our presentation.
• We present our curated survey of the domain and refer to resources that dive 

in specific topics.

• This tutorial is not neutral.
• We have been pushing for a radical evolution of SSDs and for DBMS/SSD co-

design. We have significant bias.
• We emphasize what we see as the main take-aways throughout this tutorial.

• This tutorial will not settle current open questions.
• But we introduce them and present our views on current approaches and 

possible areas of further study.
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Historical Perspective

• Flash invention.
• First SSDs, compatibility.
• Diversification, Speed and NVMe.
• Entering the era of co-Design.
• NVMe carries built-in evolution 

mechanisms.
• Increasing application control is 

possible.
• Speed and Co-designing opportunities.

• Through workload specialization.
• Computational and Programmable devices.

Moving away from the 
drop-in replacement role 
and into SSDs becoming 
an active component of 

the architecture.



Architectural Perspective

• We will be discussing how data and control move between 
applications and devices and will look at systems and logical view to 
do so



Programmer’s Perspective

• But we will also talk in detail about the APIs and general mechanics
involved in moving data around.



The Tutorial Message In One Slide

• “Grandpa” has been writing software that adapts to historical device 
restrictions that make little sense now.
• Some mechanisms are emerging that allow us to 
• Control the device “externally” by sending semantically richer commands

• Higher abstractions get give control at different levels
• OCSSD – control PUs 
• Streams – tagging of workloads

• Control the device “internally” by interacting directly with subsystem
• Replace a policy (e.g., scheduling or caching) 

• We can use the mechanism in new device designs.



The Path to Co-Design
• Speaking of designs, we can think of at least four new categories of devices with 

different co-design approaches:
• Configurable: devices “levers” that can in be adjusted in the field.
• Computational: devices in which application logic be embedded
• Programmable: devices with sub-systems controlled by the user.
• Codesigned: the holy grail. 

Configure the 
device’s behavior

Bypass API by pushing
the Computational down

Tailor device behavior
via Programming

Co-Designed



Tutorial Structure

• Interfaces Sections
• P2 - Internal 
• P3 - External 

• Co-designing Sections
• P4 -Computational 

and Programmable 
Devices
• P5 - Examples of 

devices

• Tooling Sections
• P6 - Continuum 
• P7 - SPD tools:

simulation, 
prototyping, and 
development
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From NAND-Flash to an SSD
• It is common to hear about NAND-Flash’s peculiarities: 

• Cannot be overwritten without prior erasing;
• Read and Program (write) operations take different times, etc.

These (and other) peculiarities are
the reason SSDs are built the way they are.

• SSDs have internal sub-systems, each contributing to (or hindering) performance.
• The sub-systems interact through interfaces that are not visible to applications.
• They implement a Data Path from user application to NAND-Flash.

The understanding of the Data Path allows for a more systematic 
SSD performance (and design trade-offs) analysis.



Flash Data Path

• Flash is organized in ``Logical Units’’ 
that independently serve a given 
number of pages/blocks.
• Data gets in and out of a LUN through 

the Data Register(s) (and optionally 
Cache Registers).
• These operations can be done with 

different throughput/latency trade-
offs. 

(Plug for the next module: the 
abstraction that sits atop of the process 
can expose or control the tradeoffs.)

Source: ONFi Specs



ONFI and Data Movement

• There’s a standard called ONFI 
that governs:
• The physical interface to Flash 

packages at the pin level;
• How to move data and request 

services.

• A flash controller orchestrates 
the data movement through 
agreed upon protocols.

Data and Control pins

Source: Micron

A Flash Package



Moving Data In and Program Operation

Data
Input

Delay between data input and
program operation.

Provides the data that to input to Page Register
(The Program operation itself is not here, just moving data in.)

Source: ONFi Specs

Program
Operation

Designates which LUN
will perform the operation



Moving Data In and Program Operation

Data
Input

Delay between data input and
program operation.

Provides the data that to input to Page Register
(The Program operation itself is not here, just moving data in.)

Source: ONFi Specs

Program
Operation

Designates which LUN
will perform the operation



“Channel” Organization
• While a LUN is performing a flash

operation (to or from the Page 
Register), its data pins are not 
used.
• Device share those pins across 

many LUNs through “channels” but 
LUNs are still controlled 
independently.
• The SSD controller tries to 

maximize the time the channel is 
carrying data by interleaving flash 
operations.

Source: O3 paper

A channel hides the LUNs latency and
aggregates their throughput.

…
Channel

Controller

…
Individual
control

Shared
data



Error Correction

• Because Flash is extremely 
sensitive, it requires:
• Scrambling data to roughly contain 

a balanced number of 1’s and 0’s;
• Error Correction.

• These mechanisms are not 
entirely* supported by the LUNs; 
need to be built around it.

• Two main ECC techniques
• BCH
• LDPC

…
Channel

Controller

…

ECC
Engine  

• How much and how a Flash Package deals with errors is not public information. This is one
of the many reasons why, despite ONFi, different flash memory are not interchangeable.



Channel
Controller
Channel

Controller

Device Architecture

HIC
• Implements the NVMe

controller.
• Performs data transfers 

in and out of the device.

Firmware
• Implements the FTL (page mapping, 

wear leveling, and GC)
• Not only FTL, but also:

• Low-level scheduling;
• DMA control, etc.

Storage Controller
• Interfaces with Flash packages.
• Performs scrambling and ECC.

…
Channel

Controller

…

ECC
Engine  

Firmware        

Data Buffer

Host Interface 
Controller

Storage Controller



SSD Basics Mini Survey
• Agrawal et al., “Design Tradeoffs for SSD Performance,” USENIX ATC’08.
• Cai et al., “Error characterization, mitigation, and recovery in flash-memory-based 

solid-state drives,” Proceedings of the IEEE 105(9), September 2017.
• Dirik and Jacob, “The performance of PC solid-state disks (SSDs) as a function of 

bandwidth, concurrency, device architecture, and system organization,” ISCA’09.
• Grupp et al., “Characterizing Flash Memory: Anomalies, Observations, and 

Applications,” MICRO’09.
• Hu et al. “Performance Impact and Interplay of SSD Parallelism through Advanced 

Commands,   Allocation Strategy and Data Granularity,” ICS’11.
• Kim, Choi, and Min, “Design Tradeoffs for SSD Reliability,” FAST’19.
• Micheloni, Crippa, and Marelli, “Inside NAND Flash Memories”, Springer, 2010.
• Nam et al., “Ozone (O3): An Out-of-Order Flash Memory Controller Architecture,” 

IEEE ToC 60(5), May, 2011.



Anatomy of an NVMe Command

Host
Memory

Data
Buffer

Channel
Queue

P->L
Mapping

Host
Interface
Controller

FTL Low-Level
Scheduler

Flash
Controller

Data needs to travel the data path
to/from host memory.



Decisions, Decisions, Decisions

Host
Memory

Data
Buffer

Channel
Queue

P->L
Mapping

Host
Interface
Controller

FTL Low-Level
Scheduler

Caching
policy

Data 
Placement
(and GC)
policy

Channel 
utilization
policy

Flash
Controller

The decisions can be more or less effective,
depending on the workload.

Correctness vs 
Longevity policy



Speed Bumps on SSDs

• GC is slow but it is far from the only performance pitfall.
• Question: can an SSD that is servicing read operations only be slow? 

Yes!
• Interference between workloads.
• Not enough parallelism opportunities.
• Other limitations on device design.

Generic devices are designed for non-descript applications, but 
many devices are used for very well understood workloads.

Why not tune the device for these workloads?



Database Workloads

• DB systems produces few but varied workloads:
• transaction log,
• checkpoints,
• buffer manager reads/write,
• data loading,
• external sort,
• “spills” from other operators, 
• OLAP query scans, etc.

We can characterize these workloads!
(But this is an area that needs more work.)



Workload Characterization

Tx Log Checkpoint …

Sequential or random access Seq Seq

Read/write/mixed operations Write (but for recovery) Write (but for recovery)

Queue depth (# of outstanding operations) 1 1 or more per core

Size of an operation Page Multiple Pages

Other relevant characteristics

Circularity yes no

Latency Sensitiveness yes no

Bursty-ness yes no

Priority high (user perceived) depends on recovery goals

Checkpoint is much more parallel than and can overpower 
Tx Log if proper scheduling is not in place.

Then we can reason about policies:



Database Workload Characterization Mini-Survey

• Chen et al., “TPC-E vs. TPC-C: Characterizing the New TPC-E 
Benchmark via an I/O Comparison Study,” SIGMOD Record 39(3), 
September, 2010.
• Park, “Characterizing Database Workloads via a Comprehensive I/O 

Analysis,” MSc. Thesis, Seoul National University, 2018.
• Tuan, Cheon, and Won, “On the IO characteristics of the SQLite 

Transactions,” MobileSoft’16.
• Yang et al., “Don’t stack your Log on my Log,” INFLOW’14.



Interface #1 - Caching

• Data buffer in the Firmware is finite; how to better utilize it?
• Without knowing anything about the workload: LRU to pick a victim.
• Workload information can help with:
• Determining the “utility” of different pages, not just frequency of access;
• Establishing different policies than LRU when necessary; 
• Allow a more active caching layer, for instance:

• Issuing pre-fetches, or 
• ML for predicting future accesses.



Interface #2 – Data Placement

• Once again, without any information, pick the next available LUN to 
write a page.
• Severe problems arise from this lack of information:
• Mixing pages with different lifespans makes GC harder.

• Workload information can help with:
• Consider how the pages a workload writes are going to be read.

• Recall the case of the slow scan? (Hotspot on a given LUN.)



Interface #3 – Channel Utilization

• Hiding latency and maximizing channel bandwidth my lead to lack of 
fairness.
• We discussed the conflict between a Transaction Log workload and a 

Checkpoint one.

• Perhaps the metric to optimize here should be achieving a workload’s 
goal. 
• A low-level scheduler can keep putting Transaction Log writes in front of 

Checkpoints, and scheduling the latter in times when the former is not bursty.



Interface #4 – ECC Strength

• Devices assume that all data that is read should be error free.
• ECC introduces latency to every operation.

• Certain applications may tolerate a controlled degree of error.
• For example, bit flips in large images.



SSD Policies Examples
1. Caching
• Park et al., “CFLRU: A Replacement Algorithm for Flash Memory,”  CASES’06.
• Kim and Ahn, “BPLRU: A Buffer Management Scheme for Improving Random 

Writes in Flash Storage,” FAST’08.
2. Placement
• Kang et al., “The Multi-streamed Solid-State Drive,” HotStorage’14.

3. Channel Utilization
• Wu and Re, “Reducing SSD Read Latency via NAND Flash Program and Erase 

Suspension,” FAST’12.
4. Longevity vs Correctness
• Jimenez, Novo, and Ienne, “Wear Unleveling: Improving NAND Flash Lifetime 

by Balancing Page Endurance,” FAST’14.



Bonus: FTL Mini-Survey

FTLs combines different policies together
• Chung at al., “A survey of Flash Translation Layer,” Elsevier Journal of 

Systems Architecture 55, 2009.
• Ma, Feng, and Li, “A Survey of Address Translation Technologies for 

Flash Memories,” ACM Computing Surveys, 46(3), January, 2014.
• Shin et al., “FTL Design Exploration in ReconfigurableHigh-

Performance SSD for Server Applications,” ICS’09.



Advanced Interfaces

• Memory types
• We will see later how devices can 

mix different memories
• Amount of DRAM
• SLC + xLC Flash
• Use of Persistent Memory (e.g., 

Optane)
• But let’s hold until we discuss a 

concrete design example.

• Channel Architecture
• The current architecture serves 

the purpose of hiding Flash 
latency and aggregating 
bandwidth well
• But would it hold if certain user 

computations are generating 
traffic inside the device?

These may require deeper architectural changes to the devices.



Advanced Interfaces Mini-Survey

• Chang, “Hybrid solid-state disks: Combining heterogeneous NAND 
flash in large SSDs,” Asia and South Pacific Design Automation 
Conference’08.
• Im and Shin, “Storage Architecture and Software Support for SLC/MLC 

Combined Flash Memory,” SAC’09.



Internal Interfaces Summary

Architect’s Perspective

• Database systems design does 
not need to stop at the bottom 
of the Storage Manager.

Programmer’s Perspective

• We gain from implementing I/O 
workloads that can be easily 
characterizable.



Data Management and SSDs General References

• Fevgas et al., “Indexing in flash storage devices: a survey on 
challenges, current approaches, and future trends,” The VLDB Journal 
29, 2020.
• Lee et al., “A Case for Flash Memory SSD in Enterprise Database 

Applications,” SIGMOD’08.
• Xu et al., “Performance Analysis of NVMe SSDs and their Implication 

on Real World Databases,” SYSTOR’15.
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Abstractions and Mechanisms

How to incorporate SSDs into the overall system design?

1. What are the appropriate abstractions? 
Abstractions of storage at multiple levels. From bottom up:

• SSD interface hiding the device complexity
• Storage abstraction made available to applications, hiding I/O complexity.
• Applications map their workload onto the storage abstraction.

2. What are the I/O mechanisms providing access to SSDs?
• I/O mechanisms provided by operating system or user-space libraries.



Grandpa Abstractions: POSIX and Blocks
For decades, in Unix sytems, applications mapped data structures onto files atop 
the block device interface.

• The block device interface abstracts storage 
as a linear array of fixed sized blocks. 
• Memory abstraction: 

payload <- read(LBA); write(LBA, payload).
• POSIX I/Os abstract storage as a collection of files. 

• Inodes map file onto collection of blocks.
• The original POSIX specified synchronous 

commands, based on a buffer to avoid I/Os.
• Applications map data structures onto files

• An ecosystem of tools and commands makes it easy to organize and manipulate files.
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From HDD to SSD (*)

I/O
Performance

(2020)

I/O performance does not 
matter I/O performance is crucial

HDD
disk seek: 2msec

1 MiB seq. read: 718 usec

POSIX file with
buffered I/O 

on top of Block-based HDD

Custom buffer management
with direct POSIX I/Os

on top of Block-based HDD

SSD (*)
rand. read: 16 usec

1 MiB seq. read: 39 usec

POSIX file with
buffered I/O 

on top of Block-based SSD
Beyond POSIX and Blocks 

with NVMe over PCIe-attached SSDs

(*) SSDs are not a uniform class of devices. Continuum from latency-optimized (Z-NAND) to archival.



Beyond POSIX and Blocks
• Beyond POSIX:
• POSIX is the textbook example of a deep module. But it does not give 

applications control over (i) allocation and layout policies, (ii) I/O scheduling, 
and (iii) creates redundancies and missed optimization opportunities.
• Need for streamlined I/O path.

• Beyond blocks:
• The block device interface hides SSD parallelism and requires complex 

firmware to handle the idiosynchracies of flash.
• Need to expose parallelism and align storage interface with SSD 

characteristics (as well as application needs).

A streamlined I/O path exploiting SSD parallelism 
requires a deep understanding across layers.



Deeper Dive into PCIe
• PCIe is a layered network protocol.

• Requests/responses (transaction layer) are exchanged atop a packet-
based data link protocol (data link layer) and physical connections 
organized as a collection of lanes (physical layer).

• Each lane is a pair of unidirectional, serial, point-to-point connections 
over short distance (max 1m).

• PCIe fabric is organized as a tree, with a root complex and multiple 
endpoints connected directly or via switches. 
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PCIe Gen 3 (2010) Gen 4 (2017) Gen 5 (2019) Gen 6 (2021)

x4 (M.2) 4 GB/sec 8 GB/sec 16 GB/sec 32 GB/sec

x16 16 GB/sec 32 GB/sec 64 GB/sec 128 GB/sec

• Each device is associated to a memory-mapped region of the host address space, 
defined through Base Address Registers (BAR)
• PCIe theoretical bandwidth is comparable to RAM’s theoretical bandwidth.



Deeper Dive into NVMe
• NVMe is a host-controller interface specification

• Designed to attach SSDs directly to the PCIe fabric.
• First specification in 2011. Consortium led by Intel.
• NVMe 2.0 released on 3/6/2021
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Hosts and controllers 
communicate through 
pairs of submission/
completion queues. 

The queues are located 
in memory-mapped address space 
either on the host or on the device.



NVMe Host-Controller Interactions



NVMe 2.0  Transport Models 



NVMe & Memory Management

1. Host memory buffer (HMB) is a portion of host 
memory for the exclusive use of the controller

2. Controller memory buffer (CMB) is a region of 
general purpose read/write memory on the 
controller
• Associated to a PCI Express address (additional BAR)
• Potentially used for peer  to  peer communications

3. Persistent memory region (PMR) is a  region  of  
general  purpose  PCI  Express  read/write  
persistent memory.



NVMe Abstractions
Command SetsNamespaces

• A namespace is a formatted quantity  of 
non-volatile memory that may be accessed 
by a host.

• Each namespace has an ID, a size, a capacity 
(max number of LBAs used),  and a 
utilization

Command sets are the operations associated to a namespace



NVMe Command Sets 

• Admin command set include the creation and deletion of 
submission/completion queues, as well as primitives for device identification, or 
getting log-pages, device capabilities, and features. 
• Three types of I/O command sets:

• NVM: The namespace is a collection of logical blocks, with read, write, write-zeroes 
commands. This is the block device abstraction.

• Zoned: The namespace is partitioned into zones. Each zone is a collection of logical block 
addresses. The command set establishes that logical blocks must be written sequentially 
within a zone and that zones must be reset before they are written. It also defines the 
append command. 

• Key-Value: The namespace is organized as a collection of key-value pairs. The maximum key 
size is 16B. The commands supported are store/retrieve, list, exist, delete.



NVMe Directives
NVMe directives make it possible for hosts to cooperate with the SSD. 
• I/O Command Directive are used as part of an I/O command.

• The stream directive, only associated to writes, allows a host to indicate that LBAs belong 
to separate streams. 
• SSDs equipped with support for multi-streams isolate data from different streams on different 

blocks, thus ensuring that they can be accessed or garbage collected together. 
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Stream directives generated from 
lifetime hints in the fcntl system call. 

SPDK makes it possible for applications to 
associate directives to I/O commands.
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NVMe Extensions
The Open-Channel Interface specification (LightNVM): 
defines a hierarchical address space and let 
applications manage data placement and I/O 
scheduling.

liblightnvm

lightnvm
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open-channel SSD

PCIe

posix api
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Application

No interferences across groups

Multiple sectors constitute a logical block (= unit of write): function of flash 
characteristics. Logical blocks must be written sequentially within a chunk

A parallel unit is a collection
of chunks (= unit of erase).

Each chunk is composed of
sectors (= unit of read; 4 KB)



Legacy Linux I/O Frameworks
• The original POSIX interface was based on 

synchronous commands 
• Exposed through C standard library (unistd.h)

• Two flavours of asynchronous I/Os introduced in mid-2000s:
• aio is a user-space emulation of POSIX asynchronous I/Os that relies 

on worker threads issuing synchronous I/O calls. 
• libaio, actually issues asynchronous I/Os through the io_submit

system call.
• This system call takes as input a context (initialized through the io_setup

system call), and a control block (iocb). 
• On completion, the system call io_getevent is used to reap io_event data 

structures that may contain a pointer to a callback function. 
• Note that libaio requires that a file be opened with O_DIRECT. It only works 

with the following file systems: ext2, ext3, jfs and xfs. Libaio requires two 
system calls per I/O.

buffer

command

queue

asynchronous I/O

buffer

synchronous I/O

command

submission completion

execution
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Modern Linux I/O Framework
• io_uring was introduced by Jens Axboe in 2019 

• It relies on pairs of circular submission/completion queues shared between user-
space and kernel-space.

• The queues are single producer and single consumer. Submission queue entries are 
64B, while completion queue entries are 16B. 

• System calls are available for (a) setting up queues, (b) registering application 
memory referenced in submission queue entries and (c) initiating/completing a 
number of asynchronous I/Os. By default, io_uring requires a single system call for 
multiple I/O submissions and completions. 

• It is also possible to setup a queue pair with a flag (SETUP_SQPOLL) so that io_uring
starts a kernel thread that polls the shared submission queue for entries. 

• io_uring is available through liburing that defines a range of helper 
functions for setting up queues, manipulating buffers and generating 
submission queue entries. 
• io_uring can be used with any file system with buffered or unbuffered I/Os. 

It recently added support for submitting ioctls.



Design Choices
• Bypassing the buffer cache

• Using the O_DIRECT flag.
• Bypassing the file system

• After opening a device file, read and write operations at a given file offset are passed on to the block layer 
without interference.

• The block layer receives bio requests. It may reorganize them, independently on each core, in software 
queues. Bio requests are then dispatched to the NVMe driver via hardware queues.

• The block layer provides various mechanisms to deal with completion: signal-based, continuous polling or 
hybrid polling. 

• Bypassing the block layer
• ioctl give applications direct access to the NVMe driver via synchronous commands.

• Bypassing the kernel
• SPDK framework based on a user-space NVMe driver, packaged as a library that maps PCIe BARs directly into 

the application process thus supporting zero-copy. 
• Functions are provided to allocate the queue pairs used for I/O submission and completion, as well as payload 

buffers in this DMA-transferrable memory. 
• NVMe SSDs can be accessed directly via a C API (nvme.h for block devices nvme_zns.h for ZNS drives). 
• The application must ensure that a single thread submits I/O and that this thread polls for completion. 



I/O frameworks Trade-Offs
• SPDK supports zero-copy and enables trading higher CPU utilization 

for lower I/O latency, but exposes applications to PCIe/NVMe 
limitations (number of queues, number of entries per queues, buffer 
region size, single thread handling submission/completion).
• io_uring isolates applications from PCIe and NVMe, supports a range 

of targets (raw device, file, ioctl) and tuning options (sqpoll) with a 
single system call for a collection of I/Os. But it traverses multiple 
software layers, requires a copy between software and hardware 
queues in the block layer and exposes significant complexity to 
applications. 
• xNVMe is a user-space library that abstracts I/O mechanisms across a 

range of operating systems. It is a means to design portable, simple, 
yet efficient NVMe-based software (xnvme.io).
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External Interfaces Summary
Architect’s Perspective

• NVMe is the narrow-waist of the storage 
stack.

=> Transport-based storage stack (PCIe, fabric). 
What is the impact of memory-centric 
interconnects CXL/Gen-Z? 

• Variety of abstractions, but no sweet-spot 
for database workloads.
• NVM: log-on-log.
• ZNS: no placement or scheduling
• KV: no caching.
• Open-Channel: unknown internal policies. 
=> Is computational storage the answer?

Programmer’s Perspective

• NVMe directives as cross-layer 
communication mechanism

• New abstractions and mechanisms require a 
storage manager re-design



External Interfaces General References
• Jens Axboe. Efficient IO with io_uring.  https://kernel.dk/io_uring.pdf, 2019 
• MatiasBjørling. From Open-Channel SSDs to Zoned Namespaces. USENIX Vault, 2019. 
• Matias Bjørling et al. LightNVM: The Linux Open-Channel SSD Subsystem. In USENIX 

Conference on File and Storage Technologies, 2017.
• IvanLuizPicoli et al. Open-Channel SSD (What is it Good For). In Conference on Innovative 

Data Systems Research (CIDR), 2020.
• Javier Gonzalez. Zoned Namespaces: Standardization and Linux Ecosystem, SNIA. SDC 
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The case for SSD Interfaces 
Adapted to Database Workloads

Functionality Argument

• Reduce complexity of host 
software with higher-level storage 
abstractions
• Example: OX-Batch

• Transactional interface
• Avoids log-on-log

• Batch objects writes
• No application-level mapping
• Avoids round-trips

Performance Argument

• Latency: 
• Streamlined software on I/O Path to 

avoid duplications and leverage 
optimization opportunities (e.g., 
hardware acceleration).

• Cost:
• Reduce CPU load

• Energy consumption:
• Reduce data movement

• Throughput
• Leverage internal SSD throughput



New SSD Interfaces
Providing new SSD interfaces adapted to database workloads requires a 

transitions from standard memory (read/write) interfaces to a 
communication (send/receive) interface

This transition requires 
(i) computation on SSD side to process messages sent by host, 
(ii) a communication protocol, and 
(iii) integration of computation and SSDs within storage.

Application

SSD

Reaad/Write

PCIe

NVMe driver

Application

SSD

Receive/send

PCIe

NVMe driver



SSD Nomenclature
SSD as Black box SSD as White Box

Standard 
External Interface

Standard SSD Programmable SSD

New 
External Interface

Computational SSD Co-Designed SSD

Computational Storage Processor (CSP)

Application

NVMe driver

SSD
FTL

PCIe

PCIe

New interface

Application

NVMe driver

SSD

New interface /
new policies

PCIe

Application

NVMe driver

SSD

FTL with new policies

PCIe

Application

SSD

FTL

PCIe

NVMe driver
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Computational Storage: 1 Slide Survey
• Longer Surveys review the state-of-the-art and identify open 

issues.
• Prototypes tailored for the need of a specific system on a given 

hardware platform:
• FPGA-based, ARM-based, x86-based computational storage devices.
• Research prototypes of a database system, a dataflow processing 

engine, a machine learning platform, a similarity search algorithm or 
a scientific computing application. 

• Deployments on Public clouds (Alibaba, AWS) and HPC clusters (Los 
Alamos National Lab).

CSD

Application

NVMe driver

SSD

FTL

PCIe

PCIe

New interface

• Software frameworks for computational storage:
Willow: SSD apps called via RPC, cannot be composed. 
Biscuit: SSD Task Pipelines programmed in C++, compiled on the host and shipped to CSD. 



Computational Storage: Industry Viewpoint

• Standardization efforts to integrate computational storage into 
existing storage ecosystem.
• SNIA: Fixed vs. Programmable Computational Storage Services

• Fixed services: Pipeline, Database filter, Scatter-Gather, Compression, Data deduplication
• Programmable services: OS, container, bitstream, BPF

• NVMe: New command set for computational storage
• Task force led by Eideticom, Intel, Samsung with deadline early 2022
• Educated guess:

• Command set based on load/unload/execute abstraction
• Data transferred with existing command sets



SNIA Architecture

SNIA. Computational Storage Architecture and Programming Model. V0.5, Rev 1. Aug 2020.
Computational SSD Programmable SSD Co-Designed SSD



Role of BPF

• BPF is a vendor-neutral Instruction Set Architecture (ISA)
• Assembly-like byte code
• Standardized in Linux kernel, JIT on variety of controllers.
• BPF backends for clang and gcc.

• NVMe is extensible, however …
• Defining a new extension for each new storage interface is cumbersome.
• BPF as generic mechanism to call computational storage services from host
• BPF programs as means to compose and orchestrate function calls on CSP.



Handling New Storage Interfaces with BPF

Host CSP
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Maintains state

Source: N.Hedam et al. uBPF and Computational Storage: A Reality Check. 2021.



Computational Storage: Open Issues
• SSD Integration

• How to support NVMe access from CSP?
• How to deal with data movement across multiple devices? 

• CMB provides support for peer-to-peer transfers, but those transfers need to be orchestrated 
and streamlined.

• Computational Storage Processor
• How to handle namespaces from CSP programs? Need for data virtualization.
• How to orchestrate multiple offloaded programs?
• How to isolate multiple tenants?
• What to hardware accelerate? How?
• What is the attack surface? How to protect it? How to verify BPF on CSD?

• System Design
• What to offload? 
• What services to call? How to program CSP? 
• How to place data and processing?
• How to deploy CSP software?



Co-Designed SSDs: 
1 Slide Survey

• Framework for offloading computation on co-designed SSD
• INSIDER: FPGA-based reconfigurable controller as computational storage 

processor. INSIDER provides a file system abstraction. Operations on 
computational storage are exposed as operations on files, internally organized 
as a pipeline of sub-programs. INSIDER manages the isolation and scheduling 
of offloaded programs. They rely on a customized I/O stack to access stored 
data.



Co-Design SSDs: Research Agenda

How can database system experts
program a co-designed SSD that is tailored for their workload?

• What abstractions to support the definition of new storage
interfaces?
• How to define new policies that support new storage interfaces?



Computational & Programmable SSDs 
Summary

Architect’s Perspective

• Computational storage soon part 
of NVMe ecosystem.

Programmer’s Perspective

• Many open issues programming 
and deploying CSPs at scale for a 
range of different data-intensive 
systems and applications:
• Who programs CSP? How?
• Target workloads/use-cases?
• How to integrate CSP with overall 

system design?

What are appropriate abstractions for programming Co-Designed SSDs? 
ÞToday, it is possible to explore this question experimentally (P7: Tooling)
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Examples of Advanced Devices

Programmable device

• The 2B-SSD creates a device with a 
dual (sided) interface : the traditional 
one and a byte-addressable one.

• The byte-addressable interface has 
the same functionality as Persistent 
Memory but is managed by the 
device.

• The application can control the “side” 
in which a given page resides and 
benefit from that side's advantages 
momentarily.

Computational Device

• Moves the workload generation into 
the device.

• The Graph-SSD creates a command 
set to access graph data and moves 
certain graph computations into the 
device.



A Hybrid PM-SSD Device

• There are various possible 
storage hierarchies in a system:

a) A two-level hierarchy of DRAM 
and Flash (via SSD devices);

b) A two-level hierarchy of DRAM 
and Persistem Memory (with a 
CPU-base PM Controller);

c) A DRAM and PM store controlled 
via software;

d) [2B-SSD] A hybrid PM/NAND-
Flash SSD.



An Alternative Data Path

• An application can write directly to 
the fast, byte-addressable “side” of 
the 2B-SSD:
• Just write against an established 

address region.
• The region can be backed by a LBA 

(logical block address) determined 
by the application.
• Meanwhile, other LBA can be 

read/written to via NVMe.
• 2B-SSD changes some subsystem 

(page mapping) using internal 
interfaces. 

Source: Bae 2018

Byte-
addressable
interface



Software API

• The application can move an LBA 
between “sides” of the device
• WAL can be implemented using 

the “fast” side
• Results:
• 1.74x to 2.71x faster in Postgres 

and RocksDB workloads

• BA-PIN
LBA: Flash->PM managed

• BA-FLUSH
LBA: Flash content == PM content

• BA-SYNC
LBA: Flash<-PM managed



Let’s talk about PM

• 2B-SSD implements persistent memory via NVDIMM (DRAM + 
capacitors).
• Nothing prevents this design from using another type of byte 

addressable memory such as Optane.
• As we’ve seen, NVMe allows for a Persistent Memory Region in the device.

We don’t believe in PM vs. Flash; PM + Flash in a device is 
another design region that can help certain workloads better than

separate access to PM and Flash. 



Motivation for A “Graph-Friendly” Device

• Large graphs can occupy en_re 
devices.
• Sparse graphs are represented in 

compressed adjacency matrices 
such as CSR [paper].
• In this scenario, the main workload 

fetches the data necessary for the 
host to calculate the neighbors of a 
vertex.
• What if the device knew how to 

navigate CRS files?
Source: Matam 2019



A Graph API

• Commands are passed through 
the NVMe interface
• Although using reserve bits rather 

than new command sets
• Can leverage page placement 

and caching internal interfaces, 
as it understands the CPR format 
and the primitives ran atop of it.
• Results:
• Between 1.29x to 1.85x faster in 

several basic graph primitive 
benchmarks.



An Actual SSD Implementation

• The GraphSSD is operational.
• Implemented on top of the OpenSSD, which we discuss in the Tooling Section.
• None of the authors belong to an SSD manufacturing company; they were all 

in Academia.
• None of the authors was from the OpenSSD project.



Discussion

• Programmable and Computational devices represent two powerful 
axes for creating specialized devices.
• The specialization aims at servicing a given workload (or a set thereof) 

better than a workload-agnostic device would.
• A question may arise as to why go to all this trouble to obtain, at best, 

1.8x and 2.7x acceleration? 10x or 100x would look better.
• Unfortunately, these works do not quantify the CPU savings they create.
• They do so with devices that are not too different than COTS ones.
• The true question is why would you peg your CPU (in this post-Moore era of 

ours) with tasks that can be offloaded to a device?

• Our job is to create the means to make this offloading more 
accessible.
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Application-Device “Pairing”

• We characterized applications 
before by the workload they 
generate.
• Different devices would perform 

differently under a given 
workload.
• If we understand the workload 

issued and the ideal workload for 
a device, we can determine 
application-device 
“compatibility.”

applicalon

issues

workload

device responds to
some workloads better
than to others

mismatch!



“Grandpa” Pairing Approach

• We often assume that the 
application is the one that should 
adapt to the device. But how?
• Shape the workload to fit the 

devices “unwritten contract”: 
• issue large requests, in parallel if 

possible;
• prefer locality of access;
• favor sequential Requests;
• group requests by life-time;
• prefer uniform life-times.

Perform the
IO slightly 
differently to
obtain better
response from
the device 

Why tailor only the applicaron?!



“Unwritten Contract” Mini-Survey

• Desnoyers, “Analytic Modeling of SSD Write Performance,” 
SYSTOR’12.
• He at al., “The Unwritten Contract of Solid State Drives,” EuroSys’17.
• Kakaraparthy et al., “Optimizing Databases byLearning Hidden 

Parameters of Solid State Drives,” VLDB, 13(4), 2019.
• Wu, Arpaci-Dusseau, and Arpaci-Dusseau, “Towards an Unwritten 

Contract of Intel Optane SSD,” HotStorage’19.
• Zuck et al., “Why and How to Increase SSD Performance 

Transparency,” HotOS’19.



Choice of Device Variation

• As we said before, different devices perform 
differently under a different workload.
• That’s because they make different design 

decisions along a few axes:
• Read- vs write-oriented

• Type of cell used (SLC/MLC/…)
• Low-latency at QD1

• Optane and Z-NAND
• Parallelism Degree

• Number of planes or number of channels
• Write performance variance

• Over-provisioning level

Type of cell is arguably on of the biggest 
sources of performance variation!

Devices as different points in 
the design space 

No perfect
fit, just different
compromises



Single-Level Flash Cells

• Simply put, a NAND-flash cell 
traps voltage.
• In Single-Level Cells, a cell has 

two voltage levels.
• If the voltage trapped is below 

the VREAD that’s a 1, otherwise 0.
• To program a 0, the voltage level 

is increased using a method 
called Incremental Step Pulse 
Programming.

Source: Micheloni 2013



Multi-level Flash Cells

• In Multi-Level Cells, there are more 
than two possible voltage levels.
• Devices encode bits of two or more 

pages in a single cell, the Lower 
and Upper page (or Least 
Significant Bit or Most Significant 
Bit)
• The figure is for an MLC cell of 2-

bits but TLC and QLC devices exist 
of 3- and 4- bits, respectively. Source: Micheloni 2013



Programming LSB and MSB

• Note, however, that voltages can 
only be increased.
• We must write the lower page 

(LSB) in a 1st round, before writing 
the upper page (MSB).
• The 2nd round is more time 

consuming the first round.

• Writing to the upper page is 
slower than to the lower one!

Source: Micheloni 2013



Understand the Design of a Device

• Check whether your device is SLC/MLC/TLC/QLC or 3D
• 1-, 2-, 3-, 4-bit cells or stacked
• An example of a mixed SLC-MLC device

• Modern devices can implement several optimizations
• Some cells in the device may be “downgraded” to single-bit
• Writes may go to (fast) downgraded SLC cells

Source: Kwak  2020

MSB is 4.7x slower!!



Configurable and Programmable  Devices

• Configurable ones use current NVMe
directives:
• Queue Priorities;
• Streams.

• Programmable ones introduce new semi-
specialized devices by replacing 
components:
• Specialty caching such as GALRU and 2R;
• Specialty scheduling such as Flin;
• Specialty placement such as  DC-Store;
• Specialty ECC such as the Approximate SSD;
• Multiple  components as in X-FTL and 2B-SSD.

Configu-
ration or 
Directive

Perfect coupling
between
workload and
device.

Device is 
redesigned
internally 
somehow



Programmable Devices References
• Bae et al., “2B-SSD: the case for dual, byte-and block-addressable solid-

state drives,” ISCA’18.
• Kang et al., “X-FTL: transactional FTL for SQLite databases,” SIGMOD’13.
• Kang et al., “2R: efficiently isolating cold pages in flash storages,” VLDB, 

13(11), 2020.
• Kwak et al., “GALRU: A Group-Aware Buffer Management Scheme for Flash 

Storage Systems,” IEEE Access, 8, 2020.
• Kuon et al., “DC-Store: Eliminating Noisy Neighbor Containers using 

Deterministic I/O Performance and Resource Isolation,” FAST’20.
• Li et al., “ASCache: An Approximate SSD Cache for Error-Tolerant 

Applications,” DAC’19.
• Tavakkol et al. “FLIN: Enabling Fairness and Enhancing Performance in 

Modern NVMe Solid State Drives,” ISCA’18.



Computational Devices

• Move the workload generation into the device.

• There is still work required to allow a generic 
workload to be moved to the device.
• Borrowing from the BPF work is only one out of 

several possible approaches.

Graph SSD

KV SSD

SSD for Search Engines

Specialized
APIIbex

Computational
device coupled 
with the SSD

Part of the
workload 
migrated 
into the SSD



Computational Devices References

• Bisson et al., “Crail-KV: A high-performance distributed key-value 
store leveraging native KV-SSDs over NVMe-oF,” IPCCC’18.
• Matam et al., “Graphssd: graph semantics aware ssd,” ISCA’19.
• Wang et al., “SSD In-Storage Computing for Search Engines,” IEEE ToC, 

2016.
• Woods, István, and Alonso, “Ibex: An intelligent storage engine with 

support for advanced sql offloading,” VLDB, 7(11), 2014.



Fully Co-Designed Devices

• Inherit abili_es from both 
Computa_onal and Programmable 
devices.
• The workload is sent through the 

standard interfaces, but the device 
dis_lls applica_on’s computa_ons 
from the workload, sparing the 
former from performing those.
• The device is designed so that the 

computa_onal device and the SSD 
blend perfectly.
• The computamonal pormons has 

access to the SSD internal interfaces.

The SSD can
decide to apply
computations
to the workload.

The coupling
between
workload and
device is tight

Data conversions is an example
application.



Navigating the Co-Design Space

Shift workload
generation to 
the device`

Tailor the 
device to 
the workload

Co-Design

?

Perform
device 
seleclon

Database 
SSDs

generic
computations

(standard)

Configure 
device to 
the workload

Configurable Programmable

Computational Co-designed



Additional References

• Do, Sengupta, and Swanson, “Programmable solid-state storage in 
future cloud datacenters,” CACM, 62(6), June, 2019.
• Kim et al., “In-storage processing of database scans and joins,” 

Elsevier Information Sciences, 327, 2016.
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SPD Techniques

• What to use if we want to build or alter an SSD?
• There are at least three alternatives:
• Work entirely on a software-Simulation of the hardware;
• Work entirely on Prototyping the actual hardware; 
• Work on hardware-assisted Development.

• Each has pros and cons we we discuss here.



Sobware-based Simulacon Techniques

• Use cycle-accurate software to 
simulate different portions of a 
system
• Flash alone

• FlashSim
• Inside a device

• MQSim
• Inside a system

• Gem5

• Workloads should be compatible 
with the simulation level

SSD Device

Full System

Flash

SQL

blktrace

ONFi Ops



Example of an SSD Simulator

• MQSIM can be used stand-alone or inside a system-wide simulator 
such as Gem5.
• Allows access to three (out of four) internal interfaces we discussed.
• Can be used to implement new NVMe directives or command sets.

Source: Tavakkol 2018



Simulation Trade-offs

Pros
• 100% software.
• Easy learning curve to use 

certain simulators.
• The sky is the limit as to what 

new hardware can be modeled.
• As long as it reflects a reasonable 

datasheet of such hardware 
(which is not always available).

Cons
• Can’t capture aspects that are 

not modeled:
• non-determinism in general, e.g., 

flash errors, flash aging.

• Slow execution:
• Gen5 is equivalent to a machine 

running at a few MHz.



Simulacon References

• Binkert et al., “The gem5 simulator,” SIGARCH Computer Architecture 
News, 39(2), 2011.
• Jung et al., “NANDFlashSim: Intrinsic latency variation aware NAND 

flash memory system modeling and simulation at microarchitecture 
level,” MSST’12.
• Gouk et al., “Amber: Enabling precise full-system simulation with 

detailed modeling of all SSD resources,” MICRO’18.
• Tavakkol et al., “Mqsim: A framework for enabling realistic studies of 

modern multi-queue SSD devices,” FAST’18.



Hardware-Based Prototyping Platforms

• OpenSSD Family of Devices
• 3rd generation of devices using actual 

Flash memory.
• Full-fledged SSD, 100% compatible 

with Linux/Windows NVMe drive 
• Large functionality set implemented 

as firmware (C coding) running on 
ARM cores

• Daisy Family
• Infomal 4th generation of OpenSSDs
• Commercial spin-off backed by CRZ in 

Korea SoC: FPGA +
Arm Cores

Sockets for
Flash Memory

External PCIe 
Gen2 x8 Connection



Prototyping Trade-Offs

Pros
• Real flash with real (at times 

idiosyncratic) behavior.
• Many examples of 

programmable devices.
• Growing community.

Cons
• Software-based features can add 

latency.
• Not many options of Flash and 

channel designs.
• Changing features close to the 

Flash require a steep learning 
curve.



Hardware Prototyping References

• Kwak et al., “Cosmos+ OpenSSD: Rapid prototype for flash storage 
systems,” ACM ToS, 16(3), 2020.
• Lee and Song, “Experimental Results of Implementing NVMe-based 

Open Channel SSDs,” Flash Memory Summit, 2017.
• Lerner et al., “It Takes Two: Instrumenting the Interaction between In-

Memory Databases and Solid-State Drives,” CIDR’20.



Hardware-Assisted Development Platform

• Full-fledged NVMe device with 
emulated Flash
• Carrier: any recent FPGA with PCIe 

and FMC connectors
• OpenExpress NVMe controller 

(open for Academia) 
• Flash Emulator running on M.2 

form factor FPGA (on the right)
M.2 Interface

“ONFi over PCIe?”
Flash emulation



Example Setting

• Carrier

Hitech Global HTG-937
(technically a base network card)

• Flash Module Emulator

FMC-M2 Adapter and Bittware 250-M2D
(technically an OpenCompute Module

on an M.2 package)



Hardware-Assisted Development Trade-Offs

pros
• Can be as fast as a “mem disk”
• Can emulate different kinds of 

Flash and Persistent Memory
• Can potentially emulate 

different channel architectures

cons
• Flash emulator is currently still 

under development
• M.2 capacity is limited (32GB)



Hardware Development References

• Jung, “OpenExpress: Fully Hardware Automated Open Research 
Framework for Future Fast NVMe Devices,” USENIX ATC’20.
• Jung, Jung, and Song, “Architecture exploration of flash memory 

storage controller through a cycle accurate profiling,” IEEE ToCS, 
57(4), 2011.
• Shen at al., “M.2 Accelerator Module Hardware Specification V1.0,” 

Open Compute Project, 2020.



Summary of the Approaches
Development Speed Execution Speed Accuracy of results Hardware Available

Software simulation Fastest Low MHz Within a margin or 
error

Anything that has a 
datasheet available

Hardware 
prototyping

Slow GHz Exact results Very limited

Hardware-assisted 
simulation

Slow to medium 100’s of MHz to GHz Close to exact 
results

As wide as software 
when it comes to 
Flash memories



Conclusion



Take Away #1

• Making SSD behavior a part of a Database’s stack is desirable and, 
currently, possible.
• The design space for Database algorithms is free to explore beyond the  

current devices’ limitations.
• Computing paths and resource usage can become more efficient.
• Devices can perform part of Database computations.



Take Away #2

• The changes made to a device should guided by a workload you 
understand, i.e., that you can characterize:
• You can design a device that can adapt to the workload, 
• you can program a device to serve only that workload, or 
• you can move the logic that generates the workload into the device.



Take Away #3

• You have the external and internal interfaces at your disposal to 
export and implement your changes.
• Your device can be 100% compatible with NVMe if you wish!



Take Away #4

• There are several alternative platforms to implement and evaluate 
your changes, ranging from pure software to pure hardware.



Thank you
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