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ABSTRACT
Gone is the time when a Solid-State Drive (SSD) was just a fast
drop-in replacement for a Hard-Disk Drive (HDD). Thanks to the
NVMe ecosystem, nowadays, SSDs are accessed through specific
interfaces and modern I/O frameworks. SSDs have also grown ver-
satile with time and can now support various use cases ranging
from cold, high-density storage to hot, low-latency ones. The body
of knowledge about building such different devices is mostly avail-
able, but it is less than accessible to non-experts. Finding which
device variation can better support a given workload also requires
deep domain knowledge. This tutorial’s first goal is to make these
tasks—understanding the design of SSDs and pairing them with the
data-intensive workloads they support well—more inviting.

The tutorial goes further, however, in that it suggests that a new
kind of SSD plays an essential role in post-Moore computer systems.
These devices can be co-designed to align their capabilities to an
application’s requirements. A salient feature of these devices is
that they can run application logic besides just storing data. They
can thus gracefully scale processing capabilities with the volume
of data stored. The tutorial’s second goal is thus to establish the
design space for co-designed SSDs and show the tools available to
hardware, systems, and databases researchers that wish to explore
this space.

CCS CONCEPTS
• Information systems → Database management system en-
gines; Flash memory; Storage architectures; • Hardware →
Hardware-software codesign.
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1 INTRODUCTION
To situate the era of co-design, let us take a historical look back.
Initial SSDs. F. Matsuoka invented Flash-memory in 1980. It was
not until 1987 that Toshiba started commercializing NAND Flash
and a few years went by before the first SSD appeared on the market
in 1991. At the time, HDDs were the secondary storage of choice.
To gain quick acceptance, SSDs adopted the same interface.

HDDs and SSDs are, however, very different devices. Suffices to
say that HDDs allows updates in place, and SSDs do not. HDDs can
only execute requests sequentially, while SSD cannot reach peak
performance without performing operations in parallel. HDDs have
a low error rate, while SSDs depend on elaborate error correction
codes. Put simply, SSDs are more sophisticated than HDDs.

Adopting the simpler interface forced SSDs to hide their internal
mechanisms and emulate a block device. Logical block addresses
in SSDs do not reflect their physical position. Consequently, ap-
plications lost the ability to control data placement, i.e., to decide
which data blocks to store contiguously. Moreover, an SSD does
not respond to a block request as an HDD does; SSDs have no arms
to seek. The operating system (OS) has no visibility into how to
reorder IO requests to minimize latency, as it did with HDDs.

For a brief period, applications may have benefitted from SSDs’
notably higher IOPS capacity (IOs per second). However, devel-
opers quickly realized they were not given a replacement for the
rotational disk plates model’s predictability. SSDs are fast, but their
performance is hard to model and can be erratic at times.
Diversification of SSDs. One needs to look no further than data-
base systems to understand why a performance model is essential.
The importance of SSDs in those systems has long been recog-
nized [29]. However, database systems have historically taken con-
trol of data placement and IO scheduling to meet the requirements
of the disparate workloads on which they depend.

Table 1 presents some of these workloads. For instance, the char-
acteristics involved in log writing (small sequential, synchronous
writes) are very different from buffer manager flushes (random
read/writes with many requests in flight), in turn distinct from tree
structures traversal (read of non-contiguous blocks in strides with
potential for prefetching) or checkpoint writing (large sequential
blocks written in parallel). What performance profile would an SSD
present under these circumstances?

This is not a question a database administrator can answer. It
would depend on a given SSD’s particular characteristics since
SSDs are not a uniform class of devices. They behave differently de-
pending on specific aspects of their architecture: whether they use
single-cell or multi-cell NAND-Flash, DRAM or DRAM-less caches,
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access type operation queue depth block size observations
log writing sequential write 1 small circular, latency sensitive
checkpointing sequential write high large may never be read, low priority
buffer flushes random write highly variable average bursty
index traversal mixed read mixed average prefetching opportunities

Table 1: Characterization of some of the workloads generated by a database system.

light or heavy overprovisioning, low-latency or high-throughput
orientation, single or multi-plane, etc. The better question for a
database administrator is the following: How to choose the SSD(s)
best suited to a given workload? Matching any given SSD to a
workload is a daunting task, if not done systematically, just because
of the sheer diversity of SSDs.
Modern Interfaces and Abstractions. Instead of choosing SSDs
that match a given workload, some have suggested equipping SSDs
with new external interfaces that give back control to applications.
One notable example of such an abstraction is the Open Channel
SSDs interface. Simply put, an OCSSD device exports its geometry,
the equivalent of an HDD numbering its blocks, sectors, and tracks,
making the device a white box vis-a-vis the application. Moreover,
an OCSSD device also relinquishes control of the scheduling of
IOs to an application. The features allow systems and applications
to control data placement once again and to reorder IO requests,
respectively. However, they need to adapt to the NAND-Flash id-
iosyncrasies on a given device.

Other interfaces appeared that allow application to describe poli-
cies, instead of implementing the underlying mechanims. A notable
example of such an interface is called streams. The abstraction sup-
ports declaring the group to which a file belongs. Operations on a
group of files should not impact the operations on another group
of files. An SSD that support streams remains a black box for the
application, but it guarantees the separation of resources among
file groups. Streams reduce interferences among workloads, one of
the most common source of performance problem.

Figure 1 contrasts these two kinds of external interfaces, the
black-box and white-box variations. It also suggests the interfaces
can come in internal flavors, which we discuss next.
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Figure 1: Interfaces fall into quadrants depending on how
closely they are placed relative to the device and the offered
visibility into its mechanisms.

Specialization and Co-Design. Now, in the co-design era, de-
vices no longer serve just to store data; application logic can be
offloaded to SSDs. This can be done in at least two ways. In com-
putational storage, the devices have a reserved area for application
logic, usually in a co-located FPGA. The logic in the FPGA does not
need to cross a bus, e.g., the PCIe subsystem, to reach the device.
Computational storage devices rely on an internal, black-box SSD
interface to alter requests and data coming in and out of the device.

A classic use case for computational storage devices is early
predicate evaluation [9]. A caller would want to scan a data set’s
blocks but would not be interested in entries in those blocks that do
not pass a filtering condition. The caller then pushes the predicate
evaluation logic into the device, and the latter applies it to the blocks,
generating a filtered stream as a result. In other words, the filtered
data never leaves the device, saving expensive data transfers.

The second type of co-designed devices are called programmable
devices, SSDs whose internal mechanisms can be programmed. The
assumption here is that a programmable device is modular, and
the internal interfaces delineate replaceable components. A simple
example is a device in which a generic page caching mechanism is
replaced with a specific one that fits exactly the needs of a workload.
Our definition is broader than simple component replacement. Ap-
plication logic can be embedded in new components. In the cache
replacement policy example above, the new component could detect
when prefetching opportunities arise and execute them proactively.
Programmable devices leverage internal, white-box SSD interfaces.

Not your grandpa’s SSD, indeed.
Contributions. In this tutorial we show that SSD diversity and
application control need not be mutually exclusive. Both should
motivate new SSD designs that are well-suited for data-intensive
systems and applications. In summary, we argue that:

• revisiting external interfaces is a pre-requisite for co-design;
• understanding internal interfaces is just as essential;
• the design space for SSD co-design is well defined;
• the tooling to explore this space is mostly available.

We structure the rest of the paper to reflect these four topics.
Our main contributions with this tutorial are (i) a simple but

powerful taxonomy of interfaces, and (ii) a continnum of techniques
that uses the taxonomy to produce new or evaluate existing SSD
variants.

2 EXTERNAL INTERFACES
The traditional storage abstractions are the block device abstraction
and POSIX I/O. They have been stable for decades, successfully
reducing the complexity of software that relies on stored data at
a negligible performance cost. Today, however, these abstractions
are failing.



The block device abstraction consists of a flat logical address
space, quantized in blocks. Each block has its own address (Logical
Block Address or LBA). A block device is a memory abstraction,
with a simple read/write interface. Historically, the implicit perfor-
mance contract associated with this simple abstraction was that
(i) sequential accesses are orders of magnitude faster than random
accesses and (ii) contiguity in the logical address space favors se-
quential accesses. SSDs do not respect this performance contract.
Attempts at defining new performance contracts under the block
device abstraction failed to expose SSD parallelism, and still hid
data placement and command scheduling.

New abstractions have emerged outside the block device abstrac-
tion to address its limitations:
• Open-Channel [8, 14, 37] redefines the SSD interface, as we men-
tioned above, using NVMe extensions. It exposes a device’s geom-
etry and supports vectored I/Os based on read, write and erase
commands. The granularity of read, write, and erase is defined by
the SSD. The host is in charge of data placement and I/O schedul-
ing. In particular, the host is in charge of managing write pointers
that keep track of where data should be written to guarantee
sequential writes within each block.
OCSSDs are supported by Linux via the LightNVM framework.
Pblk is a full-fledged host-based Flash Translation Layer (FTL)
inside the Linux kernel providing a block device abstraction to
legacy systems relying on POSIX I/O. Despite adoption in the
SPDK framework and by companies such as Alibaba, attempts
to standardize Open-Channel (within and outside NVMe) failed.
Open-Channel SSDs thus remain either proprietary or experi-
mental devices.

• ZNS [7, 13] has been part of the NVMe standard since July
2020. It defines zoned namespaces, i.e., a partitioning of the log-
ical address space in zones, composed of logical blocks, with
the constraint that logical blocks must be written sequentially
within a zone. This corresponds to the interface of shingled
magnetic recording (SMR) HDDs. In essence, it is a variant of
Open-Channel. ZNS provides two operational modes: (1) a host
managed mode, where the host is responsible for issuing write
commands, maintaining a write pointer per zone and managing
explicit zone transitions, and (2) a host aware mode, where the
SSD is responsible of enforcing sequential writes within a zone.
In host aware mode, the host issues asynchronous append com-
mands; zone transitions are implicit. ZNS drives are not (yet)
commercially available. There is ZNS support in QEMU, and in
the Linux stack.

• Extensions of the block device interface, so-called directives, make
it possible for hosts to cooperate with the embedded FTL. The
addition of the TRIM command (initially in the context of SATA
and SCSI) falls in this category. The TRIM command allows the
host to inform an SSD that certain blocks are no longer in use
and should be erased.
Another extension is the stream directive that we briefly discussed
above. It allows a host to indicate that files belong to separate
streams (formulated as lifetime hints in the fcntl system call).
SSDs equipped with support for multi-streams will isolate data
from different streams on different blocks, thus ensuring that
they can be garbage collected together [45].

The evolution of the SSD interface is accompanied by an evolu-
tion of the I/O framework on the host. POSIX I/O initially defined
a simple and elegant abstraction relying on files as arrays of bytes
as main storage abstraction. The interface makes it possible to cre-
ate/delete, open/close and read/write from a file. A file looks like an
array of disk blocks. The default behavior relies on the existence of
a page cache in memory that contains disk blocks. There is usually
a 1-1 mapping between virtual memory pages and disk blocks. The
interface includes a function that flushes dirty pages from memory
to disk (fsync). This is the textbook example of a deep module [35].
However, the problems with this abstraction are piling up.

The first problem is that the original read/write interface was
synchronous, which was acceptable for HDDs with hundreds of
millisecond latency. But such interface became untenable when
disk latency was reduced by a couple of orders of magnitude. An
asynchronous POSIX I/O interfacewas introduced in the early 2000s.
However, its implementation in Linux was never satisfactory.

In addition, the latency of modern SSDs requires that device dri-
ver overhead be reduced. As a result, newmechanisms have been in-
troduced to handle I/Os: SPDK in user-space [47] and io_uring [2]
in the Linux kernel. SPDK relies on a user-space NVMe driver run-
ning in polling mode, thus trading increased CPU usage for lower
I/O latency. SPDK provides not only block devices, but also ZNS
and Open-Channel abstractions.

Io_uring was introduced in the Linux kernel in 2019 as a flexi-
ble and efficient mechanisms to manage I/O submissions and com-
pletions. Io_uring relies on shared circular queues between user-
space and kernel-space and can be used to access SSDs either via the
file system abstraction or directly via a NVMe driver. In the default
mode, io_uring is interrupt-based (as legacy asynchronous I/Os)
but it can be configured to run in polling mode with a dedicated
kernel thread (as can SPDK in user-space).

Reducing software overhead also requires avoiding redundan-
cies and missed optimization opportunities across layers. A strict
layering of POSIX I/O on top of block devices results in the log-
on-log problem [46], unpredictable tail latencies [18] and resource
under-utilization [10]. New storage abstractions make it possible to
tackle these problems. The alternative is to explore system design
based on cross-layer optimizations.

In summary, the block device and POSIX I/O are no longer uni-
versal storage abstractions. They are still useful but have lost their
role as the narrow waist of the storage stack in the NVMe ecosys-
tem. In fact, NVMe’s extensible design has proven valuable for what
is yet another promising step in the evolution of modern storage
stacks: computational storage. We talk about the latter and other
internal interfaces next.

3 INTERNAL INTERFACES AND
MECHANISMS

Several internal mechanisms in an SSD influence its behavior and
performance. It follows that each of these mechanisms could be
made modular by establishing an interface that allows to replace
them. We call those interfaces internal. To narrow down the most
promising interface sites, we look for the sub-systems that can
control or attenuate interference among workloads.



We found empirically that those sub-systems were: caching,
scheduling, data placement, and error-correction codes (ECC) cali-
bration. In the rest of this section, we talk about one sub-system/inter-
face at a time and note that they are critical interfaces in a Pro-
grammable Device (cf. Figure 1). We also talk about what we called
Computational Storage in that figure. Such devices bring an em-
bedded platform capable of executing application logic.

3.1 Caching
A DRAM buffer in a Flash controller can serve as a cache. Many
SSDs use it to absorb writes and serve reads off of it, with the
expected performance improvements.

A cache managed with a typical LRU policy may not reflect
the priority of different operations. For instance, a workload with
larger operations (more pages per operation) will occupy larger
portions of the cache than a smaller operations workload, even
if the workloads were similar in terms of read/writes frequencies.
Therefore, some works attempt to manage the cache replacement
policy differently [25, 26].

3.2 Scheduling
A similar effect occurs when scheduling operations to LUNs. A LUN
is the basic unit in which to organize NAND-Flash cells. An SSD
is made of many LUNs, and each of them can serve one request
at at time. Typically, read and write commands are broken down
into individual Flash (page-sized) operations. Write operations, in
particular, have the option of being assigned to any available LUN.

The larger operations will tend to engage a larger number of
LUNs simultaneously, creating a “delay” effect in other operations
that may be ongoing. In other words, there is very little isolation
between in-flight operations. Some works address the issue by
establishing fair scheduling among workloads [42] while others
resort to suspending/re-scheduling expensive operations that are
root causes of interference [44].

3.3 Data Placement
In most SSDs, pages from different workloads may be placed on
a same block. Mixing pages at the block level have at least two
negative performance implications. First, if the workloads present
different page lifecycles, their pages would be invalidated (deleted)
at different times. This minimizes the chance of used but empty
blocks occurring naturally. Empty blocks are critical to fast garbage
collection because they allow erase commands to execute immedi-
ately, skipping the need to copy-back still valid pages from victim
blocks onto new blocks.

The second performance implication is that hot pages of different
workloads placed in the same block cannot be read in parallel. Recall,
a LUN’s page buffer can only serve one read operation at a time.
Some works address those issues by separating the blocks that can
be used by each workload [24]. Some go even further; they “carve”
regions of the device and assign those to different workloads in an
attempt to achieve deterministic response times [28].

3.4 ECC Calibration
Delivering pages without errors requires robust ECC techniques.
However, these techniques are expensive in terms of operations’

latency and circuit area. Once again, different storage managers,
and possibly different workloads, may be tolerant to different error
management disciplines.

Consider a workload that deals with images. If a page stores
an image’s pixels, perhaps some applications would tolerate a few
bits on the page to be flipped in exchange of performance. This
is a shift of some ECC responsibility onto applications, allowing
them to decide whether to consume pages with a controlled degree
of error [32]. Moreover, if a calibrated degree of error is accepted,
there are techniques such as shallow erases [20] or wear unlevel-
ing (selecting aging of pages according to the individual signal
strength) [21] that can significantly increase a device’s longevity.

3.5 Computational Devices
A task force at SNIA, a trade group representing storage companies,
has defined terminology and architectures for computational stor-
age [14]. They denote the processing units integrated with storage
computational storage processors. Together with storage, these
processors provide Computational Storage Services (CSS) to hosts.
Storage nodes equipped with appropriate drivers access CSS via a
network (Ethernet or PCIe).

SNIA distinguishes between fixed computational storage ser-
vices, based on predefined functions such as compression or en-
cryption, and programmable computational storage services, via
code upload. Four mechanisms are listed for code upload: operating
system image, containerized application, FPGA bitstream and eBPF
bytecode (eBPF is a vendor-neutral Instruction Set Architecture
already used for offloading code to Network Interface Cards). This
suggests that computational storage programs can be packaged as
containers. They should accommodate hardware acceleration (on
FPGA) and code shipping (of eBPF code).

An extension of the NVMe standard for computational storage
is expected in 2022. While it will define mechanisms for uploading
code to computational storage, it will not address how to develop
computational storage programs that are efficient and secure for a
given data-intensive system. This remains an open issue.

4 THE CO-DESIGN CONTINUUM
We classify techniques for co-designing SSDs and data-intensive
systems along a continuum, ranging from treating SSDs as complete
black-boxes to allowing increasing degrees of behavior configura-
tion, up to practically designing SSDs “à la carte.” Figure 2 depicts
these possibilities. The levels in this continuum are, in order of
adaptivity, the following.
Adapt by simply shaping the workload. In the absence of other
techniques, an application can unilaterally try to modify the work-
loads it sends to SSDs to foster performance. The techniques at this
level involve adjusting the queue depth (number of outstanding-
ing requests), changing read/write operation sizes via batching of
operations, and transforming random workloads into sequential
ones whenever possible [19]. To aid in these changes, applications
may consider using specialized data structures more adapted to
SSDs than to HDDs [12]. The techniques at this level treat the SSDs
as black boxes.
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Figure 2: Continuum of adjustments an application, on top, and a device, on bottom, can make in order to interact efficiently.
The interaction occurs through an application-generated workload, to which a device may be more or less efficiently tuned.
The steps on the continuum are: (a) the application unilaterally adapts to the SSD characteristics to perform well; (b) the
application weighs in among alternative SSDs before selecting one; (c) the application configures some aspects of a device to
its needs through an external interface before using the device; (d) a computational device serves as an application platform,
running part of its logic through an internal, black-box interface; (e) a programmable device replaces or adjusts some of its
components through an internal, white-box interface to fit the exact needs of an application.

Adapt by matching the shaped workload with a carefully
chosen commercial device. The next step in the continuum of
techniques involves not only shaping applications workloads but
also pairing them with compatible devices. At this level, one hopes
to find among the many available SSDs a device with features that,
although still general-purpose, can perform better under the applica-
tion’s scenarios. For instance, enterprise SSDs come in read-heavy,
write-heavy, and mixed workload variations. Their caching and al-
location strategies are optimized for each specific workload. (Aside
from performance, endurance is also considered, with write-heavy
devices with much more longevity than the others.)

Workload-mix is but one of the axes around which commercial
devices vary. Many other “variation axes” for SSDs exist. Some de-
vices behave better according to a target queue-depth. For instance,
some devices excel well when only one I/O request is outstanding
(called queue depth 1), such as seen in database transaction logs.
Some other devices compromise cost and writing speed by using a
different mix of single- and multi-cell NAND-Flash memories. The
write performance decreases as an inverse proportion as the num-
ber of bits per cell. Several other criteria can further tailor devices
to particular workloads, such as DRAM and DRAM-less devices,
overprovisioning amounts, etc. In practice, there is no shortage of
SSDs variations in the market today.
Adapt by further tuning the device to the workload. The pair-
ing strategy described above has many limitations. The main one be-
ing risking performance regressions as systems and devices evolve.
Some devices can implement external interfaces that allow them to
adopt specific behavior in the field.

Several relevant interfaces have been recently discussed. For
example, devices with stream support [24, 45] aim at providing
workload isolation by controlling caching, scheduling, and data
placement at once. As we discussed, streams is an external, black-
box interface that requires very little change on the application side.
Other relevant interfaces exist that are already standardized. Recent
versions of the NVMe standard propose several performance direc-
tives such as Predictable Latency Mode, NVM sets, Host Memory
Buffers, and IO Performance and Endurance hits [1]. These are also
external, black-box type of interfaces.

In short, all the external interface methods discussed in Section
2, be them black-box or white-box, apply here.
Bypass fixed interfaces via Computational Storage. So far,
the techniques we mentioned fine-tune both the application and
storage stack, but without altering such stacks. This next category
shows that device specialization can take a step further by using the
internal interfaces described in Section 3. We discuss the techniques
of this category via some examples.

The KV-SSD (key-value) [5] can entirely bypass the OS and the
NVMe layers and expose a low-level KV interface into the device
that manipulates objects, e.g., put(), get(), and delete() calls.
The Graph-SSD [34] can use NVMe extended commands to export
a graph manipulation API, which stores and traverses edge and
vertex data.

We note that the Graph-SSD is built upon the OpenSSD proto-
typing platform that we discuss shortly in Section 5. Besides the
OpenSSD, there exist commercial options for computational storage
on the market. Samsung has recently introduced its SmartSSD [40]
that brings an FPGA-based platform that applications can customize.
Some frameworks emerged that make it easy to define application-
specific storage interfaces. The OX framework has been used, for
instance, to provide a batched I/O interface to a host running
LLAMA/Bw-tree [36].

Lastly, A few projects proposed frameworks for dynamically
offloading application components to computational storage, most
notably Willow [41], Biscuit [17] and Insider [39].
Design specialized devices that meet the needs of a given
workload. Device specialization can be accomplished without
locking the device to an individual workload category. The devices
in this category also export the internal interfaces discussed in
Section 3. We present a few examples of such devices next.

The 2B-SSD [3] supports two different interfaces: the traditional
one (NVMe based) and a byte-addressable, low-latency one. The
applicationmay use the latter to talk to the device’s low-latency side
without a block interface, e.g., via memory mapping. A software
interface allows an application to assign a given page to the “fast” or
the “slow” sides and to change its side at any time. This arrangement
proved helpful for database transaction logs workloads.



The Cognitive-SSD [33], learns access patterns through Machine
Learning techniques. It then creates a low-latency path in the device
for data retrieval, for instance, by using predictive techniques for
caching. The Cognitive-SSD is also implemented atop the OpenSSD.

The difference between this and the previous category is subtle.
In computational devices, we emphasize moving application logic to
the device, whereas in programmable devices we showed aplication-
agnostic devices with high degree of adaptivity. In practice, we may
see caracteristics of both classes at once in some devices [11].

5 TOOLING
There is a large body of tools that allows us to build and evaluate
interface-implementation pairings. We separate these tools into
three classes: simulation-based, hardware prototyping, and a hybrid
approach. Simulations have the advantage of a quick development
cycle, but simulation time can be an issue for large workloads.
Hardware prototyping is what companies use to test new designs.
Thanks to a powerful academic platform, it is also available to
the research community. The lack of availability of NAND-Flash
alternatives, however, may constraint the prototyping platform.
The hybrid platform presents a good balance of flexibility, accuracy,
and development speed. We discuss each of these platforms in turn.

5.1 Simulation
A recent class of SSD simulation platforms take into considera-
tion many low-level aspects of an SSD and, as such, are capable
of approximating its behavior. Examples of such platforms are
MQSim [43] and Amber [15]. These simulators consider many in-
ternal mechanisms we discuss here and, therefore, can approximate
actual devices’ behavior to some degree. Moreover, the simulators
come with an existing array of functionalities that can be config-
ured with different Flash package parameters. They can be extended
through software programming to test changes in devices’ behavior.

An aspect that makes these tools particularly useful is their in-
tegration with a whole-system simulator called gem5 [4]. Gem5
can run an existing binary on an emulated CPUs. The SSD emu-
lators can be the storage stack attached to this CPU. As with any
simulation environment, the experiments can be particularly time-
consuming. However, these tools’ maturity makes them excellent
candidates to study new devices or the latter’s interaction with
database systems or prototypes.

Another category of simulators that target Flash memory specifi-
cally are also available, such as NANDFlashSim [22]. This simulator
is limited in that it does not consider many system-level aspects
such as channel designs and the utilization of caches. However, it is
invaluable as a studying tool because it incorporates several aspects
that contribute to variability in performance at the Flash level [16].

5.2 Prototyping
Rapid prototyping platforms exist that can allow the actual develop-
ment of new SSDs. A particularly flexible one is the OpenSSD plat-
form, including the Cosmos+ [27] and some commercial derivatives.
The Cosmos+ is an FPGA-based, full-fledged NVMe device with
a large portion of the functionality implemented as open source,
both in firmware (in C) and hardware (in Verilog).

The device manages up to 2TB of hybrid SLC/MLC Flash divided
in 8 channels, each with 8 planes, and can be configured or altered
in manyways. Thanks to this platform, there exist an Open Channel
implementation [30] as well as a micro-architecture performance
measurement framework [31]. We mentioned in Section 4 that
several research works have used the OpenSSD as a prototyping
platform for both internal and external interface experiments.

It is also worth noting a nascent effort to leverage FPGA plat-
forms for peripheral development in general, where controller com-
ponents are made available independently of the prototyping plat-
form. One example is the OpenExpress [23], which implements a
fully functional NVMe controller.

5.3 Hybrid
Hardware prototyping is limited by the availability of NAND-Flash
documentation, often regarded as trade secrets. Moreover, the devel-
opment cycle for every new NAND-Flash type may be prohibitive
in an experimental environment. A hybrid approach to overcome
these difficulties is to combine a hardware prototype such as the
OpenSSD with an emulated NAND-Flash platform. A suitable plat-
form to the latter is the recently standardized M.2 Accelerator
Module Hardware Specification [38].

The M.2 module combines a processing element and DRAM.
For example, there exist implementations in the market where the
processing element is an FPGA [6]. The idea is to use the M.2
module to emulate different NAND-Flash types at a time behind a
PCIe interface. In other words, the M.2 module can pretend it is built
out of a specific kind of flash memory and emulate the response
time that accessing that memory would entail. The PCIe interface
would be the conduit to issue requests and deliver responses. The
hybrid approach would have none of the simulation platforms’
speed limitations and neither the lack of NAND-Flash variety of
the prototyping ones.

6 CONCLUSION
This tutorial discussed various ways to harmonize applications’
workloads and SSDs designs. It classified the latter’s interfaces in a
taxonomy based on two axes: how close to the device an interface is
placed and howmuch access that interface opens into the device.We
showed that a continuum of techniques derived from this taxonomy
allows for increasingly deeper levels of co-design.

We hope to have persuaded hardware, systems, and database
researchers that co-designing applications and SSDs is desirable
and possible with the current tooling. Exploring this integration
continuum has just begun. We strongly believe that a body of
techniques, abstractions, and devices may emerge from this effort
that is fundamental for designing new high-performance systems.
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