
Data Flow Architectures for Data Processing on Modern Hardware

Alberto Lerner
eXascale Infolab

University of Fribourg, Switzerland
alberto.lerner@unifr.ch

Gustavo Alonso
Systems Group, Department of Computer Science

ETH Zurich, Switzerland
alonso@inf.ethz.ch

Abstract—The requirements arising from ever growing
amounts of data and tight performance constraints as well
as the limitations encountered in improving conventional CPU
performance have led to a proliferation of specialized archi-
tectures involving a wide variety of processor types (GPU,
TPU, DPU, etc.) with processing becoming distributed across all
points of the computing fabric (smart storage, smart memory,
smart NICs, programmable switches, etc.). Examples abound
both in industry and academia of new architectural configu-
rations and hardware accelerators improving different aspects
of a system. These developments raise an important question
that is still open but has not attracted sufficient attention: how
to design data processing engines systems over such highly
heterogeneous and distributed architectures. In this paper we
argue that data management engines on modern hardware
will necessarily be based on data flow designs where processing
happens in a streaming and pipelined fashion across the entire
architecture, a radical departure from existing engines. In the
paper we argue why this will be the case, the advantages of
such designs, and outline a research program to allow data
processing engines take advantage of hardware developments.

1. Introduction

The IT industry is experiencing fundamental changes.
The cloud is the dominant computing platform,with a scale
and service model that represent a major departure form
conventional hardware and software. Emerging applications
from data science such as data analytics, machine learning,
or large language models, are extremely demanding in terms
of the volumes of data involved, the computing resources
needed, and the tight performance constraints. At the same
time, the compute fabric is quickly evolving to cope with
the increasing scale of the cloud and the inadequacy of CPU
based systems for data driven applications [1].

A very visible aspect of these trends is the increasing
amount of specialization at the hardware level [2], spe-
cialization that is driven by the need to cope with the so
called data center tax [3], to accelerate operations that do
not work well on conventional CPUs (e.g., quantized ML
with unconventional number representations [4], [5]), and

to increase the efficiency of data movement in large scale,
largely imbalanced, and highly disaggregated systems.

Specialization today can be seen in the increasing
amount of computing not done on a CPU but on GPUs,
TPU (Tensor Processing Units), or DPUs (Data Processing
Units) [6], [7]. It is also visible in the way processing is
spreading along the entire compute fabric: smart storage [8],
[9], [10], [11], smart memory [12], [13], [14], [15], smart
NICs [16], [17], programmable switches [18], [19], [20],
[21], and specialized control modules and devices to per-
form relevant operations such as compression, encryption,
or network virtualization [22], [23], [24], [25]. The resulting
picture is one in which processing no longer takes place
on the CPU but in other places of the architecture with a
multitude of active components along the data path.

Existing database architectures are ill suited to these
changes. Relational engines already face many issues in
a cloud setting because of, e.g., virtualization and disag-
gregation [26]. Pre-cloud architectures run in the cloud
under a legacy mode, often explicitly created for them using
systems like disaggregated block storage instead of the cloud
standard object store [27] or directly hosting the entire
hardware/software stack of the database [28]. These systems
have limitations in terms of migration of VMs due to their
very large state, they are not elastic, and are cumbersome
to start—which is not surprising since these engines were
built for the stand-alone server model that goes against the
design principles of the cloud.

As a result, the last decade has seen a flurry of new
database and data processing engines—so called cloud na-
tive—that adapt their architecture in a variety of ways: either
through a redesign that eschews many common database
components (e.g., discarding conventional indexes because
of the way disaggregated storage works [29]) or simply by
focusing on distributed processing over files instead of on
the data management aspects of a typical database engine.

In this paper we argue that neither the cloud native
relational engines nor distributed data processing systems
in use today will remain competitive in the highly disag-
gregated, heterogeneous hardware landscape that is already
commercially available. The main reason is the substantial
data movement these systems produce and the dispropor-
tionate impact it has on performance and efficiency both at
the individual application as well as the data center level.



DRAM

L3 

COMPUTE NODE

CORE L1 L2

CORE L1 L2

CORE L1 L2

CORE L1 L2

DISK

Figure 1. Database engines are still designed for the conventional data path
in von Neumann architectures: disk ↔ memory ↔ caches ↔ registers.

Put differently, conventional database engines are largely
oblivious to data movement and focus instead on optimizing
I/O and keeping as much data as possible in main memory.
These goals are at odds with good cloud architecture prac-
tices, where storage is disaggregated and DRAM is the most
expensive component.

To move forward in the new hardware landscape, data
processing has to radically change. In a nutshell, engines
will have to become data flow engines processing data in
a pipeline, streaming fashion, over a fabric of distributed,
heterogeneous processors. This may entail efforts such as:

• Traditional and new operators will have to be redesigned
to work on data as it flows from the storage to the
network, coming from the network though the NIC, or
from memory to a processing element.

• Query plans will need to include a multitude of operations
that are now standard in the cloud (e.g., compression,
encryption, format transformations), and accommodate
execution models that are very different from the pull-
based Volcano model [30] or its modern variations.

• Query optimizers will have to consider many more plan
options to include the alternatives for offloading of op-
erations along the data path as well as processing on
heterogeneous elements.

• The optimizers will need to consider data movement cost
in a disaggregated setting as a first-class concern when
ranking query plans.

• As the computing unit moves away from the conventional
server towards a larger element (e.g., the rack as being
proposed by developments such as CXL [31]), the avail-
ability of large scale shared memory and massive amounts
of parallelism in the form of processors rather than threads
will force a complete redesign of almost all aspects of data
processing.

2. The Emerging Hardware Landscape

In this section we describe how specialization and dis-
aggregation affect database engines. Later we discuss data
processing along the data movement path using different
elements of a heterogeneous architecture.

2.1. Conventional Hardware

The conventional von Neumann architecture is based
on a processing unit (a CPU as processing and control
unit), memory for the data and instructions, external mass
storage, and interfaces for I/O (Figure 1). Over the years,
different bottlenecks in the architecture have been addressed
by adding new elements such as caches to bridge the
performance gap between CPU and memories. The tech-
nologies for each component have also evolved, e.g., from
slow, magnetic HDDs to modern, Flash-based SSDs devices.
Database engines have reacted to these changes by making
some adjustments without deviating from the central tenets
of trying to keep as much data as possible in main memory.

These databases still run as if they accessed local stor-
age, but in the cloud they request data from other systems.
Fulfilling these requests requires the storage systems to lo-
cate, fetch, decode (for error checking), perhaps decompress,
and then ship data across systems. Clearly, the cost of doing
so is much larger than if the database system was running on
a stand-alone machine requesting data from local storage.

It is fair to say that database engines have been obliv-
ious to the cost changes that moving data in the clouds
entail; typical database systems still move data over “large
distances” prior to process it. In their defense, though, they
try to reduce the amount of data movement by, for instance,
using indexes in conventional engines or zone maps in cloud
native engines to fetch as little data as possible.

Unfortunately, the issues go beyond data movement. If
keeping all data in memory led to simpler architectures,
that would be understandable. However, to achieve high
I/O bandwidth, the database must partition the data. It is
a bit of a contradiction to keep as much data as possible
centralized in memory but operate on it as if the data were
distributed (i.e., in a partitioned fashion). This approach
leads to complex architectures that must deal with separate
caches and creates problems with replication, consistency,
data locality, resource utilization, etc.

The point we make is that databases should and have
evolved to accommodate the changes to what conventional
hardware has become. However, the architecture necessary
to adapt to the heterogeneous character of the cloud hard-
ware are more substantial. Let us look into what these
hardware characteristics are next.

2.2. The Trend towards Disaggregation

What we call the cloud today was initially built on the
conventional hardware described above. However, this plat-
form’s limitations very soon emerged because certain con-
cepts that are important for cloud processing were not in the
picture before. For instance, multi-tenancy and elasticity—
arguably the economic pillars of the cloud—require sepa-
rating storage and computing in different layers connected
through the network. This separation leads to disaggregated
storage, which, in turn, makes I/O much more expensive.
To minimize I/O, users over-provision their VMs with more
memory than needed, leading to stranded memory [32], [33].



Stranded memory unleashes its own snow ball of issues.
It leads, for instance, to adopting disaggregated memory
solutions [34] in an attempt to better remaneuver memory
among users, which makes not only storage remote but also
main memory. Moreover, the need for efficiency and security
to deal with remote memory adds significant overhead in
terms of data serialization, compression, encryption, etc.,
all steps needed in a cloud setting [3].

In short, the trend in the cloud is towards increasingly
disaggregated systems so as to be able to independently
scale each component of the architecture (processors, accel-
erators, NICs, memory, storage) without being bound by any
of them. We see a number of recent technologies to emerge,
such as the unrelenting increases in networking speed—the
only technology whose speed is doubling consistently every
other year–, whose main aim is to support disaggregation.
(Why else would a server chassis need 800 Gbps NICs,
or even the upcoming 1.6 Tbps ones?). Many such signs
indicate that disaggregation is here to stay.

Alas, disaggregation exacerbates the data movement
problem and affects data processing applications in funda-
mental ways. As mentioned above, accessing storage across
subsystems is a factor that many database systems ignore.
Accessing memory across subsystems is also poorly un-
derstood. The cloud providers overwhelmingly use it (e.g.,
[35]), but there has been documented subtle bugs when
database systems adopt it [36]. The reason, we speculate, is
that many database systems still work on a legacy data path
(disk-memory-cache-CPU) and optimize it for hardware that
no longer exists in such form. We argue that database
systems need to embrace specialization, a recommendation
made by others as well [37].

2.3. The Trend towards Specialization

The specialization that the cloud enables creates the
economies of scale that justify large investments in new
hardware replacing or complementing the CPU [2], [22],
[25], [38], [39], [40]. But, not only the CPU is losing its
central place; even the GPU is being replaced or comple-
mented with new types of processors [39], [41], [42].

The demands of AI applications notwithstanding, it is
intriguing to see that data management systems are not
adopting the specialized solutions that the cloud is adopting
for problems that both have. The risk is that future systems
will provide very efficient solutions to what are intrinsic
problems with data movement and distribution in the cloud
but none of them suitable to a data management context.

2.4. Data Processing on Modern Hardware

In view of the growing specialization and disaggregation
at all levels of the architecture, a big gap is appearing
compared to what is happening with data management. Part
of the inertia can be explained by the fact that existing
engines are large pieces of code that are slow to develop,
tune, and deploy. While more and more cloud native engines
are appearing, the market seem to be still dominated by

conventional relational products. And quite a few of these
cloud engines are, to a very large extent, just variations of
well known architectures for distributed databases, e.g., [43].

In the remainder of this paper we argue that a signif-
icant research effort is needed to move data processing to
be on par with current hardware/cloud developments and
trends. The effort is probably similar in scope to the one
invested in making the relational model an efficient basis
for data processing as it requires to completely change
the engine’s internal architecture to reflect the reality of
modern hardware. In what follows we identify four system
components in the architecture (storage, network, memory,
and interconnects) that should be involved in data processing
and outline a number of research questions to address in
each one of them.

3. Processing Near Storage

In the cloud, data resides on the storage layer. Can such
layer do something more than just storing the data?

3.1. Conventional Storage

The first layer to consider when trying to improve the
situation regarding data management in distributed archi-
tectures is the storage. Database engines use indexes to
quickly locate data in the storage layer and, thus, reduce
the amount of data that needs to be brought all way to the
CPU for processing. The block interface of disks makes
indexes efficient only to certain extent but they are better
than having to read an entire table to discard most of it
after it has passed through the I/O bus, the memory, the
caches, and finally reaches the CPU registers.

A great deal of an engine’s infrastructure (and consid-
erable research) has gone into making the process more
efficient through better cache replacement policies, better
indexing, different data and page representations, sizing of
the buffer pool, etc. But these mechanisms simply do not
scale to very large data collections (indexing is actually ex-
pensive and competes with the actual data for bandwidth and
main memory) and are ill suited to a cloud environment with
multiple layers of caching, virtualization, limited network
bandwidth, etc.

3.2. Storage in the Cloud and at Scale

In the cloud, the nature of the storage medium is no
longer visible. File systems and block devices are offered
mostly to support legacy applications. Real cloud storage
entail object stores with a very different interface, data
formats, and performance characteristics. True cloud native
databases (not those who are modifications of conventional
engines) already discard things like indexes as they are of
not much use in this context. They also work on different
data representations, introducing the need for reformatting
the data, as it can be seen in Query-As-A-Service systems
like Google Bigtable or Amazon Athena which work di-
rectly on object storage and do not assume the data is in a



DRAM

L3 

COMPUTE NODE

CORE L1 L2

CORE L1 L2

CORE L1 L2

CORE L1 L2

LOCAL DISK

REMOTE DISK

PROJECTION
SELECTION

RDMA

(used as cache)

Figure 2. Offloading projection and selection to the remote storage as a
way reduce data movement and optimize network utilization.

given format. Proof that data movement here is of paramount
importance is the fact that these systems charge for the
amount of data read from storage rather than for the actual
computation.

An obvious way to reduce the amount of data that needs
to move from the storage layer to the compute layer is
to move all the filtering stages (projection, selection) to
the storage (Figure 2). Pushing down part of the query
processing to storage is not exclusive to the cloud. It has
been explored in research [9], [11], [44], [45] and systems
like Oracle Exadata use it extensively [28]. However, in
the cloud it can be far more efficient since the processing
infrastructure needed can be shared by all those accessing
the storage layer. At the same time, the economies of scale
make it feasible to develop specialized processors more
efficient than the small CPU cores used in storage servers.

3.3. Research on Smart Storage

A first set of open research questions include identifying
the SQL operators that make sense to push down to the stor-
age layer. Even for simple selection, for what data types does
it make sense to filter them at the storage rather than at the
compute layer? Amazon AQUA [22], for instance, pushed
down the LIKE predicate to process regular expressions as
that has been proven to be more efficient on accelerators
than on a CPU [46]. Keeping in mind that the processing in
the storage layer has to be done in a streaming fashion to
avoid adding latency and copying data, and that probably
has to be mostly stateless to avoid requiring additional
memory, there is also room for designing new non-blocking
and stateless algorithms for standard operators. Similarly,
a certain amount of pre-processing can also be efficiently
done in storage: pre-aggregation, pre-sorting, hashing, etc.
although probably only to parts of the data rather than to
the entire data set. At what granularity does that make sense
and how would operators on the compute layer side change
given these pre-processing stages?

In addition to these algorithmic and data structure design
questions, there are a number of important systems issues to
explore. On the one hand, the architecture of the processor
on the storage is still a wide open questions that needs fur-
ther study (see [47] for an example). Disaggregated storage
is attached to the network and there will be a NIC involved
in sending the data (see below). Should the processing

be combined? Similarly, the support for multi-tenancy and
cost efficiency dictate that the processing capacity might be
limited. What operators make more sense to push down to
obtain the bigger gains? And what would be the nature of
such processor to support as many operators as possible?
Some initial examples exist, e.g., [48] but only for very
specific architectures and much more work is needed to
explore all possibilities.

Lastly, from the engine perspective, the query optimizer
needs to take into account the option of executing part of
the query plan in storage. Moreover, the access methods are
likely to work in a very different way than in conventional
engines since they will be operating on the storage directly.

4. Processing on the Network
Data in the cloud moves across the network. From the

NICs in the machines (compute or storage nodes) through
switches, to the NICs of the receiving nodes. As with the
storage, the question to ask is whether the network can do
more than just move the data.

4.1. Conventional and Cloud Networking

Distributed databases have never paid much attention
to the network. Certainly not as much as domains such
as High-Performance Computing, where additional abstrac-
tions have been built to make it easier to optimize net-
work communication with systems like the Message Passing
Interface (MPI). In the past, the assumption was that the
network would be a TCP/IP stack. Recently, the attention
has shifted to RDMA [49], [50], [51], [52] since, in the
cloud, most of the traffic is RDMA even if it is not yet
available to the cloud user due to security concerns. But
even RDMA is changing since RoCE/RDMA is a translation
of the concepts in Infiniband RDMA which was designed
for supercomputers and not for data centers. An example
is Google’s Falcon [40], intended to replace the underlying
mechanisms of RoCE for an implementation better suited
to data centers and directly supported in hardware.

4.2. Smart NICs

Central to these changes in the network are two aspects.
One is the need of cloud providers to have better support
for network virtualization. This immediately leads to smart
NICs where this functionality can be offloaded instead of
using CPUs for it [25]. The other aspect is the growing use
of accelerators and the bottleneck that having to go through
the CPU represents. For instance, when moving data from
the storage layer to the GPU, conventional network stacks
require to go through the CPU with copies of the data being
made along the way and blocking CPU resources. This has
led to ways to bypass the CPU [53] and also to smart NICs
that can not only communicate directly with the GPU but
also perform processing on the network data stream on the
fly, e.g., NVIDIA’s Bluefield series which terms the devices
as Data Processing Units (DPUs) [54]. Their use in database
engines is yet to be explored.



Disk
NIC

Filtering
NIC

Hashing

DRAM
RDMA

COMPUTE NODE STORAGE NODE

PCI PCI
Projection

Figure 3. Example of a streaming pipeline between NICs with projection
being done directly on storage and hashing done by the receiving NIC.

4.3. Bump-on-the-Wire Accelerators

The widespread use of smart NICs and their growing
availability opens up many opportunities for processing on
the network using the NIC as a bump-in-the-wire accelerator.
For instance, Microsoft’s Brainwave project [4] uses a smart
NIC for a variety of purposes including accelerating key-
value stores [55]. Smart NICs can operate on the data as
it flows from/to the network to another system component
(CPU, memory, or an accelerator). However, while the smart
NIC as well as the processing capacity on the storage node
are potentially shared by many applications, there will be
limitations to what can be done there. The smart NIC on
the receiving side (the compute node) does not have such
tight limitations and could complement the initial steps of
processing with more tailored operations on the data.

4.4. Research on Smart Networking

A first question regarding using smart NICs for data
processing is how to distribute the work between the smart
storage, the smart NIC on the storage layer and the smart
NIC on the compute node. This requires to look at query
plans and operators as a finer degree of granularity and,
potentially, as a set of stages improving on the previous
one. For instance, pre-aggregation could be done first at the
storage layer, once more on the sending NIC, and then again
on the receiving NIC, thereby creating a pipeline of group-
by stages that can achieve more than a single accelerator
and significantly cut down the amount of work needed at
the final stage of processing.

A more contrived but nevertheless interesting idea would
be to perform a join in stages by partitioning one table into
blocks spread across the pipeline and streaming the other
through the three stages. Similar ideas apply to sorting,
hashing, etc. (Figure 3). These questions need to be explored
first at an algorithmic and system level but also from the
point of view of the optimizer that will need to decide where
to perform each operation.

Smart NICs also offer the possibility to implement ex-
change operators that do more than just send data. Smart
NICs can be used to partition the data on the fly, perform
collective communication (scatter-gather, broadcast), and
orchestrate distributed query execution without involvement

Disk
NIC

Hashing

NIC
Hashing

DRAM

COMPUTE NODE

STORAGE NODE

PCI

PCI
Projection

NIC
Hashing

DRAM

COMPUTE NODE

PCI

Figure 4. Example of a scattering pipeline to support a distributed, parti-
tioned hash join.

of the CPU (Figure 4). This opens up many possibilities
by delegating the execution of parts of a query plan to the
smart NIC that could potentially complete entire queries
without even involving the CPU or transferring data to the
host memory. For instance, a query returning only a COUNT
can be executed directly on the NIC that simply counts the
data as it arrives and discards it, providing the final results at
the end. Depending on the size of the result, the same could
be done with, e.g., aggregation queries or joins involving a
small table, performing the entire query on the smart NIC.

5. Processing Near Memory

The relationship between traditional database engines
and main memory is perhaps the most outdated among
all the resources. Because of this over-reliance on data
movement, database VMs have little flexibility to have quick
start-up time [56], present poor VM relocation agility [57],
and deal with elastic memory only indirectly [58], to name a
few. Having a dataflow approach where the data is processed
along the path it moves rather than at the end of it would
alleviate all these issues. To understand how, we start by
revisiting the state of affairs between CPUs and DRAM.

5.1. Conventional Memory

The relative performance of CPUs and memory have
evolved quite irregularly. On certain metrics, the evolution
is aligned. Server DRAM capacity, an example of one of
these metrics, has been growing steadily with the addition
of memory controllers at every new CPU socket.

The issue is that CPUs have not been able to seize these
benefits and, in fact, there are stagnant trends when it comes
to moving the data. For instance, the access latency has
not improved between DDR4 and DDR5, having been at
roughly the same levels during the last years. In addition, a
CPU core’s ability to sustain memory bandwidth has never
reached 100% of what a controller is capable. Historically,
the best rate that a single thread can achieve on a read
workload is 75-85% of the controller’s bandwidth and has
remained constant for a long time [59], [60].



To make matters worse, some important metrics are
even decreasing. CPUs’ computational power has grown
faster than memory bandwidth: CPUs gained 5x power in
GFlops but only 2x bandwidth improvement from 2010 to
2023 [59]. Moreover, the controllers in a typical CPU are
oversubscribed w.r.t. the number of cores. Even though no
single core can saturate a controller, heavy contention would
ensue if even a moderate number of cores on a typical
CPU attempt to issue such a memory-bound workload as
a database system’s.

For these reasons, CPUs have relied on an increasing
number of fast cache layers that attenuate the discrepancy
to DRAM’s speed, and the sizes of these layers have also
been increasing over the years. Three cache layers have
been the norm, but recently chips reached the market that
can use HBM as a fourth layer [61]. To benefit from this
type of architecture, traditional database systems have been
forced to adopt cache-friendly memory access patterns. This
approach puts tremendous constraints on the system design.

Regardless of the use of caches and many optimizations,
typical database tasks can and often do suffer from cache
faults—not only data but also TLBs faults, which happen
when the physical addresses of too many memory pages
are required during a short period. Cache faults cause CPUs
to stall, waiting a relatively long time (number of cycles) for
data to arrive. Moreover, if the data requested during one of
these faults is not stored in the local DRAM but on a mem-
ory attached to a neighbor CPU socket, there are additional
penalties for higher access latency. The phenomenon, called
Non-Uniform Memory Access (NUMA), is unavoidable in
servers that use two or more CPU sockets—anecdotally, the
large majority of servers available in the cloud.

5.2. Processing In- vs. Near-Memory

Conceptually, the solution is simple; we ought to be
able to move more of the computing capacity to where the
data lies. The rationale is that, by doing so, (a) we alleviate
the CPU by performing some of its tasks in other areas of
the platform, and (b) if the computing that we perform is
reductive, i.e., if the output is smaller than the input, there
would be less data to move along the processing pipeline.
This is the essence of approach we suggest here.

As it turns out, there is a robust body of knowledge
that allows some computations to be executed away from
the CPU and closer to memory. To understand the options,
it helps to have a conceptual view of a typical memory
controller. It is connected to the CPU on one side and to
some memory packages assembled in some form factor, e.g.,
DRAM DIMMs, on the other side. If we change the nature
of the memory packages so that, besides storing data, they
could also perform some operations over them, we call these
methods processing in-memory. If, instead, we change the
controller so that it can operate on the data that it is moving
to and from DRAM, we call these methods processing near-
memory.

In-memory processing typically leverages the very fabric
that interconnects the elemental transistors so that the fabric

DRAM
ACCEL.

Filtering

SHARED 
L3 Cache

COMPUTE NODE

ON-CHIP
NETWORK

ON-CHIP
NETWORK

CORE L1 L2

CORE L1 L2

CORE L1 L2

CORE L1 L2

Figure 5. Example of filtering data along the data path from memory to
caches.

itself can perform computations. Describing how this is done
is beyond our scope, but we should mention that some
techniques can embed matrix multiplications [62] or bit-
wise operations [63] into the fabric. As fascinating as these
methods are, they provide a very narrow computing capabil-
ity and their implementation can require special fabrication,
sometimes involving memory types that are yet to reach
commercial maturity, such as Resistive RAMs.

In-memory computing can also take a slightly different
form. It can couple a specialized accelerator unit with the
memory fabric without changing the latter. This approach
gives the accelerator unit a privileged access to memory,
e.g, with a much larger bandwidth than it would be possible
via the data path the CPU uses. Examples of such an
approach exist for HBM memory [64] and DDR4 DRAM
DIMMs [65], the latter being a commercial product. The
accelerator unit attached to memory can offer broader com-
putation capabilities than the techniques that changes the
fabric described above.

This type of in-memory computing has been shown to
benefit analytic database workloads [66], [67]. The draw-
back with this approach is that the accelerator unit may not
know all ongoing memory operations at a given point. Ap-
plications can emit conflicting instructions to the accelerator
and to memory, leaving the memory in an inconsistent state.
For this reason, when using such accelerators, one should
refrain from touching parts of the memory being operated
by the unit, which is a confusing programming model.

In contrast to the previous approaches, processing near-
memory can also perform computation over data that is in
flight but it does so by interposing an accelerator between
the memory controller and the CPU. This approach has
many successful implementations. The Oracle-Sparc M7
was a CPU that housed one such data accelerator together
with the memory controller [68]. The M7 accelerator sup-
ported a handful of database operations such as filters that
could be customized by the database system via software.

Near-memory accelerators can provide a more powerful
computational model because they are not constrained by the
inner workings of the memory packages and do not require
to modify the CPU since they are external to it (Figure 5).

5.3. Disaggregated Memory

Main memory is the second most precious resource in
a data center after computing resources [32]. As such, it



is imperative in cloud settings that memory does not get
stranded in any way because of its physical location [32].
Many attempts have been made to allow an application
running on a given server to somehow read and write to
external memory—memory placed remotely with respect to
that server. Currently, RDMA is the most efficient way to
perform such remote accesses, as discussed above. (How-
ever, we will mention shortly that a new means is emerging
that allows remote memory access with additional benefits.)
Because of this remote placement vis-a-vis a server access-
ing it, this technology is known by disaggregated memory.

Disaggregated memory creates an ideal scenario for
processing near memory because it naturally separates the
CPU on the accessing server and the memory on the exter-
nal server. The added path between the two allows many
different placements for near-memory accelerators that are
naturally decoupled from the CPU. For example, an accel-
erator can very well be coupled with one or both the source
and target NICs. An example of such an approach exists that
shows how to offload query operators on the bottom part of
query plans to NIC-based accelerators [13] . By starting to
execute a query plan near memory, the portion of the plan
and the remaining that that needs to be processed by the
CPU is greatly reduced. Moreover, the accelerator executes
in an efficient, specialized hardware what the CPU would
need to execute via software. This combination of data
reduction and hardware specialization provides performance
gains while reducing resource consumption.

5.4. Research on Processing Near memory

Once again, one of the main open questions is to divide
the work within a data flow among the available accelerators
in the pipeline, as discussed above. We discuss instead a dif-
ferent research question: What kind of hardware functional
units should a near-memory accelerator carry?

Like in the Oracle-Sparc M7 chip, we need an array
of options to filter data, such as by value, range, or via a
provided filtering function. Moreover, it would be interesting
if the possibility existed of keeping data in memory com-
pressed and having the accelerator decompress on demand.
Such a set of functional units would allow the rest of the
pipeline (the cores, aided by the caches) to see only filtered
and uncompressed data [68].

The opportunities do not stop there. Another functional
unit that can be useful for memory access patterns is pointer
chasing. In a CPU-centric architecture, a block of data
containing pointers must reach the CPU before one can
decide which next data block to request. The processing of
the pointer indirection on the CPU requires extensive data
movements, which are inefficient. A pointer dereferencing
functional unit on the memory controller can exist that,
given a data block format and a key (or range), could tra-
verse a hierarchical structure and only send leaf data block
up the pipeline. Put differently, let the memory controller
perform hierarchical data traversals.

Another functional unit that could support critical oper-
ation is one that could perform data transposition. Modern

HTAP engines strive to keep data in a recent or historical
format for processing and make the conversion from the for-
mer to the latter only once. A data transposition functional
unit on the memory controller could help in this conversion.
It could also virtually reverse it by presenting data in a
different format than that in storage. This flexiblity can, to
the very least, allow an HTAP engine more leeway of when
and how to perform data conversions.

Lastly, several database engines perform background op-
erations that are memory-centric such as garbage collection.
A functional unit with fast list primitives could perform
some of these maintenance operations near memory.

6. Processing on Interconnects

Disaggregate memory opens tremendous opportunities,
but by decoupling the CPU and memory controllers, e.g., via
generic network protocols such as RDMA, two great benefits
can be lost: bandwidth and cache coherency. Fortunately,
there are commercial efforts such as CXL [31], NVLink
[69], and InfinityFabric [70] that can support disaggregation
without these disadvantages. To understand how, we start by
briefly introducing PCIe, an interconnect protocol that is at
the heart of systems integration.

6.1. Conventional Architectures

PCIe is, for all practical purposes, a networking proto-
col [71]. It is the de facto standard to connect a server’s CPU
and memory to peripheral devices, such NICs, SSDs, GPUs,
and all sorts of accelerator cards. Unbeknown to most, PCIe
can also be used to interconnect two different servers [72]—
more on that shortly. Like memory, PCIe evolution has
also been somewhat irregular. It quickly reached its third
generation in 2010, PCIe 3, which saw tremendous adoption,
but it somewhat stagnated then.

Not surprisingly, competing interconnect technologies
have surfaced, pushed by the affected parties. NVidia, one
of the companies driving the widespread GPU adoption,
created its own, faster interconnect, NVLink. NVLink is
a closed protocol and remains used exclusively by NVidia
hardware. AMD also pushed a variation called InfinityFab-
ric. That protocol, too, remains closed.

The bandwidth limitations of PCIe fragmented the mar-
ket but allowed faster interconnects to appear, which are
fundamental to the data flow architectures we propose here,
but another important element was still missing.

6.2. Beyond PCIe

We mentioned above that PCIe is a networking protocol.
The statement is correct, but it tells little about the type of
networking that PCIe supports. It is, in fact, a memory-
centric networking protocol. In practice, this means that
PCIe transport layer packets, called TLP, are typed, i.e.,
each packet type corresponds to a memory operation. In
other words, PCIe is a protocol that allows two entities to



access each other’s memory. These entities are typically a
server and peripheral card. The addresses on both entities
are unified by a hardware unit called IOMMU.

The important aspect missing in PCIe is that these mem-
ory operations are not coherent. When a peripheral reads
a memory area that is controlled by a server, it effectively
creates a copy of that area. If the server updates any values in
that area, the copy held by the peripheral would be outdated.
Protocols like RDMA and NVMe [73], which use PCIe un-
derneath to have the server communicate with, respectively,
a NIC or an SSD, do have shared data structures, but these
structures are designed so that servers and peripherals never
manipulate the same region simultaneously.

Similarly, the lack of coherence has not prevented
database systems from running on disaggregated scenarios.
Consider examples of indices maintained on disaggregated
memory, such as [74] and [75]. They allow several servers to
concurrently access remote memory through a combination
of PCIe and RDMA, where the coherence is maintained,
once again, via software—but not without its pitfalls [36].

Some important entities in the Industry were attuned
to the need to operate on remote memory coherently and,
while at it, be able to do so with lower latencies and wider
bandwidths. In 2019, a consortium led by Intel was formed,
whose goal was to draft the evolution of PCIe [76]. The
first specification of a new protocol, called Compute Ex-
press Link (CXL), was soon ratified [77]. The protocol has
evolved since and has swallowed many competing efforts,
such as OpenCAPI, CCIX, and Gen-Z.

CXL brought tremendous advantages for our data flow
purposes in at least two ways. First, it forced the evolution
of PCI to its 5th and 6th generations, doubling the band-
width twice to 64 GB/s (or 128 GB/s bidirectional). The
PCIe 7 protocol should be ratified in 2025 and will double
bandwidth again. It does not seem we will lack bandwidth
improvements for the foreseeable future for disaggregated
processing schemes, removing one of the main concerns
about this type of architecture for data processing.

The second advantage of CXL in data flow architectures
is perhaps the most impactful: cache coherency. Applica-
tions do not need to coordinate MRd’s and MRw’s PCIe op-
erations, nor built software-based coherence techniques us-
ing RDMA—although they still can since CXL keeps com-
patibility with PCIe in a protocol called cxl.io. In fact,
CXL added brought two additional protocols: cxl.mem and
cxl.cache. With cxl.mem, the memory on peripherals
and hosts can be unified. The recent addition of Global
Integrated Memory to the protocol allows the memory of
multiple hosts and peripherals to be federated into a single
memory space. With cxl.cache, any device can coher-
ently cache any portion of the memory space.

The coherency need not be maintained by software or
the application; cache coherency is the responsibility of
the hardware. In practice, coherency allows a near-memory
accelerator to operate on the data at the same time as a
CPU core. Consider Figure 5. If the accelerator updates
the memory, e.g., by writing a new value to a database
tuple, any cache holding the modified address will be in-

validated through a series of cxl.cache messages that the
caches and the memory controller would automatically send.
Ultimately, cache coherency expands the design space of
data flow architectures because it allows many active agents
to cache and operate on the latest version of the memory’s
contents simultaneously.

6.3. Beyond Memory Controllers

Another subtle but powerful consequence of implement-
ing the coherency protocol in hardware is that applications
can use it without the need for an API. In the same way
that an application issues a load or a store instruction to
access values from local memory, it can do exactly the same
to access remote memory with CXL. As long as the remote
controller participates in a CXL coherency domain, and as
long as the interconnect can carry the cache invalidation
traffic, the application cannot tell (other than a slightly
higher latency) whether a given portion of the memory is
local or remote.

CXL is not exclusively available to memory controllers.
Any device wanting to cache memory from another device
or offer its memory to the collective can emit and process
cxl.cache and cxl.mem messages, respectively, and
join a CXL coherency domain. There is a growing number
of NICs and SSDs that can support alternative interfaces
this way [78], [79] .

In summary, CXL can blur the server boundaries from
an application point of view with several ramifications we
quickly discuss next.

6.4. Research on Processing on Interconnects

If memory and storage can be disaggregated and ap-
plications can access them through CXL, we can question
whether the way to build a large platform is still through
connecting servers that bundle CPUs, memory, storage, and
networking under the same chassis. A much more flexible
way is to think of computers in terms of racks and populate
the rack with more carefully apportioned resources, i.e.,
build fully disaggregated platforms.

The research agenda involving these platforms are plen-
tiful. We discuss the motivation and alternatives to structure
them towards serving data-intensive systems in much more
detail elsewhere [80]. For now, we note that laying out a
dataflow pipeline over such a disaggregated platform can be
done quite naturally (Figure 6). The advantages of doing so
via CXL are having the hardware take care of coherency and
not requiring special APIs to access external memory. Both
of these benefits greatly reduce the software complexity
necessary to implement the data flows.

7. A New Query Processing Model

Given the above, a design exploiting all possible pro-
cessing steps along the data path will involve the following
pipeline of processing elements: near storage processing,



Disk

NIC
Filtering

NIC
Hashing

RDMA
or CXL

COMPUTE NODE STORAGE NODE

Projection

DISAGGREGATED 
MEMORY

RMMU
or NIC

RDMA
or CXL

DRAM

NEAR 
MEMORY 

ACCELERATOR
Predicate 

Evaluation

SHARED 
L3 Cache

ON-CHIP
NETWORK

ON-CHIP
NETWORK

CORE L1 L2

CORE L1 L2

CORE L1 L2

CORE L1 L2

Figure 6. Example of a full pipeline of processing stages along the data path from storage to cores.

processing on the network (sending and/or receiving NIC),
processing on interconnects, processing near memory (Fig-
ure 6). Intuitively, if designed correctly, such an architecture
will optimize data movement and perform operations much
faster than the CPU. However, the key question is what
does it mean to design such a pipeline correctly? How does
a query plan look like in such a system?

7.1. Data Movement on Query Plans

As we shift away from a CPU-centric architecture, it
should not be surprising that the data flow model we propose
here does not rely on having the CPU be the sole responsible
for pulling data. A growing body of work advocates using
the DMA engines along the data path to perform customized
data movement on an application’s behalf since these en-
gines already exist in, e.g., NICs, SSDs, or CPUs.

What we envisage for data movement is a sequence of
queues placed strategically in the pipeline that are connected
via DMA engines. Data is processed in one stage and sent
to the next depending on that stage’s queue availability. This
flow control method is called credit-based and is used, for
instance, in the PCIe stack [71]. Credit-based flow control
requires a counter stream of messages from one stage into
the previous, informing about a credit budget (in terms of
space). This type of control flow is easy to implement and
it is low traffic.

Naturally, the queue elements will eventually reach
queues in the compute nodes, and that data will be han-
dled by software. Whether the software pulls one or more
data elements at a time is relevant to the performance of
that stage only—and is completely orthogonal to data flow
architecture. The point here is that moving data within the
last stage of the plan (the compute node) should represent
only a fraction of the work done by the query plan.

7.2. Query Interpretation vs. Compilation

A typical database engine will run a query plan as a
CPU process or thread set. The program can be obtained on
a per-query basis through a compilation process, or it can be
a generic query plan interpreter that takes the query plan as
input. Implicit in a typical database query execution process
is that all hardware access is done through an ISA, i.e., via

software instructions. This is a fair assumption when all the
hardware a plan uses amounts to a CPU.

Some accelerators, however, are programmed directly—
they lack an ISA—, simply by filling a small set of
memory-mapped registers. For example, turning compres-
sion/decompression on and off on a per-flow basis can
be done this way. Such an accelerator needs to provide a
flow identifier and a value for the compression option. The
accelerator can have specific registers for such information.

Other accelerators can be programmed through more
sophisticated ways, depending on how they decide to ex-
pose (or layer abstractions on top of) their functional units.
These accelerators may require a combination of register
activations, as above, in addition to the installation of some
logic—still through other means than an ISA. For instance,
when it comes to operations that require finding tuples on
database pages and perhaps filtering those tuples, registers
can be used to characterize the filter, but parsing logic is
necessary to find where the tuples and relevant attributes
are within a page.

The literature refers to the operational information
passed on to accelerators as kernels. Kernels can be ex-
plicitly coded, as in CUDA kernels for GPU platforms,
but can also be derived through a transformation process,
e.g., via program synthesis [81]. For what we propose here,
whether this process consists of compilation or interpretation
is immaterial. The debate about the merits of each approach
is centered around how CPU efficient the plans generated
by each different methods are. Efficiency in our approach
comes from engaging the accelerators available along the
data path.

7.3. Query Scheduling

The enemy of sustained performance in this environment
is interference. The issue with interference is that when two
or more query plans wish to access a given limited resource,
performance loss can ensue because of the additional work
that (a) the arbitration for the resource may entail and (b) the
overhead of repeating acquisition and relinquishing of the
resource. This is the reason why scheduling is particularly
important on this platform. It is responsible for co-locating
plans on the platform while avoiding interference.

For a scheduling subsystem to effectively guard against
interference, query plans in this architecture should adopt



at least two aspects. First, they should contain several data
path alternatives. The natural ones are a plan that uses every
available accelerator on the data path and a plan entirely
executed on a compute node (a traditional CPU-centric
plan). Ideally, there would be some variations in between.
Given a set of options, a scheduler may decide which plan
variation to activate at runtime.

The second characteristic of a data plan is the ability
to adjust its resource consumption during runtime. The
fundamental resource in this architecture is bandwidth for
data flow. If DMA engines push the data through a large
portion of query plans, the scheduler should be able to rate
limit the bandwidth used. Rate-limiting DMA engines is a
commonplace feature and can take place dynamically.

7.4. No More Buffer Pools

Since the early days of the relational model, an obsession
in data processing engines is keeping data in memory for fast
access. This is the purpose of the buffer pool, which acts as a
main memory cache for the query processing threads. Such
an architecture anchors the engine to a given machine and
makes it difficult to move the workload around and scale
it. In distributed databases, complex protocols implement
a form of shared memory across multiple buffer pools re-
quiring to optimize data- and function-shipping and keeping
track of where the data is located. The approach distributes
the engine but limits its elasticity. In the cloud, the problem
is addressed for OLTP engines by introducing limitations
such as read-only copies and primary-copy approaches [43]
long known form the literature [82]. For OLAP engines, the
solution is to rely on caching layers using main memory or
even customized hardware [22]. Both solutions are highly
inefficient in terms of the memory required, which is the
most expensive component of the data center.

The architecture we propose is the antidote to the main
memory addiction of database designs. As storage and net-
work speeds increase and are complemented with processing
along the data path, engines can potentially completely
operate without a buffer pool and working directly over the
stored data. The idea is not as radical as it might appear
as this is how data-as-a-service systems such as Amazon’s
Athena or Google Bigtable operate (i.e., without a buffer
pool) but lacking an explicit processing pipeline along the
data path. Our approach would minimize the amount of
main memory required for data processing and make it fully
elastic as the compute layer would be stateless.

7.5. No More Data Caches

A similar argument applies to the heavy use of main
memory caches in the cloud to minimize the impact of
disaggregation. Cloud object storage is implemented on slow
disks for cost reasons. And it is accessible through the
network. This all adds latency and it also requires to use
many parallel disks to get a reasonable bandwidth. Caching
is used to shorten the data path and to make access faster
by putting the data on a faster medium (SSDs or memory).

However, this is predicated on the model that the data has to
be brought all the way to the CPU to determine whether it is
actually needed, making the approach highly inefficient. Our
active pipeline model offers a different trade-off: eliminate
caches but fully optimize the data that has to be moved and
process it where the maximum performance advantage can
be obtained (since many operators are faster on the type of
streaming operators we have discussed that on the CPU).
Caching of results would still make sense but there would
be no caching of base tables or raw data.

8. Conclusion

In summary, current trends in specialization and disag-
gregation require to completely redesign our approach to
data processing. Our approach is a design based on the
emergence of multiple processing opportunities along the
data path using processors and accelerators that are being
introduced for other purposes but that could as well hep
with data processing, the key element of the most important
workloads these days. We have motivated such a design and
listed numerous research questions that, when addressed,
will provide key insights for future designs and also help
inform the development and evolution of future hardware.
These research questions constitute a first step towards an
agenda that should lead to innovative engines aligned with
the trends in the IT world.

Acknowledgments

This work received funding from the the Swiss State
Secretariat for Education (SERI) in the context of the Smart-
Edge EU project (grant agreement No. 101092908).

References

[1] B. Dally, “Power, programmability, and granularity: The challenges
of exascale computing,” in 2011 IEEE International Test Conference.
IEEE Computer Society, 2011, pp. 12–12.

[2] N. C. Thompson and S. Spanuth, “The decline of computers as a
general purpose technology,” Communications of the ACM, vol. 64,
no. 3, feb 2021.

[3] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,”
ISCA’15, vol. 43, 2015.

[4] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abey-
deera, L. Adams, H. Angepat, C. Boehn, D. Chiou, O. Firestein,
A. Forin, K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Hus-
seini, T. Juhasz, K. Kagi, R. K. Kovvuri, S. Lanka, F. van Megen,
D. Mukhortov, P. Patel, B. Perez, A. Rapsang, S. Reinhardt,
B. Rouhani, A. Sapek, R. Seera, S. Shekar, B. Sridharan, G. Weisz,
L. Woods, P. Yi Xiao, D. Zhang, R. Zhao, and D. Burger, “Serving
dnns in real time at datacenter scale with project brainwave,” IEEE
Micro, vol. 38, no. 2, 2018.

[5] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil,
P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt,
A. M. Caulfield, E. S. Chung, and D. Burger, “A configurable cloud-
scale dnn processor for real-time AI,” in ISCA, 2018.



[6] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware
accelerators,” Communications of the ACM, vol. 63, no. 7, pp. 48–
57, 2020.

[7] W. Noureddine, “The Fungible DPU: A New Category of Micro-
processor for the Data-Centric Era,” in 2020 IEEE Hot Chips 32
Symposium (HCS), 2020.

[8] Amazon, “Filtering and retrieving data using Amazon S3 Select,”
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-
content-from-objects.html.

[9] L. Woods, Z. István, and G. Alonso, “Ibex: an intelligent storage
engine with support for advanced SQL offloading,” VLDB, 2014.

[10] S. Kang, J. Kim, G. Lee, J. Lee, J. Seo, H. Jung, Y. H. Song, and
Y. Park, “ISP agent: A generalized in-storage-processing workload
offloading framework by providing multiple optimization opportuni-
ties,” ACM Transactions on Architecture and Code Optimization, jan
2024.

[11] K. Lee, I. Jo, J. Ahn, H. Lee, H. Lee, W. Sul, and H. Jung,
“Deploying computational storage for htap dbmss takes more than
just computation offloading,” VLDB, 2023.

[12] D. Gouk, S. Lee, M. Kwon, and M. Jung, “Direct
access, High-Performance memory disaggregation with Di-
rectCXL,” in USENIX ATC’22’, 2022. [Online]. Available:
https://www.usenix.org/conference/atc22/presentation/gouk

[13] D. Korolija, D. Koutsoukos, K. Keeton, K. Taranov, D. S. Milojicic,
and G. Alonso, “Farview: Disaggregated memory with operator off-
loading for database engines,” in CIDR, 2022.

[14] M. K. Aguilera, E. Amaro, N. Amit, E. Hunhoff, A. Yelam, and
G. Zellweger, “Memory disaggregation: why now and what are the
challenges,” ACM SIGOPS Oper. Syst. Rev., vol. 57, no. 1, 2023.

[15] R. Wang, J. Wang, S. Idreos, M. T. Özsu, and W. G. Aref, “The
case for distributed shared-memory databases with RDMA-enabled
memory disaggregation,” VLDB, 2022.

[16] Z. Guo, H. Zhang, C. Zhao, Y. Bai, M. Swift, and M. Liu, “LEED:
A low-power, fast persistent key-value store on SmartNIC JBOFs,”
in Proceedings of the ACM SIGCOMM 2023 Conference, 2023.

[17] Z. István, D. Sidler, and G. Alonso, “Caribou: Intelligent distributed
storage,” VLDB, 2017.

[18] J. Li, Y. Lu, Y. Zhang, Q. Wang, Z. Cheng, K. Huang, and J. Shu,
“Switchtx: scalable in-network coordination for distributed transac-
tion processing,” VLDB, 2022.

[19] T. Jepsen, A. Lerner, F. Pedone, R. Soulé, and P. Cudré-Mauroux,
“In-network support for transaction triaging,” VLDB, 2021.

[20] H. Zhu, Z. Bai, J. Li, E. Michael, D. R. K. Ports, I. Stoica, and
X. Jin, “Harmonia: near-linear scalability for replicated storage with
in-network conflict detection,” VLDB, 2019.

[21] R. Hussein, A. Lerner, A. Ryser, L. Bürgi, A. Blarer, and P. Cudré-
Mauroux, “GraphINC: Graph pattern mining at network speed,” in
SIGMOD, 2023.

[22] J. Barr. (2021) Aqua (advanced query accelerator) – a speed
boost for your amazon redshift queries. [Online]. Avail-
able: https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-
accelerator-for-amazon-redshift/

[23] M. Chiosa, F. Maschi, I. Müller, G. Alonso, and N. May, “Hardware
acceleration of compression and encryption in SAP HANA,” VLDB,
2022.

[24] Y. Fang, C. Zou, and A. A. Chien, “Accelerating raw data analysis
with the ACCORDA software and hardware architecture,” VLDB,
2019.

[25] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K.
Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam,
F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre,
M. Shaw, G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair,
D. Bansal, D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg,
“Azure accelerated networking: Smartnics in the public cloud,” in
Proceedings of the 15th USENIX Conference on Networked Systems
Design and Implementation, 2018.

[26] M. Stonebraker, A. Pavlo, R. Taft, and M. L. Brodie, “Enterprise
database applications and the cloud: A difficult road ahead,” in 2014
IEEE International Conference on Cloud Engineering, Boston, MA,
USA, March 11-14, 2014, 2014, pp. 1–6.

[27] Amazon, “Managed SQL Databases,” https://aws.amazon.com/rds/.

[28] Oracle, “Why Oracle Exadata platforms are the best for Oracle
Database,” https://www.oracle.com/engineered-systems/exadata/.

[29] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,
J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang, A. W.
Lee, A. Motivala, A. Q. Munir, S. Pelley, P. Povinec, G. Rahn,
S. Triantafyllis, and P. Unterbrunner, “The Snowflake Elastic Data
Warehouse,” in SIGMOD, 2016.

[30] G. Graefe and W. McKenna, “The volcano optimizer generator:
extensibility and efficient search,” in ICDE, 1993.

[31] D. D. Sharma, “Compute express link (CXL): Enabling heterogeneous
data-centric computing with heterogeneous memory hierarchy,” IEEE
Micro, vol. 43, no. 2, pp. 99–109, 2023.

[32] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic,
M. Shah, S. Rajadnya, S. Lee, I. Agarwal, M. D. Hill, M. Fontoura,
and R. Bianchini, “Pond: CXL-based memory pooling systems for
cloud platforms,” in ASPLOS 2023, 2023.

[33] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhat-
tacharya, C. Petersen, M. Chowdhury, S. Kanaujia, and P. Chauhan,
“TPP: Transparent page placement for CXL-enabled tiered-memory,”
in ASPLOS 2023, 2023.

[34] Samsung, “Samsung electronics introduces industry’s first 512gb
CXL memory module,” https://news.samsung.com/global/samsung-
electronics-introduces-industrys-first-512gb-cxl-memory-module.

[35] W. Bai, S. S. Abdeen, A. Agrawal, K. K. Attre, P. Bahl, A. Bhagat,
G. Bhaskara, T. Brokhman, L. Cao, A. Cheema, R. Chow, J. Cohen,
M. Elhaddad, V. Ette, I. Figlin, D. Firestone, M. George, I. German,
L. Ghai, E. Green, A. Greenberg, M. Gupta, R. Haagens, M. Hendel,
R. Howlader, N. John, J. Johnstone, T. Jolly, G. Kramer, D. Kruse,
A. Kumar, E. Lan, I. Lee, A. Levy, M. Lipshteyn, X. Liu, C. Liu,
G. Lu, Y. Lu, X. Lu, V. Makhervaks, U. Malashanka, D. A. Maltz,
I. Marinos, R. Mehta, S. Murthi, A. Namdhari, A. Ogus, J. Padhye,
M. Pandya, D. Phillips, A. Power, S. Puri, S. Raindel, J. Rhee,
A. Russo, M. Sah, A. Sheriff, C. Sparacino, A. Srivastava, W. Sun,
N. Swanson, F. Tian, L. Tomczyk, V. Vadlamuri, A. Wolman, Y. Xie,
J. Yom, L. Yuan, Y. Zhang, and B. Zill, “Empowering azure storage
with RDMA,” in NSDI 23, 2023.

[36] T. Ziegler, J. Nelson-Slivon, V. Leis, and C. Binnig, “Design guide-
lines for correct, efficient, and scalable synchronization using one-
sided RDMA,” SIGMOD, 2023.

[37] J. Hennessy and D. Patterson, “A new golden age for computer
architecture: Domain-specific hardware/software co-design, enhanced
security, open instruction sets, and agile chip development,” in ISCA,
2018.

[38] Microsoft, “Improved cloud service performance through ASIC
acceleration,” https://azure.microsoft.com/en-us/blog/improved-
cloud-service-performance-through-asic-acceleration/.

[39] Google, “Accelerate AI development with Google Cloud TPUs,”
https://cloud.google.com/tpu/.

[40] Google, “Google opens Falcon, a reliable low-
latency hardware transport, to the ecosystem,”
https://cloud.google.com/blog/topics/systems/introducing-falcon-
a-reliable-low-latency-hardware-transport.

[41] Microsoft, “With a systems approach to chips, Microsoft aims
to tailor everything ‘from silicon to service’ to meet AI de-
mand,” https://news.microsoft.com/source/features/ai/in-house-chips-
silicon-to-service-to-meet-ai-demand/.



[42] AWS, “Amazon web services high-performance, low-cost
ML infrastructure is accelerating innovation in the cloud,”
https://www.technologyreview.com/2021/11/01/1038962/high-
performance-low-cost-machine-learning-infrastructure-is-
accelerating-innovation-in-the-cloud/.

[43] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mit-
tal, S. Krishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao,
“Amazon Aurora: Design considerations for high throughput cloud-
native relational databases,” in SIGMOD’17, 2017.

[44] S. Lee, A. Lerner, P. Bonnet, and P. Cudré-Mauroux, “Database
kernels: Seamless integration of database systems and fast storage
via CXL,” in CIDR, 2024.

[45] A. Lerner and P. Bonnet, Principles of Database and Solid-State
Drive Co-Design, ser. Synthesis Lectures on Data Management.
Springer, 2024.

[46] D. Sidler, Z. István, M. Owaida, and G. Alonso, “Accelerating pattern
matching queries in hybrid CPU-FPGA architectures,” in SIGMOD,
2017.

[47] S. Lee, A. Lerner, A. Ryser, K. Park, C. Jeon, J. Park, Y. H. Song, and
P. Cudré-Mauroux, “X-SSD: A storage system with native support for
database logging and replication,” in SIGMOD, 2022.

[48] H. Caminal, Y. Chronis, T. Wu, J. M. Patel, and J. F. Martı́nez,
“Accelerating database analytic query workloads using an associative
processor,” in ISCA’22.

[49] E. Zamanian, X. Yu, M. Stonebraker, and T. Kraska, “Rethinking
database high availability with rdma networks,” VLDB, 2019.

[50] Y. Taleb, R. Stutsman, G. Antoniu, and T. Cortes,
“Tailwind: Fast and atomic rdma-based replica-
tion,” in USENIX ATC’18, 2018. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/taleb

[51] C. Barthels, I. Müller, T. Schneider, G. Alonso, and T. Hoefler,
“Distributed join algorithms on thousands of cores,” VLDB, 2017.

[52] C. Barthels, I. Müller, K. Taranov, G. Alonso, and T. Hoefler, “Strong
consistency is not hard to get: Two-phase locking and two-phase
commit on thousands of cores,” VLDB, 2019.

[53] NVIDIAG, “Nvidia opens nvlink for custom silicon integration,”
https://nvidianews.nvidia.com/news/nvidia-opens-nvlink-for-custom-
silicon-integration.

[54] NVidia, “NVIDIA BlueField Networking Platform,”
https://www.nvidia.com/en-us/networking/products/data-processing-
unit/.

[55] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and
L. Zhang, “KV-Direct: High-performance in-memory key-value store
with programmable NIC,” in OSDI, 2017.

[56] O. Poppe, Q. Guo, W. Lang, P. Arora, M. Oslake, S. Xu, and
A. Kalhan, “Moneyball: proactive auto-scaling in Microsoft Azure
SQL database serverless,” VLDB, 2022.

[57] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi, “Zephyr: live
migration in shared nothing databases for elastic cloud platforms,” in
SIGMOD, 2011.

[58] T.-I. Salomie, G. Alonso, T. Roscoe, and K. Elphinstone, “Application
level ballooning for efficient server consolidation,” in EuroSys, 2013.

[59] J. D. McCalpin, “The evolution of single-core bandwidth in mul-
ticore processors,” https://sites.utexas.edu/jdm4372/2023/04/25/the-
evolution-of-single-core-bandwidth-in-multicore-processors/.

[60] ——, “The evolution of single-core bandwidth in multicore sys-
tems — update,” https://sites.utexas.edu/jdm4372/2023/12/19/the-
evolution-of-single-core-bandwidth-in-multicore-systems-update/.

[61] Intel, “Intel xeon cpu max series – product
brief,” https://www.intel.com/content/www/us/en/content-
details/765366/intel-xeon-cpu-max-series-product-brief.html.

[62] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: a novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in ISCA, 2016.

[63] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit:
in-memory accelerator for bulk bitwise operations using commodity
dram technology,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, 2017.

[64] T. R. Kepe, E. C. de Almeida, and M. A. Z. Alves, “Database
processing-in-memory: an experimental study,” VLDB, 2019.

[65] UpMEM, https://www.upmem.com.

[66] C. Lim, S. Lee, J. Choi, J. Lee, S. Park, H. Kim, J. Lee, and Y. Kim,
“Design and analysis of a Processing-in-DIMM join algorithm: A
case study with UPMEM DIMMs,” SIGMOD, 2023.

[67] A. Baumstark, M. A. Jibril, and K.-U. Sattler, “Accelerating large
table scan using processing-in-memory technology,” Datenbank-
Spektrum, vol. 23, no. 3, pp. 199–209, 2023.

[68] K. Aingaran, S. Jairath, G. Konstadinidis, S. Leung, P. Loewen-
stein, C. McAllister, S. Phillips, Z. Radovic, R. Sivaramakrishnan,
D. Smentek, and T. Wicki, “M7: Oracle’s next-generation sparc
processor,” IEEE Micro, vol. 35, no. 2, pp. 36–45, 2015.

[69] NVidia, “NVLink and NVSwitch: The building blocks of ad-
vanced multi-GPU communication—within and between servers,”
https://www.nvidia.com/en-us/data-center/nvlink/.

[70] AMD, “Infinity architecture: A new era in accelerated system connec-
tivity,” https://www.amd.com/en/technologies/infinity-architecture.

[71] M. Jackson, R. Budruk, J. Winkles, and D. Anderson, PCI Express
Technology 3.0. Mindshare Press, 2012.

[72] Linux, “Non-transparent bridge driver,”
https://www.kernel.org/doc/Documentation/ntb.txt.

[73] NVMe, “NVMe specifications overview,”
https://nvmexpress.org/specifications/.

[74] T. Ziegler, S. T. Vani, C. Binnig, R. Fonseca, and T. Kraska, “De-
signing distributed tree-based index structures for fast rdma-capable
networks,” in SIGMOD, 2019.

[75] Q. Wang, Y. Lu, and J. Shu, “Sherman: A write-optimized distributed
b+tree index on disaggregated memory,” in SIGMOD, 2022.

[76] CXL, “CXL consortium members,”
https://computeexpresslink.org/our-members/.

[77] ——, “CXL specification,” https://computeexpresslink.org/cxl-
specification/.

[78] E. Amaro, Z. Luo, A. Ousterhout, A. Krishnamurthy, A. Panda,
S. Ratnasamy, and S. Shenker, “Remote memory calls,” in Proceed-
ings of the 19th ACM Workshop on Hot Topics in Networks, 2020.

[79] M. Jung, “Hello bytes, bye blocks: Pcie storage meets compute
express link for memory expansion (cxl-ssd),” in Proceedings of the
14th ACM Workshop on Hot Topics in Storage and File Systems,
2022.

[80] A. Lerner and G. Alonso, “CXL and the return of scale-up database
engines,” CoRR, vol. abs/2401.01150, 2024.

[81] S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung, “Building Code
Transpilers for Domain-Specific Languages Using Program Synthe-
sis,” in ECOOP, 2023.

[82] C. Plattner and G. Alonso, “Ganymed: Scalable replication for trans-
actional web applications,” in Middleware 2004, ACM/IFIP/USENIX
International Middleware Conference, Toronto, Canada, October 18-
20, 2004, Proceedings, ser. Lecture Notes in Computer Science, vol.
3231. Springer, 2004, pp. 155–174.


