

Non-Parametric Class Completeness Estimators for Collaborative Knowledge Graphs

The Case of Wikidata

Michael Luggen, Djellel Difallah, Cristina Sarasua, Gianluca Demartini, and Philippe Cudré-Mauroux

Agenda

- Motivation
- Species Richness Estimators
- Class Completeness Estimators
- Evaluation / Application

KG Completeness

Schema completeness

Property completeness

Interlinking completeness

Class completeness

Errors through incomplete Classes

Missing entities can lead to wrong conclusions:

"There are no volcanos in New Zea, so no need for a early warning system."

Missing entities can bias statistics:

"There are more Skyscrapers in Auckland, pared to NY, so Auckland is bigger."

The Question

How can we know if we have all real world entities of a class C in our Knowledge Base?

How many **Volcanos** are there? How many **Hospitals** are there? How many are there?

How many I has I_C?

$$I_{C} = \{I_{1}, ..., I_{N}\}$$
 $N = |I_{C}|$

How many Mountains are there?

Species Richness Estimators

Species Richness Estimators

Collaborative Knowledge Graphs

redit

the kiwis I kiwi

▼ In more languages ^{Configure}

Language	Label	Description	Also known as
English	Apteryx	genus of birds	the kiwis kiwi
German	Kiwis	Gattung der Familie Kiwis (Apterygidae)	Apteryx Schnepfenstrauß Schnepfenstrauße

All entered languages

image

Predicates

Object

Revision history of "Apteryx" (Q43642)

View logs for this item (view abuse log)

Filter revisions

Diff selection: Mark the radio boxes of the revisions to compare and hit enter or the button at the bottom.

Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.

(latest I earliest) View (newer 50 I older 50) (20 I 50 I 100 I 250 I 500)

Compare selected revisions

Select: All, None, Invert

(cur I prev) 12:21, 28 September 2019 Hupaleju (talk | contribs) . . (60,812 bytes) (+700) . . (Creat) (cur I prev) 16:57, 23 September 2019 TextworkerBot (talk I contribs) . . (60,112 bytes) (+779) . . (60,112 bytes) 03:31, 23 September 2019 TextworkerBot (talk I contribs) . . (59,333 bytes) (+797) . . ((cur I prev) (cur l prev) 07:59, 16 September 2019 99of9 (talk I contribs) . . (58,536 bytes) (+347) . . (Created (cur l prev) 06:09, 4 September 2019 SuccuBot (talk I contribs) . . (58,189 bytes) (+427) . . (Added 06:09, 4 September 2019 SuccuBot (talk I contribs) . . (57,762 bytes) (+427) . . (Addec (cur l prev) (cur l prev) 08:57, 30 August 2019 Vallue (talk I contribs) . . (57,335 bytes) (+327) . . (Created clair 20:12, 18 August 2019 Jaumellecha (talk I contribs) . . (57,008 bytes) (+345) . . (Create (cur l prev) 16:30, 13 June 2019 213.113.145.165 (talk) . . (56,663 bytes) (+76) . . (Added [sv] des (cur l prev) 19:33, 13 April 2019 Meno25 (talk I contribs) . . (56,587 bytes) (+169) . . (Merged Item (cur l prev)

Edits: 161'445'153

Wikidata Edits

Classes: 54'698

Edits: 161'445'153

Observations

Observations: 370'250'842

Paris

Ι

Class Completeness Estimators

Class Completeness Estimators

Jack1 Jackknife Estimators

N1-UNIF Sample Coverage and the

Good-Turing Estimator

SOR Singleton Outliers Reduction

Chao92 Abundance-based Coverage

Estimator

N1-UNIF

Sample Coverage and the Good-Turing Estimator

$$\hat{N}_{\text{N1-UNIF}} = \frac{D}{\hat{S}} = \frac{D}{1 - \frac{f_1}{n}}$$

$$S = \sum_{i=1}^{n} \mathbb{1}[X_i > 0]$$

$$p_i$$
 Probability to Observe

$$X_i$$
 Frequency of Observation

$$\hat{S} = 1 - \frac{f_1}{n}$$

$$f_1$$
 Instances observed once

Evaluation

Evaluation

Application Convergence Metric

$$\rho = \frac{\sum_{i=k-w}^{k} \frac{|\hat{N}_i - D_i|}{D_i}}{w} \quad \begin{array}{ll} \hat{N}_i & \text{Entities Estimate per Period} \\ D_i & \text{Distinct Entities per Period} \\ w & \text{Window} \end{array}$$

SOR ρ	< 0.001	Distinct	SOR	$\rho > 0.1$	Distinct
municipality of Japan	0.0000	739	urban beach	0.1759	683
Philippine TV series	0.0009	822	hydroelectric power station	0.2975	2,936
Landgemeinde of Austria	0.0000	1,116	aircraft model	0.1800	3,919
district of China	0.0009	975	motorcycle manufacturer	0.1758	690
nuclear isomer	0.0002	1,322	local museum	0.1760	1,150
international border	0.0000	529	waterfall	0.1942	5,322
commune of France	0.0001	34,937	race track	0.2783	946
village of Burkina Faso	0.0005	2,723	film production company	0.2107	2,179
supernova	0.0005	5,906	red telephone box	0.3469	2,716
township of Indiana	0.0002	999	mountain range	0.2390	21,390

Wrap-Up

- The edit history of a KG can be used to inform statistical methods adapted from species estimators.

- We evaluated the effectiveness of statistical methods to estimate the class size on repeated sampling.
- With the convergence metric we are able to distinguish between complete and incomplete classes in a KG.

https://cardinal.exascale.info/

