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KG Completeness

Schema completeness

Property completeness

Interlinking completeness

Class completeness

Q5119 (capital) P31
(instance of)Q90 (Paris)

Q515 (city)

P279  (subclass of)

105.4 km²

P2016    (area)

Q142 (France)

 P17   (country)

Q70 (Bern)

 P31
(instance of)

After: Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for Linked Data: A survey. Semantic Web Journal
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Errors through incomplete Classes

Missing entities can lead to wrong conclusions:

“There are no volcanos in New Zealand, so no need for an 
early warning system.”

Missing entities can bias statistics:

“There are more Skyscrapers in Auckland, compared to NY, 
so Auckland is bigger.”
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The Question

How can we know if we have all real world entities of a 
class C in our Knowledge Base?

How many Volcanos are there? 
How many Hospitals are there? 
How many …….. are there?

How many I has IC ?
IC = {I1 , ..., IN } 

N = |IC | 
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IMountains

How many Mountains are there?

IMountains
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Species Richness Estimators
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Collaborative Knowledge Graphs
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Wikidata Edits
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Timeline

E3: Bern located next Aare

E1: Louvre located in Paris

E4: Paris owner Eiffel Tower

E6: Berlin capital Germany 

E5: Swiss Theatre Collection located in Bern

E2: Bern capital Switzerland

Q5119 (capital) P31
(instance of)Q90 (Paris)

Q70 (Bern)

 P31
(instance of)

E3: Bern located next Aare

E1: Louvre located in Paris

E4: Paris owner Eiffel Tower

E6: Berlin capital Germany 

E5: Swiss Theatre Collection located in Bern

E2: Bern capital Switzerland

Edits: 161’445'153 

Classes: 54'698 



Observations
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{Sample Period

Sample #3 Sample #4 Sample #5 Sample #6 Sample #7… …
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Timeline

E3: Bern located next Aare

E1: Louvre located in Paris

E4: Paris owner Eiffel Tower

E6: Berlin capital Germany 

E5: Swiss Theatre Collection located in Bern

E2: Bern capital Switzerland

Edits: 161’445'153 

Classes: 54'698 

Observations: 370’250'842



Class Completeness Estimators
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Jack1   Jackknife Estimators 

N1-UNIF   Sample Coverage and the 
     Good-Turing Estimator 

SOR    Singleton Outliers Reduction 

Chao92   Abundance-based Coverage 
     Estimator

Class Completeness Estimators
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Sample Coverage 
and the Good-Turing Estimator

S Sample Coverage
N   True class Size
pi Probability to Observe
Xi Frequency of Observation

8 Luggen et al.

of sample completeness.

S =
NX

pi1[Xi > 0] (3)

Since the probabilities of observing the instances as well as the population size
are unknown, a popular estimate of the sample coverage is given by the Good-
Turing Estimator [10] Eq. (4). E↵ectively, this estimator relies on the comple-
ment of the ratio of singletons among the sample data and as an indicator of
true sample coverage. For example, if in past sample periods we have seen each
instance only once, the probability of observing a new instance by collecting a
new sample is 1. Conversely, if all the instances were seen more than once, i.e.,
f1 = 0 the probability of seeing a new instance in a new sample is reduced to 0.

Ŝ = 1� f1
n

(4)

If all instances have the same probability of being observed, the population
size using the Good-Turing sample coverage is given by:

N̂n1-unif =
D

Ŝ
=

D

1� f1
n

(5)

We draw the attention of the reader to the trade-o↵ that singletons and
popular instances create. Typically, frequency counts will be heavily unbalanced
and will tend to over or under-estimate the true population size.

Singleton Outliers Reduction [SOR] To mitigate the e↵ect of the singletons
on a class, a popular approach is to threshold the number of singleton elements.
Trushkowsky et al. [19] proposed to limit the number of singletons introduced
by a given contributor to two standard deviations above the mean of singletons
introduces by other workers. We adapt this method to our scenario by limiting
the f1 count to fall within two standard deviations above the mean. The rationale
behind our choice is to strike a balance between low and high dispersion of f1
frequencies with respect to the set F of all frequencies that we observe.

N̂SOR =
D

1� f̃1
n

(6)

with,

f̃1 = min
n
f1, 2� + µ

o

µ =
FX

8j>1

fj
|F |� 1

� =

vuut
FX

8j>1

(fj � µ)2

|F |� 2

(7)

N1-UNIF
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Ŝ    Good-Turing Estimator  
f1 Instances observed once
n Number of Observations
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D Distinct Entities
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Ŝ = 1� f1
n

(4)

If all instances have the same probability of being observed, the population
size using the Good-Turing sample coverage is given by:

N̂n1-unif =
D

Ŝ
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Evaluation
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Table 2. Lists of 10 randomly picked examples. Left with a low ⇢ suggesting a complete
class, and right a high ⇢ suggesting an incomplete class.

SOR ⇢ < 0.001 Distinct

municipality of Japan 0.0000 739
Philippine TV series 0.0009 822
Landgemeinde of Austria 0.0000 1,116
district of China 0.0009 975
nuclear isomer 0.0002 1,322
international border 0.0000 529
commune of France 0.0001 34,937
village of Burkina Faso 0.0005 2,723
supernova 0.0005 5,906
township of Indiana 0.0002 999

SOR ⇢ > 0.1 Distinct

urban beach 0.1759 683
hydroelectric power station 0.2975 2,936
aircraft model 0.1800 3,919
motorcycle manufacturer 0.1758 690
local museum 0.1760 1,150
waterfall 0.1942 5,322
race track 0.2783 946
film production company 0.2107 2,179
red telephone box 0.3469 2,716
mountain range 0.2390 21,390

4.3 Discussion

Our experimental results unveiled key properties in terms of the sensitivity and
conditions under which some estimators perform better than others. Generally
speaking, all estimators beat the lower bound of distinct numbers in the error
metric �. The exception is the class (Municipalities of the CZ) which converged
early on, and for which N1-UNIF still beats the error of the distinct values.
However, the other estimators lose against the lower bound (distinct) in this
example on the number of instances because they over estimate the class size in
the early samples before the class reaches completeness. We observe that more
conservative estimators N1-UNIF, Chao92 perform worse then Jack1 and SOR
for incomplete classes, which is why we recommend the last two in the end
for the estimation of the class size. The convergence metric can be used as an
indicator to distinguish complete from incomplete classes without requiring the
knowledge of the real class size. In Table 1, we see how the convergence metrics ⇢
are low (< 0.001) for complete classes. On the other hand for incomplete classes
⇢ is comparatively high (> 0.1). Table 2 lists ten randomly-picked classes, along
with the convergence on SOR and the number of distinct instances, for a low
and high ⇢ values suggesting complete and incomplete classes respectively. These
lists illustrate how our convergence metric can be leveraged to identify gaps in
the KG.

4.4 Additional Material and Tools

The results on all classes in Wikidata are available at http :
//cardinal.exascale.info. We also release our Python code imple-
menting the data processing pipeline, all estimators and metrics as an open
source package22. This includes tools to seek for incomplete classes based on
the convergence metric. Finally, we provide the pre-processed data at every
step of the processing pipeline, as well as the final results for each dataset.

22 https://github.com/eXascaleInfolab/cardinal/

10 Luggen et al.

convergence metric. The closer the metric is to zero, the more confident we are
that the class has converged to its complete set.

⇢ =

Pk
i=k�w

|N̂i�Di|
Di

w
(11)

In the following section, we evaluate the presented estimators on a set of eight
classes from Wikidata. We report our findings using the error and convergence
metrics for the following estimators: Jack1 (N̂jack1)9, N1-UNIF (N̂N1-UNIF), SOR
(N̂SOR) and Chao92 (N̂chao92).

4 Experimental Evaluation

We discuss the results of an extensive experimental evaluation of the estimators
introduced in Section 3 below, starting with the description of the dataset we
used. We obtain the full edit history of the Knowledge Graph and collect the
observations for all the classes we found in Wikidata. We then selected a sub-
sample of classes for which we have meaningful characteristics regarding the
number of observations spread over time. From this set, we randomly selected
classes and searched for an independent authoritative source that reports their
true cardinality. We set the sample period to 30 days, which results in at least
one observation per sample period on most classes we selected. We use the last
four samples (w = 4 which equals roughly 4 Months) of our results to calculate
the convergence metric. Note that if an instance was not assigned the correct
class we are not able to count it and we consider it as missing. This is a desirable
e↵ect since a declarative query on Wikidata requesting the full list of a class will
not return such instances either.

4.1 Data

To evaluate our class completeness estimation methods, we use two di↵erent
datasets from Wikidata: First, we use the entity graph, provided by the Wikidata
JSON dumps as of Aug 18, 201810. The JSON dump contains the actual node
descriptions and the edges between the nodes. Second, we use the edit history as
of Oct 1, 2018 provided in the Wikibase XML Dump11. The edit history provides
the list of all actions performed on the KG including the creation of new items,
the update of labels and other values, as well as reverted edits12. For each action,
the XML dump provides the item changed, the user who made the change, the
timestamp, a comment describing the action, and a pointer to the state of the
graph before this action.

9 We do not report on Jack2 as it has been shown to over-estimate the population size
when the sample size is large [5], which we have experienced as well.

10 JSON Dump: https://dumps.wikimedia.org/wikidatawiki/entities/20180813
11 Edit History: https://dumps.wikimedia.org/wikidatawiki/20181001
12 List of all Wikibase actions: https://www.mediawiki.org/wiki/Wikibase/API/en

N̂i Entities Estimate per Period
Di Distinct Entities per Period
w Window

Application 
Convergence Metric
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Wrap-Up
• The edit history of a KG can be used to inform 

statistical methods adapted from species 
estimators.

• We evaluated the effectiveness of statistical 
methods to estimate the class size on repeated 
sampling.

• With the convergence metric we are able to 
distinguish between complete and incomplete 
classes in a KG.

https://cardinal.exascale.info/

Timeline

E3: Bern located next Aare

E1: Louvre located in Paris

E4: Paris owner Eiffel Tower

E6: Germany capital Berlin 

E5: Swiss Theatre Collection located in Bern

E2: Bern capital Switzerland
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