TRANSACTIONS ON BIG DATA

Managing Big Interval Data with CINTIA: the
Checkpoint INTerval Array

Ruslan Mavlyutov and Philippe Cudre-Mauroux
eXascale Infolab
U. of Fribourg—Switzerland
{firstname.lastname}@unifr.ch

Abstract—Intervals have become prominent in data management as they are the main data structure to represent a number of key
data types such as temporal or genomic data. Yet, there exists no solution to compactly store and efficiently query big interval data. In
this paper we introduce CINTIA—the Checkpoint INTerval Index Array—an efficient data structure to store and query interval data,
which achieves high memory locality and outperforms state-of-the art solutions. We also propose a low-latency, Big Data system that
implements CINTIA on top of a popular distributed file system and efficiently manages large interval data on clusters of commodity
machines. Our system can easily be scaled-out and was designed to accommodate large delays between the various components of a
distributed infrastructure. We experimentally evaluate the performance of our approach on several datasets and show that it
outperforms current solutions by several orders of magnitude in distributed settings.

Index Terms—Interval Data; Low-Latency; Scalability; Distributed Data Management

1 INTRODUCTION

Infrastructures for managing sets of intervals have not
evolved much in the last decades. Yet, intervals are in-
creasingly prevalent in cloud and distributed information
systems and are being created by an ever growing number
of applications. Temporal intervals are fundamental to the
management of time varying information [1]. They are for
example essential for correctly capturing and handling on-
line transactions. Several types of intervals can be defined in
that context [2], such as transaction intervals (defining the
time periods during which the tuples in the database are
considered to be true) or validity intervals (capturing the
period during which a database tuple is valid in reality).
Intervals are also omnipresent when managing genomic
data. With the commoditization of DNA sequencing tech-
nology, very large amounts of short DNA sequences can
today be created at very low cost—the cost of sequencing a
raw megabase (a million DNA bases) being less than 0.1$ in
2015'. Queries on those overlapping intervals have played
a significant role in the development of modern genomics
and are essential for many bioinformatics applications.

Beyond temporal information and genomics, intervals
are often heavily used to efficiently manage spatial or
multidimensional data, for example by taking advan-
tage of space-filling curves (such as Hilbert [3] and Z-
order [4] curves) to map a n-dimensional space onto a one-
dimensional space while preserving some locality.

Despite this growing demand, interval infrastructures
have been lagging behind. Relational database systems,
with their bag (or set) semantics, are ill-designed to store
ordered data and have to rely on secondary structures (such
as interval trees, see Section 2 below) to handle interval

1. see http:/ /www.genome.gov /sequencingcosts/

data. A number of recent systems, such as column [5] or
wide column [6] stores, have the ability to store ordered data
natively; yet, they are unable to efficiently answer queries on
top of interval data, as the complexity of answering queries
on overlapping intervals grows linearly with the number of
intervals without a dedicated index.

After having unsuccessfully tested out all the above
solutions for one of our projects®, we decided to develop
a new solution to this problem. In this work, we introduce
CINTIA, the Checkpoint INTerval Index Array, a new data
structure to manage large sets of intervals in distributed
settings. We designed our system from the ground up with
two main goals in mind: i) to allow for low-latency, efficient
query execution over large sets of overlapping intervals—
even when the latency between some of the components
of the infrastructure is high—and ii) to support graceful
scale-out, by simply adding more nodes to the infrastructure
when the system reaches capacity. We met those goals by
developing a new interval index, which scales gracefully
even in the worst-case scenario when all intervals overlap
each other, and by integrating and optimizing our system
directly on top of a modern distributed file system (i.e.,
HDEFS).

In summary, the main contributions of this paper are:

e a new data structure to compactly encode and effi-
ciently query interval data. Our new index has a con-
struction complexity of O(Nlog N) (where N is the
number of intervals in a dataset), a query execution
complexity of O(log(N) + R) (where R is the number
of intervals overlapping the query interval) and a space
complexity of O(N). Our index is cache-efficient, in
the sense that cache-misses are minimized as much as

2. the 3D Genome Browser, see http://3dgb.cs.mcgill.ca/



TRANSACTIONS ON BIG DATA

possible thanks to data collocation;

 two implementations of our index, one for stand-alone,
main-memory usage and another one built on top of a
popular distributed filesystem (HDFS);

e an extensive evaluation of our system on several
datasets showing that it is more efficient than state-of-
the-art solutions both in centralized and in distributed
settings.

The rest of this paper is organized as follows. We start
below by discussing the related work in temporal, spatial
and distributed systems in Section 2. Section 3 gives a
high-level overview of our solution, including the main
techniques we devised to insert, index and query interval
data. We discuss a number of important implementation
considerations in Section 4. Section 5 presents the results of
an empirical evaluation of our system on several datasets,
and how it compares to several state-of-the-art techniques
and systems. Finally, we conclude in Section 6.

2 RELATED WORK IN INTERVAL DATA MANAGE-
MENT

A number of techniques have been proposed for managing
intervals efficiently (see [7], [8], or [9] for surveys), mostly
for relational database systems. To the best of our knowl-
edge, however, we are the first to propose a solution for
managing interval data based on two interrelated arrays: a
main interval array and a checkpoint array.

We review below the most important pieces of work
in our context, focusing on main-memory and multidimen-
sional structures and their extensions to secondary storage
and distributed settings.

2.1 Memory-Resident Structures

The trivial solution to resolve overlap queries (i.e., queries
returning all intervals overlapping a chosen interval) on a
collection of intervals is to do a full-scan on the set/list of
intervals, which has a time complexity of O(NN), where N
denotes the number of intervals in the collection. Keeping
the intervals ordered does not help to improve this query
complexity.

A number of data structures were developed to execute
overlap queries in logarithmic time.

The original Interval Tree by Edelsbrunner [10] indexes
intervals on a line by splitting the tree recursively based
on the median of the intervals. The result is a ternary
tree, with each node storing i) pointers to intervals lying
completely to the left and to the right of the point corre-
sponding to the node and ii) two lists storing all the intervals
overlapping the current point, one sorted on the intervals’
starting points, the other sorted on their ending points. The
Interval Tree has a space complexity of O(N), and a query
complexity of O(M + log N), where M is the number of
intervals overlapping the query.

The Relational Interval Tree (RI-Tree) [11] is a related
effort leveraging common database structures. In its core,
it uses Edelsbrunner’s Interval Tree, although intervals are
internally managed by two relational indices. Another adap-
tation of the Interval Tree for external memory is made by

2

Arge et al. [12]. Since this data structure is able to efficiently
serve only stabbing queries (return all intervals overlapping
a point), we do not consider it in our research.

A number of similar data structures were developed at
the time in the context of computational geometry, among
which the Priority Search Tree and the Segment Tree [13].
The Interval Binary Search tree [14] handles point queries
efficiently and can be balanced easily although it incurs
higher storage costs (O(N log N)). More recently, the In-
terval Skip List [15] allowed for efficient online searches,
insertions, and deletions, yet was simpler to implement than
previous structures.

Another recent approach proposed for genome
alignment databases is the Nested-Containment List
(NCList) [16]. The basic idea is to keep intervals fully
enclosed by other intervals as their sublists. The result is a
tree-like structure of lists, which yields a query complexity
of O(M + log N) and a construction time of O(N log N).

We experimentally compare CINTIA to the most rele-
vant data structures described above in Section 5.

2.2 Secondary Storage Structures

A number of secondary storage structures have been pre-
sented in the literature to overcome the limitations of
memory-resident interval structures. Many of such struc-
tures extend secondary structures from relational database
systems. The Time Index [17], for instance, leverages B+-
trees to index time intervals. It maintains an ordered list of
points in the B+-tree, each pointing to a set of intervals. As
each interval can be indexed by several points, the space
complexity is in this case O(N?) [15].

Subsequently, Ang & Tan developed the Interval B-
tree [18] to improve on the Time Index. The Interval B-tree
implements Edelsbrunner’s Interval Tree by extending a B+-
tree. Hence, it retains the original properties of the Interval
Tree while leveraging disk-efficient structures. However, the
Interval B-tree keeps the complex tripartite structure of the
original Interval Tree and adds an additional structure of its
own on each level.

The Relational Interval Tree (RI-Tree) [11] is a related
effort leveraging common database structures. In its core,
it uses Edelsbrunner’s Interval Tree, although intervals are
internally managed by two relational indices. We do not
include the RI-Tree or other structures extending relational
engines in our experiments, since they are expected to show
worse performance than the Interval Tree on which they
build (e.g., due to the high number of seeks and cache
misses caused by B+-trees and n-ary storage structures) and
since we do not rely on relational systems for our own
solution.

2.3 Multi-Dimensional Solutions

Intervals can also be indexed using general-purpose mul-
tidimensional indices. Guttman’s R-tree [19] is often used
to store one-dimensional intervals in practice. A number
of variants were developed over the years, such as the R*-
tree [20], which minimizes the overlap for leaf nodes and



TRANSACTIONS ON BIG DATA

which can efficiently index both point and spatial data at
the cost of a more expensive insertion strategy.

The Segment Index [21] combines the main memory-
based segment tree with the secondary structure of the
R-tree and was specifically designed to improve query
performance for intervals that have non-uniform length
distributions. Its performance is pretty similar to the R-tree
in practice.

More recently, Fenk et al. proposed a hybrid method
to manage and query intervals efficiently, by transforming
intervals into a two dimensional space and indexing that
space with a UB-Tree [22]. Queries on intervals are then
transformed into two-dimensional boxes, which are then
handled by the UB-Tree range query algorithm [4]. It per-
forms close to the Rl-tree for point queries in practice.

Other multidimensional methods, such as our own pre-
vious work on indexing two-dimensional trajectories [23]
could also be adapted to index one-dimensional intervals.
We compare our solution to different R-trees configurations
in Section 5.

2.4 Distributed Settings

Less focus has been given to the design of interval man-
agement techniques for distributed environments. Bisadi &
Nickerson [24] proposed a distributed range search mecha-
nism for sets of points distributed on several nodes based on
rainbow skip graphs. This work leveraged message-passing
interfaces and focused on reducing the number of messages,
achieving a message complexity of O(NV), where N is the
number of computing nodes in the distributed setting.

The authors of [25] adapted the NClist to cloud envi-
ronments and proposed optimization strategies to filter and
query intervals. Unfortunately, we were not able to obtain
the source code of their solution.

The SD-Rtree [26] is a generalization of the R-tree for
distributed environment. Each machine in the cluster repre-
sents one leaf node, which keeps a collection of multidimen-
sional objects. The SD-Rtree balances the servers load and
yields low message costs for executing insertion and search
queries. To the best of our knowledge, this structure was
never implemented. In addition, the authors did not pro-
pose any efficient method for storing and searching objects
in the leaf nodes, which makes this solution incomplete.

SpatialHadoop, proposed in [27], is a popular imple-
mentation of spatial data structures and algorithms on top
of Hadoop. It segments a dataset into compact subsets of
collocated objects and puts each subset into a serializable
in-memory data structure. The serialized dictionaries are
then distributed across the cluster nodes. Queries in Spatial-
Hadoop are handled through distributed MapReduce tasks,
where dictionaries are uploaded into memory and queried.
We benchmark CINTIA against SpatialHadoop in Section 5.

3 METHOD

We designed our interval system with two challenging
goals in mind: i) high scalability and ii) very low latency.
We achieved i) by leveraging the fault-tolerance and data
partitioning of a state-of-the-art distributed file system and

ORPN —

Offset Distributed . _.
Index Interval Array L
. . 17 — offset 262'144B
at: (1817 | nodes 13, 27, 42
q1:[13:17) 7’ ‘:cg 143 7
offset 262'144 nEs

S
E
S
2 g
' S
@
<
]

W
. .
checkpoint(c6) _ Distributed u'ig_l 3
Ci' i < » Checkpoint H‘E‘r{ L
fent = B35 Array _._l_' _ I
I'__l

Distributed
Filesystem

Fig. 1: CINTIA overview: querying starts by issuing a query
to a segment index (1) returning, for any interval, the offset
of the file segment corresponding to the right-bound of the
interval. The client then buffer-reads all intervals whose left
bounds fall between the two bounds of the query (2) from
a distributed interval array. Finally, the client retrieves the
remaining intervals that overlap the query but started before
its left bound (3) from a corresponding checkpoint array.

by creating two complementary data structures to store and
index intervals compactly while providing a high degree of
spatial locality. We achieved ii) by taking advantage of high-
throughput, buffered reads from the distributed file system
while minimizing the number of data accesses to the bare
minimum (most queries in CINTIA can be answered by
only two accesses to the underlying filesystem).

Figure 1 gives a high-level overview of our system.
Clients can send interval queries to our system over the
Network. First, clients issue a query to an in-memory skip
list to determine the segment in the distributed interval array
responsible for indexing the right bound of the query in the
file system. The skip list is small even for very large interval
sets, and can either be placed on the directory (e.g., NameN-
ode) of the underlying file system or be cached on the client-
side. The client then locates the corresponding machine in
the cluster and starts reading a distributed interval array se-
quentially, starting at the file segment corresponding to the
right bound of the query and continuing backwards until
it reaches the file segment corresponding to the left bound
of the query. At this point, the client collected all intervals
whose left bounds overlap the query. Then it continues
backwards until it reaches a checkpoint record, pointing to
lists of intervals overlapping the query but starting before its
left bound. The client retrieves checkpoint data (if needed)
from a second distributed array, the checkpoint array (3). At
this point the client retrieved all intervals overlapping the

query.

We describe our data structure as well as our construc-
tion and query processing algorithms in more detail below,
after introducing some notations.



TRANSACTIONS ON BIG DATA

11 |
12 |
13 3
14 |
I5 ]
16 |
17 |
18 |
19
110 ]
111 ]
112 ]
113
114 ]
115 ]
116 |
117 ]
118
119 |
120 |
left borders coordinates

Fig. 2: Example interval set

3.1 Notations

We consider large sets of N intervals Z = {iq,...,in}. All
the intervals we consider in the following are left-bounded,
left-closed and right-open®. An interval is defined by its start
and end points (left and right bounds) [is,%.), and by its
associated payload or value ¢,. We consider overlapping
queries which take the form of interval queries [gs,q.)
retrieving all the intervals overlapping the region between
their start and end points.

3.2 Data Structures

We introduce two main data structures:

1) an interval array (main index array) storing all intervals
(along with their values) sorted by the value of their left
bound in ascending order;

2) a sequence of checkpoint arrays, storing for every k-th
record (called checkpoint) in the interval array copies
of the records that overlap its interval, but that are
located before it in the interval array. The records in
the checkpoint arrays are sorted in descending order of
the right bounds of their corresponding intervals.

Both the interval and the checkpoint arrays are cache-
efficient, compact structures providing a high degree of spa-
tial locality. They both can be easily distributed on several
machines for fault-tolerance and scalability. We consider in
the following that the value i, attached to each interval
is small and of fixed-size. In case of large values (e.g., for
multimedia files indexed using intervals) or values varying
in length, we store pointers to the values instead of the
values themselves in both arrays in order to reduce the
storage overhead.

We illustrate our two main data structures with an ex-
ample. Figure 2 gives a set of 20 intervals Z = {i1,...,420}-
Figure 3 illustrates how a checkpoint interval index would
store and index those intervals. The 20 intervals are sorted
by the value of their left bound in the interval array (bottom
part of Figure 3). Each k' interval in that array is selected

3. We note that extending our method to other types of intervals
would be straightforward

checkpoint array | 12
14
17
119
112 —
116 | e

checkpoint array —_— 120 —

I5 | ==

- 11| =

-_— 111 ] =

|I15| 14 | 16 |I17| 11 |I11| 19 ||12|I19|I20| 15 |I16| 12 |I13|I10|I14| 18 |I18| 17 | 13 |

main index array
[0 checkpoint intervals

Fig. 3: Corresponding checkpoint interval index

checkpoint array

query interval

intervals starting
before query range

LI L[ [e] Jefefe
® @

intervals that
overlap query range

intervals starting
inside query range

intervals starting
after query range

@ main index array

Fig. 4: Query example

as a checkpoint (yellow record in Figure 3). There might
be various strategies for selecting k, and thus the number
of checkpoints, which directly influence the performance of
our approach. We discuss how to find an optimal value of k
below in Section 3.6.

For the first checkpoint corresponding to interval 19, the
checkpoint array contains records I1, 14, I11 and I17. All
of them overlap 19 (see Figure 2) and are located before it
in the main interval array. For the same reason /12 is not
in the checkpoint array, though it overlaps I9. The order in
the checkpoint array is defined by the right bounds, so the
intervals /4 and 117 occupy the first two positions.

3.3 Overlapping Profile

We now introduce the notion of Overlapping Profile OP, a
function that for every record in the Main Index Array puts
in correspondence the number of records that are located
on its left-hand side (i.e., which have a lower index in the
array) and overlap with it. We call the average value of OP
Average Overlapping AO.

3.4 Space Factor

To quantify the space overhead caused by the checkpoint
arrays, we also introduce the notion of Space Factor SF,
which is defined as the relative space overhead of our
indices to the original size of the data considered:



TRANSACTIONS ON BIG DATA

SF = (size(Index) — size(Data))/size(Data). (1)

SF can also be represented as the sum of all OP values
for the checkpoint records divided by the total number of
intervals stored in the index.

3.5 Query Execution

Given the two main structures described above, Algorithm 1
describes the query execution strategy to retrieve all inter-
vals that overlap a query g. Figure 4 illustrates it. On the
figure, the intervals that overlap the query—and thus must
be returned—are denoted by red dots.

Algorithm 1: Query algorithm

Input: main interval array M, array of checkpoint
arrays Ch, checkpoint step ChS, query [gs, ge)

Output: R - set of intervals overlapping [¢s, ¢.)

/* via binary search or query to B-tree:

*/

POS < Index of last interval starting before g.

while POS > 0 do

if M[POS].end > g5 then

L R.add(M[POS])

if M[POS].start < g5 and IsCheckpoint(POS)
then
ChIndex < M[POS].checkpoint ArrayIndex
ChPOS + 0
while ChPOS < Ch|ChIndex].size do
if Ch[ChIndex|[ChPOS].end < g5 then
L break

R.add(Ch[ChIndex)[ChPOS))
ChPOS « ChPOS + 1

break

// Full stop

| POS « POS -1

return R

The example query q is processed as follows: First, the
system determines the last interval in the interval array that
starts before the right bound of the query ¢. (by using binary
search or a skip list). This record corresponds to point (1) in
the figure. Next, the system moves back in the interval array
and retrieves all intervals until it reaches an interval whose
left bound starts before g5 (point (2) on the picture). At this
point, the system has retrieved all intervals starting inside
the query. The system continues reading the interval array
backwards, until it reaches a checkpoint (point 3 on the
picture). The intervals read in that phase (i.e., the intervals
stored between (2) and (3)) may or may not overlap the
query. Each of them is checked by the system and returned
as a result only when it indeed overlaps the query. Finally,
the systems reads the checkpoint array. Intervals in the
checkpoint array, whose right bounds are larger than g,
overlap the query and are also returned as results. As the
intervals in the checkpoint array are sorted by their right

5

bound, the algorithm scans only those records that overlap
the query, and stops as soon as it comes across an interval
whose right bound is smaller or equal to g;. The main
performance overhead of this procedure in incurred when
walking from point (2) to point (3) in cases where there is
a prevalence of intervals that do not overlap the query. The
length of the walk between (2) and (3) is however limited
by the size of the checkpoint step (C'h.S), which is discussed
below in Section 3.6.

Soundness and Completeness. Algorithm 1 is sound, as it
only retrieves intervals that overlap the query.

Proof. We have three groups of retrieved intervals:

(i) starting inside the query interval. They overlap the
query by definition.

(ii) taken from the main array, and starting before the
query interval.

(iii) taken from the checkpoint array, and starting before
the query interval. They overlap ¢ under the same condition.

|

Algorithm 1 is also complete, in the sense that it guarantees
to retrieve all intervals that overlap the query.

Proof (by contradiction). Let us assume that there is an in-
terval 4 in the index, that overlaps the query, but was not
returned as a result by our algorithm. i’s position in the
interval array can either be:

i) after the right bound of query ¢, (after point (1) in
Figure 4); in that case, it cannot overlap the query since in
that case 75 would be equal or greater than g..

ii) between ¢, and the most recent checkpoint (between
(1) and (3) in Figure 4). Algorithm 1 scans all entries in that
range, so this is impossible also.

iii) before the checkpoint (before (3) in Figure 4). Since
i starts before the checkpoint interval and overlaps ¢, it
should also overlap the checkpoint. Consequently, ¢ must
be stored in the corresponding checkpoint array and would
be considered as a result by Algorithm 1. u

Query Complexity Analysis. Query execution consists of 3
phases:

1) searching for the last interval starting before g. ((1)
in Figure 4). This can be performed in logarithmic time
O(log N) (either using an index or by binary search since
the main index array is sorted);

2) traversing the interval array backwards to reach the
first checkpoint before ¢, ((3) in Figure 4). The number of
intervals that are linearly scanned is limited by the number
of intervals in the response set R and the distance between
two checkpoints Ch.S;

3) traversing the intervals in the checkpoint array. Here,
the number of intervals to scan is limited by the number of
remaining intervals in R that have not yet been retrieved.

The total complexity is hence O(log N+R+ChS), which
boils down to O(log N + R). We provide a proof for that
fact below; we restrict ourselves to the case where C'hS is
a power of 2 for brevity (it is however easy to extend this
proof to arbitrary values).



TRANSACTIONS ON BIG DATA

Proof. The strategy of selecting the optimal value of ChS =
2™

1) In the beginning we consider every record in the main
index array as a checkpoint. In that case the SF’ of the index
will be:

SFy=N"")_OP, = AO )
Vi

2) On each iteration we start with an ordered group of
checkpoints. The divide the group on two in the following
manner: all checkpoints with an odd index go to the first
group, and all the others go to the second group. Among
the two subgroups we choose the one that yields the lowest

value of the SF. After the first split we will get SF:

SFi < (2%« N)"' > OP, = AO/2 ®3)
Vi
3) We repeat the operation 2 until we get a group of
checkpoints with the SF < SF,,,,. Assume there were k
such splits in total. Then we will have:

SF, < AO/2F 4)
SF, < SFpar < SFp_1 < AO/2F1 (5)
Since ChS = 2F:
SFpae < (2% AO)/ChS (6)
ChS < AO % (2/SFnaz) (7)

At the same time AO is the expected value the amount
of intervals that overlap the left bound of the query interval
and located before it. So the value of AO is bounded by
the expected amount of the query results R (intervals that
overlap the query interval):

AO < E[R) ®

Groupping the last two equations:

ChS < AO % (2/SFmas) < R* (2/SFmaz)  (9)

So the C'hSS is bounded by the value of R multiplied
by the constant 2/SF,4,. The query complexity formula
O(log N + R + ChS) can be reduced to O(log N + R)

|

3.6 Optimizing the Checkpoint Step

There exist many potential strategies for selecting positions
for the checkpoints. In the context of CINTIA, we decided
that the very first record in the main index is a checkpoint,
and subsequent checkpoints are positioned after every Ch.S
records. In the following, we call ChS the Checkpoint Step as
it denotes the number of records between two consecutive
checkpoints. Our motivation behind this choice was to min-
imize space consumption (we do not need any additional
field), to ease query process (no need to support a dedicated
data structure signaling the position of the closest check-
point) and to support optimized processes for the placement

6
6
541 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
§44‘”,”,,T ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
= i
e | |
P
O I I
g I I
(I e il TR
e
03 - -.,,%,.. | | |
1 20 40 60 80 100

Checkpoint Step

Fig. 5: Space Factor follows a decreasing hyperbolic trend

of the checkpoints (see below). We also implemented further
techniques for setting the locations of the checkpoints (e.g.,
variable checkpoint steps), but do not describe them in this
paper because of space constraints.

The value of the checkpoint step C'hS has a strong
influence both on the efficiency of our structures and on
its memory consumption. On one hand, high values of Ch.S
create some significant overhead when answering queries
as discussed above in Section 3.5. The lower the degree
of overlap between the intervals, the higher this overhead.
In the worst case—when intervals do not intersect each
other and queries are uniformly distributed—this overhead
is equal to ChS/2.

On the other hand, lower values of ChS lead to a higher

memory consumption (higher value of Space Factor) due to
the creation of multiple checkpoint arrays.
In practice, the value of SF' is limited by disk or memory
constraints SF},q;. The minimum value 0 corresponds to
the case when we do not keep any additional information
on top the original data set.

Hence, we are faced with a discrete optimization task
under constraint, which can be summarized as follows:

ChS
subjectto SF(ChS) < SFpaz

min

(10)

Due to the very nature of our system, all space overhead
are caused by the checkpoint arrays. The lower the value of
ChS, the more arrays will be created, and (in general) the
more memory will be consumed. The function SF(Ch.S)
is discrete and non-monotonic but follows a decreasing hy-
perbolic trend. Figure 5 shows an example of a Space Factor
profile for a dataset of 10°000 intervals with fixed length
and uniform distribution of left borders. The further the
distribution of the intervals’ borders moves from a uniform
distribution, the less monotonic SF(ChS) becomes.

The space factor SF' can also be expressed as the ratio
between all records stored in the checkpoint arrays and the
size of the interval array /N (assuming a record in the index
array is of the same type as in the checkpoint arrays):

SF=N"1

V checkpoint arrays ca;

size(ca;). (11)

We introduce below a scan algorithm to find the op-
timal value of ChS. The complexity of this algorithm is



TRANSACTIONS ON BIG DATA

O(Nlog(N)) (where N is the size of the dataset), such that
the algorithm can be applied to very large data.

We start by introducing the notion of overlapping profile.
The overlapping profile stores, for each record in the main
index, the number of records that are located beforehand in
the index and that overlap its left bound. We can build this
profile in O(Nlog(N)) time using the following algorithm
(Algorithm 2).

Algorithm 2: Overlapping profile construction

Input: main interval array M (intervals are sorted by

left bound)
Output: OP - overlapping profile
RBoundHeap + || // heap, storing right
bounds

for POS < 0 to M.size — 1 do
while RBoundHeap.size > 0 and

RBoundHeap.Min < M[POS].left do
| RBoundHeap.PopMin)) // O(log(N))

OP.Add(RightBoundH eap.size)
RBoundHeap.Insert(M[POS].right)
// O(log(N))

return OP

The algorithm swipes across the main index array and
keeps a heap of the records’ right bounds. At each step,
we remove the right bounds that are smaller than the left
bound of the current record. Subsequently, the size of the
heap equals the number of already visited records that
overlap the current record, which gives us the next value
for the overlapping profile. Since each record will be pushed
and popped from the heap once (pushing an element and
popping the minimum from the head have logarithmic
complexity) the final complexity of that step is O(Nlog(N)).

Once the overlapping profile of the interval array is
built, we can determine the optimal checkpoint step through
Algorithm 3. The algorithm uses Equation 11 to estimate the
value of the space factor. According to our optimization goal
(10), the optimal value will be the minimum value of ChS
that yields a space factor smaller or equal to SFj,z.

Algorithm 3: Optimal checkpoint step

Input: overlapping profile OP

Output: ChSOpt - optimal checkpoint step

for ChSOpt < 1 to M.size do

ChArraysSizesSum < 0

for POS < 0 to M.size — 1 step ChSOpt do
ChArraysSizesSum <

L ChArraysSizesSum + OP[POS]

SpaceFactor + ChArraysSizesSum/OP.size
if SpaceFactor < SF,,,, then

Lreturn ChSOpt // Full stop

The algorithm considers different possible values of ChS
starting with the lower values. For each value, it computes
the sum of all elements in the overlapping profile that

7

correspond to checkpoints. That sums constitute the total
number of records stored in the checkpoint arrays for each
possible value of ChS. By dividing the result by the size
of the main index, we obtain the corresponding space factor
(according to Equation 11). We stop as soon as the algorithm
finds a value of C'hS yielding an appropriate space factor,
thus satisfying Equation 10. The complexity of this step is
also O(Nlog(N)) as shown below.

Proof. The number of checkpoints for a checkpoint step of
size ChS is | N/ChS]. The total number of positions to be
considered is a partial sum of a series:

N N
SINJi] <> N/,
i=1 i=1
The last sum is a partial sum of a harmonic series;
according to Euler’s formula:

N
> [N/i] <In(N)*N.
i=1
The final complexity of the algorithm is O(Nlog(N)).
|

3.7 Index Construction

Batch Construction. The two main structures of our system
can be built efficiently when considering batch insertions.
The index construction can be broken into three steps:

1) the construction of the interval array storing the inter-
vals sorted by their left borders. Sorting this array has
O(NlogN) complexity;

2) the selection of an optimal value for the checkpoint
step; the complexity of this step is also O(NlogN), as
described above in Section 3.6.

3) the construction of the checkpoint arrays, which is
described below.

The construction of the checkpoint arrays is analogous
to the calculation of the optimal value of the checkpoint
step. We swipe across the interval array and use a heap
to store already visited records. We use the right bound of
the record’s interval as a comparison key for the heap. For
each new record, we pop all records from the heap that
have the right bound smaller than the left bound of the
current record’s interval. After this step, the heap contains
all records that are located to the left of the current record
in the interval array and overlap it. Upon reaching the next
checkpoint, we make a copy of the heap and pop all values
in order to get the list of records to put in the checkpoint
array, sorted by their right border. We just need to reverse
that list to get a final checkpoint array.

Since each interval is pushed and popped once from
the heap (pushing an element and popping the minimum
have complexity O(log(NN))), the complexity of this process
is O(Nlog(N)). The amount of times the initial intervals
are copied to checkpoint arrays is limited by the Space
Factor and is bounded by SpaceFactor *+ N. The final time
complexity of the construction is hence O((SpaceFactor +
log(N)) * N).



TRANSACTIONS ON BIG DATA

The total space complexity is O((SpaceFactor+1)* N),
which might be reduced to O(SpaceFactor « N). During
construction, the overlapping profile has N elements, and
the heap never stores more than N records, so it does not
affect the space complexity.

Append Operations. Appending new intervals that start
after (or at the same time as) the last considered interval
is straightforward. The append operation resembles the
construction process described above, the main differences
being that we directly add a new interval to the main array
and that we maintain a heap of currently opened intervals
to support online append operations.

Random Inserts. Random inserts in CINTIA are expensive,
as entire portions of the arrays might have to be rewrit-
ten. This is a common issue of read-optimized structures.
One standard way of coping with this issue would be to
consider an in-memory, write-optimized store that handles
all random inserts, and to periodically merge the write-
optimized and the read-optimized stores as implemented
in recent column stores [5].

4 |MPLEMENTATIONS

We implemented two fully-functioning prototypes of CIN-
TIA, one is for testing our index in main memory, and one
for large-scale deployments on top of the HDFS file system.
Both versions are freely available online®*.

4.1 In-Memory Implementation

The in-memory version of CINTIA was developed in C++,
and is a direct implementation of the structures and meth-
ods described above in Section 3. std : vector is used in this
version to implement both the interval and the checkpoint
arrays. The first stage of query processing, i.e., finding the
last interval in the interval array that starts before the right
bound of the query, is simply resolved by binary search in
this case.

4.2 Distributed Implementation

The distributed version was built on Hadoop 2.3. Like many
recent distributed file systems, the Hadoop File System
(HDEFS) splits files in large, replicated blocks. The block
size is adjustable and is equal to 128MB by default. When
a read is initiated, the client first queries a NameNode to
get the required block location. It then picks a DataNode
storing one of the block replicas, creates a TCP connection
and download the desired chunk of data from that replica.
Information about block locations and TCP connections are
subjects to caching, such that the number of calls to the
NameNode are minimized over time.

The read proceeds by iteratively transferring packets.
The size of the transferred packets is limited both on the
lower end (by default 512 bytes) and on the higher end (by
default 64KB). When requesting more data than what can fit
in a packet, several packets are transferred iteratively.

4. https:/ / github.com/XI-lab/interval_index.git

20 -
-+. cold data
xxx hot data

o
v

—
o

Avg Query Time, [ms]

| | |
40000 60000 80000

Read Size, [byte]

100000

Fig. 6: HDEFS read performance for hot and cold data.

The fixed costs associated to initiating a read are thus
high: contacting the NameNode and initiating a TCP con-
nection to a DataNode if the location and connections are
not yet cached, then transferring the packet(s) from the
DataNode. One of our main goals with CINTIA is hence
to minimize the number of requests to the filesystem in
order to amortize those initial costs. Figure 6 illustrates this
point by plotting the average time needed to read blocks
of varying size in the cluster we used for our experiments
(described in more detail in Section 5).

The top curve illustrates the read performance when
requesting cold data. In that case, a new connection has to be
established to the datanode. The bottom curve illustrates the
performance when requesting hot data after we warmed-up
the cluster. In both cases, we selected large data segments
randomly. As we can observe from the figure, the start-
up costs of the reads are high but can be amortized when
requesting larger data segments. Taking this into considera-
tion, we implemented CINTIA as follows on top of HDFS:

« the main interval array is serialized in a file. Records in
that file are of fixed length, and consist of three fields:
the left and right bounds of the interval and a value
field (that can also be a pointer in case of variable-length
or large payloads). The checkpoints in this array do
not contain any interval record. Instead, they store the
position to the corresponding record in the checkpoint
file (see below), as well as the value of the right border
of the first interval in the checkpoint array. The last
value allows to avoid reading from the checkpoint file
in case there is no intervals that overlap the query;

o the checkpoint arrays are stored in a second file, which
has the same structure as the interval array (sequence
of fixed-size records). Each checkpoint array is stored
sequentially and ends up with a null-record;

o index construction is performed through a sequence of
MapReduce tasks;

o we perform reads from the index files by blocks of
records. As can be seen from 6, on a warm cluster there
is no big difference between reading a small and a big
packet. Our experiments on HDFS show that there is
no significant difference when reading shorter or larger



TRANSACTIONS ON BIG DATA

segments on a warm cluster and when TCP-connections
are cached. Also, we consider the chunk processing
time to be negligible compared to its download time.
Hence, we read as much data as possible during each
read from the cluster. Specifically, we chose a reading
block size equal to the maximum packet size in the
cluster;

o unlike the in-memory implementation, we do not per-
form a binary search on the main interval file during
query execution, which would require O(log V) calls
to HDFS. Instead, we keep an in-memory skip list of
the main interval file read blocks (described above). For
each block, we keep its offset in the file and a left-bound
value of the first record interval. One record in the skip
list consumed 16B, such that the skip-list size for 1
billion records in only 7.5MB. In our implementation,
clients are pre-loading the skip list upon start-up.

Distributed query processing proceeds in general as de-
scribed in Algorithm 1. The first part of the query processing
is resolved by looking-up the skip list, in order to get the
location of the reading block storing the last interval starting
inside the query. Next, and according to the algorithm, we
keep uploading blocks from the main interval file until we
reach a checkpoint record, at which point we switch to the
checkpoints file.

When an optimal value of C'hS is selected (see Sec-
tion 3.6), most queries can be executed through only one
or two HDFS reads (one for the main array and one for
the checkpoint array). For larger queries, this method also
allows us to return the first results early, and then to con-
tinue returning results as we read more intervals from the
distributed file system.

While we implemented the above in HDFS only, we note
that the same structures and techniques could be adapted to
many recent distributed file systems such as OneFS°, QFS,
or to the Google File System [28].

5 EXPERIMENTAL EVALUATION

We empirically assess the performance of our index below.
We proceed in two steps: First, we start by a series of
micro-benchmarks testing our in-memory solution against
a number of other interval structures with varying param-
eters. Then, we deploy CINTIA in a distributed setting
and compare it to state-of-the-art solutions both on real and
synthetic data.

5.1 Experimental Setup

Datasets & Queries: We use various interval datasets in
order to test our approach. In addition to standard param-
eters like number of intervals (), we consider two specific
parameters:
o the overlapping profile giving, for each interval in a
dataset, the number of intervals that started before the
interval and that are overlapping it (see Section 3.6).

5. http:/ /www.emc.com/storage/isilon/
isilon-onefs-operating-system.htm
6. http:/ /quantcast.github.io/qfs/

9

o the average overlapping standing for the average of the
overlapping profile values. This parameter character-
izes the density of a dataset, which is important for our
solution, since it directly influences the optimal value
of the checkpoint step (higher density leads to a bigger
value of ChS).

Unless stated otherwise, all synthetic datasets in our
experiment contain 1M intervals and have a uniform dis-
tribution of left borders in [0, 10M). The lengths of the
intervals follow a normal distribution with a mean value
of 100 and a standard deviation 10. Those parameters yield
an average overlapping of about 10.

To assess the performance of query execution, we issue
100K interval queries for each setup. The queries have their
left border uniformly distributed between [0, 10M) (simi-
larly to the intervals) while their length is by default equal
to 100. We repeat each experiment 10 times. Confidence
intervals are not shown on the graphs, since for a confidence
level of 95% they were negligibly small.

We also performed micro-benchmarks on a number of
real datasets; due to space limitations, we refer the reader
to the full version of this paper [29] for results pertaining to
those experiments. For micro-benchmarks, we also use two
real datasets:

« a bioinformatics dataset taken from the 1’000 Genomes
Project’; In bioinformatics, scientists routinely query for
the degree of overlap between genomic features®. In
that context, we took the exome alignments for Chro-
mosome 11 from sample #NA12891 as a dataset, and
the exome capture targets for the same chromosome
as queries. This represents a real use-case with around
11M intervals with an average overlapping of 89 and
more than 10K interval queries.

e log data taken from a Hadoop cluster; We picked one
of our own Hadoop clusters and logged runtime in-
formation using the Java jstack utility on all clus-
ter machines every 15 seconds. We then exported all
running Java functions as time intervals. The resulting
dataset contains a dense set of 1.3M time intervals (Java
functions) with an average overlapping of 5'610. We
generated a set of 100K queries that are uniformly
distributed and have a fixed length of 100 to test our
algorithms on this dataset.

Compared Approaches: We compare our approach—

implemented as described in Section 4—with the following

popular interval data structures:

Interval Tree: We use Erik Garrison’s canonical implemen-
tation’ of the data structure.

NClist: The novel approach proposed by [16] and based
on the idea of nested lists. We use the implementation
provided by the authors.

R-Tree: We use Greg Douglas’ C++ implementation!?. This
version has two optional parameters: minimum and
maximum elements in node. We experimented with

7. http:/ /www.1000genomes.org/

8.see for instance http://bedtools.readthedocs.org/en/latest/
content/tools/intersect.html

9. https://github.com/ekg/intervaltree

10. https:/ /github.com/nushoin/RTree



TRANSACTIONS ON BIG DATA

0.09

—  Full time
— Space Factor

-- .BS | :
*-x! BS +'Walk (1)-(2)
+-¢! BS +'Walk (1)-(3):

10.08
9.0

10.07 w0
SIS PR
‘ 0.06§

! )
10.05
9
10.04 ©
=}

‘_,;__‘_‘,_,,;,,,,:,,__:___,,:__,_:_;,_ jon
A A A R ™

Space Factor

1.0 =
10.029

10.01

0.00

1120 40 60 80 100 120 140
Checkpoint Step

Fig. 7: Performance and memory consumption as a function
of the value of the checkpoint step. BS: binary search,
(1) rightmost interval starting inside the query interval,
(2) rightmost interval starting before the query, (3) closest
checkpoint to the query.

different values and picked the values yielding the best
performance in our context (i.e., 32 and 64 for minimum
and maximum number of elements respectively).

Segment Tree: We use our own implementation of the Seg-
ment Tree!!, implemented by following as strictly as
possible the original description of the data structure
from [30]. Due to the nature of the data structure,
it may report the same results several times during
query execution (the higher the interval overlapping,
the bigger this overhead).

To minimize any potential bias incurred when retrieving
the results, we slightly modified all implementations: In-
stead of collecting the results, we simply count the number
of results in-place.

The machine on which all experiments were run has an
Intel(R) Core(TM) i7-2600 processor, 32Gb of main memory,
2Tb of disk space, and Ubuntu 12.04.4 LTS as OS.

5.2 Micro-Benchmarks
521

Figure 7 gives the memory consumption of our approach
(in red) as well as the query execution time (in black) for
our synthetic dataset. Query execution is broken down into
several phases: 1) binary search to find the last interval
starting inside the query interval, 2) phase 1, plus backward
swipe until the first interval starting before query is met
(1-2), 3) phases 1-2, plus backward swipe until a checkpoint
is met, and finally 4) phases 1-3, plus walk through the
checkpoint array until an interval that ends before the query
is met.

The graph shows that the memory overhead grows fast
when picking low checkpoint values; It is not surprising,
since the number of checkpoint arrays is inversely propor-
tional to the value of the checkpoint step.

The optimization algorithm 3 finds 11 as an optimal
value of the checkpoint step for the space factor of 1.

Query Execution Analysis

11. https:/ / github.com/mavlyutovrus/segment_tree

10

The performance trends show that query execution time
is nearly constant as long as the checkpoint step is suffi-
ciently small, and grows linearly otherwise. We now briefly
analyze the impact of each part of the algorithm separately.

The binary search is a time-consuming operation but
bears a nearly constant cost for a given dataset. Its cost
grows logarithmically with the size of the main array.

The time delta between phase 2 and phase 1 (i.e., the time
taken to search back for the first interval starting before the
query) stays nearly constant, as the algorithm buffer-reads
inside the queries” bounds. The time taken to search back
for a checkpoint (i.e., the time between phase 3 and phase 2)
grows linearly with the size of the checkpoint step. Phase 3
and 2 are both cache-efficient, since they consist of sweeping
through collocated memory regions.

Finally, the time delta taken for analyzing the check-
point array goes down with the checkpoint step initially,
and then stays constant. The reason is that the amount of
records we read from the checkpoint array is equal to the
number of intervals that overlap the checkpoint and the
query intervals. The bigger the checkpoint step, the lower
the number of intervals in the checkpoint array that overlap
both. As an illustration of this, the impact of the checkpoint
array on the total number of intervals in a query response
is less than 1% when the checkpoint step is equal to 100
(50.5%, when ChS = 1). In that case, almost all intervals
that start before the left border of the query and overlap
it are collected during the 2 — 3 walk. The constant time
overhead corresponds to cases when only one record in the
checkpoint array is probed. This is due to high price of the
first read out of the cache.

To conclude this first experiment, we give below an in-
tuition on why query execution stays nearly constant when
the checkpoint step is small. The number of intervals that
start before a query and overlap with it is approximately
equal to the average overlapping value if the left bounds of
the intervals follow a uniform distribution. Those intervals
are examined either during the walk to the checkpoint or in
the checkpoint array. When the checkpoint step is small, the
number of intervals that do not overlap the query but reside
between the checkpoint and the first interval starting inside
the query is negligible. Consequently, the time for passing
through the records standing before the query interval and
walking inside the checkpoint array stays almost constant.

We fix the space factor to 1 for the further experiments.

5.2.2 Influence of dataset size on query performance

Figure 8 shows the influence of dataset size on query per-
formance. For that experiment, we increase the range of the
intervals left borders with the size of the dataset to keep the
average overlapping equal to 10 in all datasets. Results for
the Segment tree are omitted, since they are considerably
higher than for other data structures (for the 10M dataset it
is approximatively 80x slower than our solution).

First, we observe that the performance of CINTIA
degrades only slowly, i.e., the query execution time grows
logarithmically with the size of the data. As analyzed above,
it is mainly due to the time spent on binary search.



TRANSACTIONS ON BIG DATA

Second, we see that CINTIA significantly outperforms
other data structures. This can be explained by the low level
of locality and by the high number of out-of-cash seeks
for the trees and Nested Containment List. We can expect
even worse trends for those structures in distributed settings
where locality is crucial.

CINTIA significantly outperforms other data structures.
This can be explained by a lower number of out-of-cache
seeks compared to trees and Nested Containment lists.
We can expect even worse trends for those structures in
distributed settings where locality is crucial.

5.2.3

Figure 9 shows the influence of query length on perfor-
mance. We report the average query time per interval in the
response instead of the overall query time, since for all data
structures the overall trends are almost linear. We observe
that for all data structures (except for the Segment tree,
which reports intervals several times), the relative query
time goes down linearly with the query length (X-axis is
logarithmic).

CINTIA performs better than other solutions. The time
spent on binary search and processing intervals that start
before the query does not depend on the query length and
stays nearly constant, while the number of intervals starting
inside the query interval is proportional to its length. So, as
the number of returned intervals increases, the relative time
spent on the former decreases, while the time spent on the
latter stays almost constant.

Influence of query length on performance

5.24

Figure 10 shows the influence of the average overlapping
on performance. For each average overlapping value, we
created a distinct dataset with intervals of different average
length. The other parameters stayed constant.

First, we observe that CINTIA again outperforms other
solutions (except for the case when the average overlapping
is equal to 1, for which the results are the same as for the
NClList).

We also observe that the overall query execution time
does not significantly increase. In fact, the reason for the
slower execution time is the growing number of intervals
starting before a query interval and the resulting higher
number of returned intervals. Higher overlapping values
have however a much stronger influence on the other data
structures.

Influence of average overlapping on performance

5.2.5 Influence of overlapping standard deviation on per-
formance

Figure 11 shows the influence of overlapping variability
to performance. To create this experiment, we generated
datasets with uniform distribution of interval lengths. The
range of the lengths is different for every dataset. The higher
the range, the bigger the overlapping variability in the
dataset.

Since the Interval Index performance is dependent on
the average overlapping of the dataset, some might expect
performance issues for highly variable interval lengths and
overlapping profiles. However, our experimental results

11

confirm that this is not the case as overlapping variations
have no significant effect on the algorithm performance.

N
o

— CINTIA |

i
v—v R-Tree:
| |
»—_Interval Tree

=—=a Segment Tree

=
%))

©
wn

Time per 100K queries [s]
=
=)

o
o

10
Dataset size (log)

Fig. 8: Query time as a function of dataset size

o
o
S

Time per returned interval [microsec]

=
o

Query length (log)

Fig. 9: Query time as a function of query length

N
o

=
8]

Time per 100K queries [s]
o [
%] o

600 800
Average overlapping

400 1000

Fig. 10: Query time as a function of average overlapping

5.3 Experiments on Real Datasets

The results on real datasets, summarized in Table 1, fol-
low similar trends. We report 95% confidence intervals in
addition to the average results. For the exome dataset, the
margin of error was however negligible.



TRANSACTIONS ON BIG DATA

2.5

2.0

Time per 100K queries [s]

Intervals length range

Fig. 11: Query time as a function of variability of interval
overlapping

Total query time [s
Data structure Exomz datyaset, [ ]Jstack dataset,
11M intervals, 1.3M intervals,
avg. overlp=89, | avg. overlp=5611,
10.5K queries 100K queries
CINTIA 0.02 1.68 +£0.01
Interval Tree 0.03 3.14 £ 0.06
NClist 0.02 4.14 4+ 0.05
R-Tree 8 0.06 14.15 £ 0.27
R-Tree 16 0.05 7.01+0.13
R-Tree 32 0.03 4.67 £+ 0.06
R-Tree 64 0.03 3.94 4+ 0.04
Segment Tree | 0.67 4.15 £ 0.09

TABLE 1: In-memory benchmarking on real datasets

We report different results for the R-tree to show how the
value for maximum children per node dramatically alters its
performance.

CINTIA outperforms other solutions in all cases.

5.4 Distributed Setting

As described above, CINTIA outperforms former interval
solutions thanks to its high cache locality and the limited
number of seeks (or cache line evictions) required when
answering interval queries. Those qualities bode well in
distributed settings, where “seeks” can be orders of magni-
tude more expensive than in centralized settings and might
require contacting another machine. We experimentally val-
idate this point below.

There exist unfortunately very few distributed solutions
to handle interval data. To the best of our knowledge, no
distributed implementation of the Interval Tree or related
tree structures is available. We compare our solution to
Spatial Hadoop 2.2.!2—which is a popular extension of
Hadoop designed to handle big spatial data—on one hand,
and to a dedicated solution running on top of MapRe-
duce on the other hand. Other cloud solutions described
in Section 2 were either never implemented, or were not
available (as we could not get access to the source code of
the CNCList+ [25]).

Spatial Hadoop implements spatial indices and dis-
tributed query processing. The interval data is in that case

12. http:/ /spatialhadoop.cs.umn.edu/

12

Dataset description: Construction time [ms]
- size,

average overlapping Sp Hadoop CINTIA
10M, 10.0 285101 90 154
10M, 100.0 292578 87054
10M, 10000.0 282961 91532
100M, 10.0 390 526 416 545
100M, 100.0 388770 438 440
100M, 10000.0 385126 533213
1000M, 100.0 1179601 | 5756181
Exome alignement dataset 385051 977983

TABLE 2: Distributed benchmarks & construction time

distributed among the machines as serialized R+-trees. Dur-
ing query execution, the query is distributed to all machines
in the cluster, which then upload and query the R+-trees in
parallel. Spatial Hadoop also include a pre-selection step,
which only selects those trees whose minimal bounding box
overlap the query. After that all results should be uploaded
to a client machine.

To consider another baseline and compare Spatial
Hadoop over a non-indexed solution running in the Hadoop
environment, we implemented a MapReduce solution on
our own. This approach distributes interval data over HDFS
and then runs a dedicated MapReduce job, which scans all
intervals in parallel and reports those that overlap the query.

The two proposed baselines benefit from parallel pro-
cessing, but suffer from the high costs of launching a par-
allel job and then collecting results. Our solution works
differently, minimizing the computation performed by the
cluster and leveraging dedicated indices in the file system
to retrieve the results directly. This allows CINTIA to
execute queries on large datasets distributed over a cluster
of machines in milliseconds only.

We ran our distributed experiments on a Hadoop v2.3
cluster of 10 machines. The machines have an Intel(R)
Core(TM) i7-2600 processor, 32Gb of main memory, 2Tb of
disk space, Ubuntu 12.04.4 LTS as OS, and are intercon-
nected through a gigabit ethernet switch.

For the distributed experiments, we generate interval
datasets of various size (from 10 millions to 1 billion),
average overlapping (10, 100, 10’000) and queried them
using sets of queries with different lengths (100 and 10°000).

We also built a real dataset for the distributed experi-
ments, namely the exome alignments of 23 human chromo-
somes, which constitutes 222M intervals with an average
overlapping of 1649. Since the baseline methods are very
slow (around 20 seconds per query) we were not able to
compare query execution time on the full set of the exome
targets. For that reason we sampled from the exome targets
a set of 30 intervals with length 120 (which is the mode
of the intervals length, as more than 30% of exome targets
have that length) and measured the average time to query a
target.

Table 2 shows the index construction time for Spatial
Hadoop and CINTIA. The results show that the dataset
size has a stronger impact on CINTIA’s index construction
than on Spatial Hadoop. This can be explained by the fact
that CINTIA first sorts all intervals. Spatial Hadoop, on



TRANSACTIONS ON BIG DATA

the other hand, does not sort intervals but assign them to
a certain mapper according to the position of its minimal
bounding box. Though computationally more efficient, this
can lead to severe skews in the distribution of the intervals
depending on the positions of their bounding rectangles.

Table 3 gives query performance results. We repeated
each experiment 30 times for both Spatial Hadoop and
MapReduce, and 100 times for CINTIA.

For CINTIA we report results both on cold and hot
data (after 100K queries), since warming-up the cluster
noticeably affects the query performance. It is not the case
for SpatialHadoop and MapReduce, however.

An important factor that affects the performance of
CINTIA is the distribution of blocks among the cluster. If
there is a “collector” machine which accumulates a high
number of index replicas, it will serve more read queries
from the client, which leads to an inefficient use of cache on
other machines. Hence for the Interval Index, the best case
is when replicas are well-shuffled among cluster machines.
Our current implementation creates that kind of collector
on a machine where the index constructor resides. To reduce
the unbalancing impact in our tests, we do not allow a client
application to read from replicas on that machine.

We observe a tremendous difference in query perfor-
mance: CINTIA is more than three orders of magnitude
faster than our two baselines.

The baseline approaches are only marginally affected
by the average overlapping and by the size of the dataset,
though the biggest dataset (1B intervals) makes them both
significantly slower. The query execution time of CINTIA,
on the other hand, is directly proportional to the number of
reads from the distributed file system (the average number
of reads is given in the last column of the table), which is
determined by the size of the checkpoint step and by the av-
erage overlapping as explained above. Average overlapping
impacts the query performance of CINTIA on both warm
and cold data. For cold data, the delays are higher as reads
from HDFS are more expensive in that case.

Results also show that the dataset size has an effect
on the performance of CINTIA. Executing queries on 1B
intervals is almost 3 times slower than on 10M intervals on
cold data. It is only around 30% more expensive on warm
data. The number of reads issued to the file system stays
constant in all cases. We assume that the speed difference is
hence connected to the higher costs incurred when execut-
ing larger reads on HDFS.

Finally, we note that the results on the Exome data are
similar to the results on our synthetic dataset with similar
size and average overlapping.

6 CONCLUSIONS

Intervals have become prominent as they are the main
structure to represent a number of key data types today. In
this paper, we proposed a new data structure called CINTIA
(Checkpoint INTerval Index Array) for storing and querying
interval data. To the best of our knowledge, it is the first
index designed for running low-latency queries on large-
scale interval data. We introduced a series of algorithms to

13

compactly store and efficiently query interval data using
our structure and discussed their complexity. We also de-
scribed two open-source implementations of CINTIA, and
empirically showed their superior performance both for in-
memory and distributed settings.

CINTIA’s first deployment is dedicated to the man-
agement of large-scale bioinformatics data!®. We plan to
continue working on our system, in order to improve its
construction time as well as the efficiency of its random
inserts. In addition, we plan to extend our solution to handle
multidimensional data by taking advantage of space-filling
curves such a Z-curves of Hilbert curves.

7 ACKNOWLEDGMENTS

This work was supported by the Swiss National Sci-
ence Foundation under grant numbers PPO0P2_128459 and
200021_143649.

REFERENCES

[1] M. H. Bohlen, R. Busatto, and C. S. Jensen, “Point-versus
interval-based temporal data models,” in Proceedings of the
Fourteenth International Conference on Data Engineering, Orlando,
Florida, USA, February 23-27, 1998, 1998, pp. 192-200. [Online].
Available: http:/ /dx.doi.org/10.1109 /ICDE.1998.655777

[2] R. Snodgrass, “Temporal databases status and research direc-
tions,” ACM Sigmod Record, vol. 19, no. 4, pp. 83-89, 1990.

[3] J. K. Lawder and P. J. H. King, “Querying multi-dimensional
data indexed using the Hilbert space-filling curve,” ACM Sigmod
Record, vol. 30, no. 1, pp. 19-24, 2001.

[4] FE Ramsak, V. Mark], R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer,
“Integrating the UB-Tree into a Database System Kernel,” in
Proceedings of 26th International Conference on Very Large Data Bases
(VLDB), A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal,
N. Kamel, G. Schlageter, and K.-Y. Whang, Eds. Morgan Kauf-
mann, 2000, pp. 263-272.

[5] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. R. Madden, E. O’Neil, P. O’'Neil,
A. Rasin, N. Tran, and S. Zdonik, “C-Store: A Column Oriented
DBMS,” in Proceedings of the International Conference on Very Large
Data Bases (VLDB), 2005.

[6] E Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions
on Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[7] Y. Manolopoulos, Y. Theodoridis, and V. ]J. Tsotras, Advanced
Database Indexing. Norwell, MA, USA: Kluwer Academic Pub-
lishers, 2000.

[8] T. Bozkaya, “Index Structures For Temporal And Multimedia
Databases,” PhD thesis, Department of Computer Engineering
and Science, Case Western Reserve, University, Tech. Rep., 1998.

[9] Z. M. Kharaji and B. G. Nickerson, “Distributed Spatial Data
Structuress,” 2014.

[10] H. Edelsbrunner, “Dynamic Data Strcutures for Orthogonal Inter-
section Queries,” TU Graz, Tech. Rep. Tech. Report., 1980.

[11] H.-P. Kriegel, M. Potke, and T. Seidl, “Managing Intervals Ef-
ficiently in Object-Relational Databases,” in Proceedings of 26th
International Conference on Very Large Data Bases (VLDB), 2000, pp.
407-418.

[12] L. Arge and J. S. Vitter, “Optimal external memory interval man-
agement,” SIAM Journal on Computing, vol. 32, no. 6, pp. 1488-
1508, 2003.

[13] E P. Preparata and M. I. Shamos, Computational Geometry: An
Introduction. New York, NY, USA: Springer-Verlag New York,
Inc., 1985.

[14] E. N. Hanson and M. Chaabouni, “The IBS-tree: A Data Structure
for Finding All Intervals That Overlap a Point,” Technical Report
WSU-CS-90-11, Wright State University, Tech. Rep., 1990.

13. http:/ /3dgb.cs.mcgill.ca/



TRANSACTIONS ON BIG DATA 14
Dataset description: Avg. intervals | Query execution time [ms] CINTIA:
- size, er quer . CINTIA: CINTIA: avg. reads
- average overlapping, peraney MapReduce | Spatial Hadoop cold cluster | warm cluster frogm HDFS
- query length per query
Synthetic datasets
10M, 10.0, 100.0 10.2 219584184 17 589+280 2.06£0.04 1.60+0.03 1.0
10M, 10.0, 10000.0 19.7 | 24260£2188 179784718 2.2540.06 1.64+0.03 1.0
10M, 100.0, 100.0 97.3 20250£257 17125436 5.02£0.28 1.75£0.04 1.0
10M, 100.0, 10000.0 106.8 202484233 17132+£35 6.1140.28 1.73£0.05 1.0
10M, 10000.0, 100.0 9977.9 22024+930 176624486 | 14.3240.35 11.66+0.07 3.5
10M, 10000.0, 10000.0 9987.4 20216249 173324240 | 19.19£1.10 11.91£0.48 3.4
100M, 10.0, 100.0 10.7 | 26 547+£2605 179514389 3.56+0.37 2.18+0.23 1.0
100M, 10.0, 10000.0 110.8 23 780+695 17696537 4.07£0.39 2.14+0.23 1.1
100M, 100.0, 100.0 101.0 227554437 17082+134 4.21+0.33 2.00£0.10 1.0
100M, 100.0, 10000.0 201.1 23862547 178494397 4.654+0.41 2.1940.22 1.1
100M, 10000.0, 100.0 10051.4 | 2413541104 17903+£732 | 16.1740.73 12.13£0.12 3.5
100M, 10000.0, 10000.0 10151.5 249844652 178014489 | 16.9640.79 12.4940.39 3.5
1000M, 100.0, 100.0 114.2 | 77285+1903 17293+64 | 13.30+1.22 2.334+0.11 1.0
1000M, 100.0, 10000.0 1117.6 | 76699+1038 18026+484 | 17.294+1.25 5.67+0.46 1.5
Exome alignment dataset
222M, 1649.9, 120.0 [ 483.3 [ 25087£216 | 181464389 | 5.13+1.30 |  2.9740.31 | 1.6

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

TABLE 3: Query execution time for distributed setting

E. Hanson and T. Johnson, “Selection Predicate Indexing for Active
Databases Using Interval Skip Lists,” Information Systems, vol. 21,
pp. 269-298, 1996.

A. V. Alekseyenko and C. J. Lee, “Nested Containment List
(NCList): a new algorithm for accelerating interval query of
genome alignment and interval databases,” Bioinformatics, vol. 23,
no. 11, pp. 1386-1393, 2007.

R. Elmasri, G. T. J. Wuu, and Y.-J. Kim, “The Time Index:
An Access Structure for Temporal Data,” in Proceedings of
the 16th International Conference on Very Large Data Bases
(VLDB), ser. VLDB ’90. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1990, pp. 1-12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645916.671968

C.-H. Ang and K.-P. Tan, “The Interval B-tree,” Inf. Process.
Lett., vol. 53, no. 2, pp. 85-89, Jan. 1995. [Online]. Available:
http://dx.doi.org/10.1016/0020-0190(94)00176-Y

A. Guttman, “R-trees: A Dynamic Index Structure for Spatial
Searching,” in Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’84. New
York, NY, USA: ACM, 1984, pp. 47-57. [Online]. Available:
http://doi.acm.org/10.1145/602259.602266

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The
R*-tree: An Efficient and Robust Access Method for Points and
Rectangles,” in Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’90. New
York, NY, USA: ACM, 1990, pp. 322-331. [Online]. Available:
http://doi.acm.org/10.1145/93597.98741

C. P. Kolovson and M. Stonebraker, “Segment Indexes: Dynamic
Indexing Techniques for Multi-dimensional Interval Data,” in
Proceedings of the 1991 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD "91. New York, NY, USA: ACM,
1991, pp. 138-147.

R. Fenk, V. Markl, and R. Bayer, “Interval Processing with the
UB-Tree,” in International Symposium on Database Engineering and
Applications, 2002.

P. Cudre-Mauroux, E. Wu, and S. Madden, “TrajStore: An adaptive
storage system for very large trajectory data sets,” 2014 IEEE 30th
International Conference on Data Engineering, vol. 0, pp. 109-120,
2010.

P. Bisadi and B. G. Nickerson, “Orthogonal Range
Search using a Distributed Computing Model.” in CCCG,
2011. [Online]. Available: http://dblp.uni-trier.de/db/conf/cccg/
cccg2011. html#BisadiN11

Z. Wang, K. Gong, S. Jin, W. Li, and Z. Liu, “An Efficient Interval
Query Algorithm Based on Inverted List in Cloud Environment,”
in International Conference, ICCIP, 2012.

C. Du Mouza, W. Litwin, and P. Rigaux, “Large-scale indexing of
spatial data in distributed repositories: the SD-rtree,” The VLDB

[27]

[28]

[29]

[30]

\

Wm((”f/». 4«\&
MIT. He recently won the Verisign Internet Infrastructures Award, a
Swiss National Center in Research award, a Google Faculty Research
Award, as well as a 2 million Euro ERC grant. His research interests

are

non-

Journal—The International Journal on Very Large Data Bases, vol. 18,
no. 4, pp. 933-958, 2009.

A. Eldawy and M. F. Mokbel, “A demonstration of SpatialHadoop:
An efficient MapReduce framework for spatial data,” Proceedings
of the VLDB Endowment (PVLDB), vol. 6, no. 12, pp. 1230-1233,
2013.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file
system,” in ACM SIGOPS Operating Systems Review, vol. 37, no. 5.
ACM, 2003, pp. 29-43.

R. Mavlyutov and P. Cudre-Mauroux, “Technical report: A
distributed, low-latency index to efficiently manage big in-
terval data,” http://exascale.info/papers/cintia_report.pdf, ac-
cessed: 2015-03-18.

J. L. Bentley, “Solutions to Klee’s rectangle problems,” Technical
report, Carnegie-Mellon Univ., Pittsburgh, PA, Tech. Rep., 1977.

Ruslan Mavlyutov Ruslan Mavlyutov is a Ph.D.
student working with the eXascale Infolab at the
University of Fribourg in Switzerland. He previ-
ously worked at Yandex and at Microsoft Re-
search Silicon Valley. He received his Master
of Science in Computer Science from Moscow
Institute of Physics and Technology. He research
interests are in scalable, low-latency data struc-
tures for the cloud. Webpage: https://exascale.
info/members/ruslan-mavlyutov/

Philippe Cudré-Mauroux Philippe Cudre-
Mauroux is a Full Professor and the Director
of the eXascale Infolab at the University of
Fribourg in Switzerland. He received his Ph.D.
3 from the Swiss Federal Institute of Technology
§ {\ EPFL, where he won both the Doctorate Award
\& and the EPFL Press Mention in 2007. Before

W\ joining the University of Fribourg, he worked on
\\ information management infrastructures at IBM
\\\\ Watson (NY), Microsoft Research Asia, and

|

in next-generation, Big Data management infrastructures for
relational data. Webpage: http://exascale.info/phil



