Two Shots Are Enough: Reliable Constrained
Generation with LLMs

Manuel Mondal
Université de Fribourg
Fribourg, Switzerland

manuel.mondal @unifr.ch

Ljiljana Dolamic
armasuisse W+T
Thun, Switzerland

Abstract—Despite exhibiting impressive performance across
many complex tasks, Large Language Models (LLMs) often
struggle to consistently produce structured responses, a key
element in many applications such as agent orchestration. While
template-based methods or in-context learning can improve struc-
ture compliance, constrained decoding and additional context
have been shown to skew the distribution of the responses and
may result in suboptimal performance. In this work, we show
that the number of in-context examples is a key factor: in many
settings, one to two shots are sufficient to reliably produce the
predefined structures, while additional examples may degrade
the response quality. Our analysis shows that this phenomenon is
consistent across a wide range of datasets, models, and structures
and indicates that providing this small number of shots achieves
the best overall trade-off between structure compliance and
response correctness while improving the results of constrained
generation methods such as template-based approaches.

Index Terms—Large Language Models, In-context Learning,
Constrained Generation, Structured Output

I. INTRODUCTION

In recent years, Large Language Models (LLMs) have
yielded impressive results across many natural language pro-
cessing (NLP) tasks [1]-[3], including knowledge retrieval [4],
[5], reasoning [6], and code generation [7]. Consequently,
many automated systems use LLMs as part of a multi-agent
framework to leverage their NLP capabilities [8]-[10]. In
many cases, the integration of LLMs into automated systems
requires that their output adheres to a predefined structure,
such as JSON objects, CSV files, or XML documents [11]-
[13]. For instance, using external tools with function call-
ing [14], [15], which are necessary to solve complex problems
(e.g., interpreting code, web search), require specific argu-
ments as input (e.g., a bash script). Similarly, extracting the
answer of an LLM from the generated natural language text
is key for automated evaluation (e.g., benchmarking of LLM
abilities) [4], [6]. Indeed, when the models are not constrained
to generate a specific format, the measures of the base task
ability can get intertwined with their structure compliance
ability (i.e., the aptitude to produce the answer in a specific
format), resulting in inaccurate evaluations [16].

Two main approaches have been proposed to generate struc-
tured responses with LLMs: format-restricting instructions and
constrained decoding. With the former, the model is prompted
with instructions, formulated in natural language, describing
the structure to follow (e.g., “format your response as a JSON

ljiljana.dolamic @ar.admin.ch philippe.cudre-mauroux @unifr.ch

Julien Audiffren
Université de Fribourg
Fribourg, Switzerland

julien.audiffren @unifr.ch

Philippe Cudré-Mauroux
Université de Fribourg
Fribourg, Switzerland

object, with keys X and Y”). This approach can be placed into
the broader category of Instruction-following, a widely studied
topic [6], [17]-[19], and one of the core aspects of fine-tuning
dialogue systems [20]. One of the most powerful instruction-
following techniques is arguably the few-shot method, where
the model is provided with in-context examples of the task
to achieve [21]-[24]. Due to its efficacy, this approach is
commonly used in many benchmarks when evaluating LLM
performance on various tasks, see e.g., [4], [25]. However, in-
structing the model to follow a specific data structure does not
guarantee that the model’s output will adhere to this structure.
For various reasons (e.g., ambiguity in the instruction, model
inability, or large deviation from the training distribution), the
model may apply a different formatting (e.g., double quotes
instead of single quotes in a JSON object, renamed XML tags)
or refuse to comply.

Constrained decoding, on the other hand, intervenes at an
LLM’s token sampling stage: when the model computes the
probability distribution over its vocabulary, an external verifier
prevents it from sampling a token that would induce a prohib-
ited structure (e.g., an invalid JSON object) [26]. Many forms
of external verifier approaches have been proposed, including
templates, regular expressions, grammars, or automata-based
techniques [27], [28]. The external verifier is said to intervene
whenever the token sampled by the language model is rejected
due to breaching one of the syntax constraints. While this
approach almost guarantees the structure compliance of the
answer, previous works have shown that these interventions
may impair the LLMs’ performance. The core issue with this
approach stems from the invasiveness of the constrained de-
coder: when the external verifier rejects the model’s preferred
token, it may have to sample an alternative further down the
tail of the token probability distribution, thereby distorting the
model distribution [27], [29].

In this work, we investigate the combination of both
approaches (instruction-following and constrained decoding)
and, in particular, how in-context learning can alleviate the
distortion problem. Therein, the task to be solved (e.g., produc-
ing a well-formatted JSON object) is presented to the model in
one or more examples, which are included in the prompt. More
precisely, we study the influence of the number of examples
on structure compliance and its impact on the distortion effect
to assess the optimal number of examples. Many benchmarks

using few-shot prompting techniques include three to ten
examples by default [4], [5], [25], [30]. We argue that this
choice may be suboptimal for multiple reasons. First, recent
studies have shown that increased context size (an unavoidable
consequence of additional examples) can negatively impact the
performance of LLMs [31]-[33]. Additionally, by the nature
of the transformer-based architecture, increasing the context
size incurs additional computational cost [34] and latency [35].
Thus, a careful analysis of this trade-off may significantly
improve the LLMs’ performance when generating structured
content. Our contributions are as follows:

o We propose an evaluation method to measure the im-
pact of few-shot prompting on structure compliance. To
achieve this, we divide the response tokens into structure
(i.e., tokens that are necessary to the correct format of
the answer) and content (i.e., tokens pertaining to the
content of the answer), and by assessing their joint prob-
ability separately (Section III-A). Notably, this approach
allows us to accurately measure the distortion effect of
constrained generation under different conditions.

o We introduce several new datasets tailored toward assess-
ing the aptitude of LLMs to produce structured content
under various constraints (Section III-B). These datasets
cover multiple base tasks (including reasoning, entity
recognition) and structures (e.g., JSON, CSV, XML,
HTML), and allow for automated evaluation of the LLM
answers without the use of LLMs-as-judges.

o We study the impact of the number of in-context exam-
ples on both structure compliance and answer correctness,
and show that one to two shots are enough to obtain
the expected structure with very high probability (>95%)
on many datasets and for many models. Moreover,
we show that additional examples do not improve this
probability, while having in some settings a noticeable
negative impact on the overall model performance (Sec-
tion IV). Finally, we show that the combination of few-
shot prompting and constrained generation achieves the
best of both worlds, guaranteeing structure compliance
while minimizing probability distortion.

Our experimental results support these claims with LLMs of
various families (e.g., Llama3.1, Qwen2.5, Mistral) and sizes
(7 to 141 billion parameters) across a variety of base tasks
and data structures.

II. RELATED WORK

a) Constrained decoding and Distortion: Previous works
have investigated the impact of constrained decoding on the
quality of the responses. Recently, the authors in [29] showed
that constrained decoding, when used for generating JSON
objects, significantly deteriorates the performance of language
models on both reasoning and knowledge-based tasks. Similar
observations were made by [27], where the authors showed
that existing constrained decoding approaches commonly in-
duce a distortion of the output distribution. If such a distortion
is strong enough, it may skew the distribution of the model’s

answer, resulting in token misalignment and thus deterio-
rating the model’s performance. They introduce DOMINO,
which leverages automata and a speculative decoding strat-
egy [36] to alleviate the distortion problem by minimizing
the number of rejected tokens. However, the flexibility of the
proposed approach may produce significantly longer answers
from LLMs, resulting in considerable computational overhead.
Furthermore, DOMINO is not guaranteed to reach perfect
structure compliance in practice, as the model can still exceed
its context window without generating the desired structure.

Compared to these works, our approach differs in multiple
ways. First, we focus on the impact of few-shot prompting on
structured content generation. We show that using two exam-
ples is often enough to minimize the distortion of constrained
generation approaches, such as templates, to a negligible
level, solving the token misalignment problems. Second, our
evaluations do not rely on LLMs-as-judges, compared to
e.g., [29]. Indeed, this approach has been shown to suffer from
multiple biases, see [37]-[39]. Instead, we analyze the joint
distributions of the tokens, carefully distinguishing between
structure and content tokens. This evaluation led to several key
observations, such as the saturation phenomenon associated
with multiple examples (see Section IV).

b) Instruction-following for structured generation:
Several benchmarks have been developed to investigate
the structured generation capabilities of LLMs through
instruction-following. While IFEval [17] and its extension
in LiveBench [6] only contain a limited number of format-
following instructions (e.g., “Entire output should be wrapped
in JSON format.”), more recent benchmarks have focused
on format-restrictions [40], [41]. Our evaluation differs in
multiple ways. First, our experiments cover a broader range
of structures, and each format is associated with multiple base
tasks to better capture the influence of each component. In
addition, existing benchmarks often evaluate the output doc-
ument’s formatting using LLMs-as-judges (with e.g., GPT-4
acting as an external assessor of output quality). As afore-
mentioned, multiple studies [37]-[39] have, however, raised
concerns about the reliability of such an approach.

c) In-context learning with few-shot prompting: Few-
shot learning is a well-established approach in the field of
LLMs [23], [24], and is commonly used to improve model
performance on various tasks, such as data augmentation [42],
model augmentation [43], or knowledge updating [44]. This
approach is also used in constrained generation, such as five-
shot prompting in [27]. However, recent studies have shown
that model performance can deteriorate with increasing context
size [31], [45] or when including irrelevant information in the
context window [32], [33]. Additionally, by the nature of the
transformer-based autoregressive architecture, increasing the
context size incurs additional computational costs. Our work
investigates the impact of the number of examples on structure
compliance and on the quality of the answers, and highlights
the resulting trade-off.

USER. Please list the first two Catalan numbers, by out-
putting a dictionary with keys “number i” for i between
1 and 2. Write your answer between [[and]].

AGENT. Of course! Here’s the requested dictionary out-
put: [[{“number 1”: 2 , “number 2”: 1 }]].

ANSWER EVALUATION.
P(C):Ptok'(Z)XPtok(l)
P(S) = Piok({) X Piok(“) X Pyop(number) X ...

Fig. 1: Ilustration of token disentanglement with a toy prompt.
The reasoning tokens are highlighted in blue, the structure
tokens in red, and the content tokens in yellow. Only the
probabilities of the contents tokens C and the structure tokens
S are computed. P, denotes the conditional probability of
each token, given the context prefix.

III. METHODS
A. Evaluating LLMs’ structured outputs

The automated evaluation of LLM outputs is particularly
challenging, as their answers are expressed in natural lan-
guage. Outside LLMs-as-judges, which suffer from many
biases, the most common approach to assess structured output,
such as a JSON document, is (A) parsing the answer to
identify the presence of well-formed JSON, followed by
(B) the evaluation of said JSON and its comparison to the
ground truth. However, this method, while principled, conflates
structure compliance S (i.e., is the structure well-formed?) and
content accuracy C (i.e., is the information contained within
the structure correct?). For instance, a parsing error (e.g., due
to an extra closing “}””) may hide the fact that the content of the
JSON (i.e., the key—value pairs) was correct. As a result, this
approach conflates the model’s ability to solve a base task from
its structure-compliance ability, thus limiting the possibility
to accurately pinpoint the source of the errors. Instead, we
propose an alternative method that carefully partitions the
answer’s tokens depending on whether they pertain to structure
or content, and computes their joint probability independently.
Our approach measures for a more fine-grained analysis of
LLM performance, allowing to pinpoint specific failures cases.

a) Reasoning tokens: In our evaluation, models are al-
lowed to generate intermediate reasoning tokens that precede
their final answer. This intermediate generation phase has been
shown to be important to the model’s performance [46], [47]
and may include Chain-of-Thought (CoT), restating parts of
the problem statement, or generating other common verbal
interjections (e.g., “Sure, let us look at this problem.”). These
tokens are not taken into account in our proposed evaluation
scheme and do not impact the structure compliance and
content quality scores.

TABLE I: Available combinations of datasets and data struc-
tures. N denotes the number of questions in each dataset.

Base task JSON CSV XML HTML STARS N
Reasoning v v v v 50
Typos v v v v 100
Sequence v v v v 46
Entity v 99
MMLU v v 581
MMLUPro v v 119

b) Disentangling Structure and Content: Once the first
token of the final answer (which is generally a delimitation
token “[[” in our experiments— see Section III-C below) is
generated, we compute the joint probability of the tokens of
the structure and content, respectively. To achieve this, we
proceed as follows. First, the entire expected answer (ground
truth) is tokenized, and the tokens are partitioned into structure
and content tokens. Content tokens are all the tokens pertaining
to the answer of the base task (e.g., the response to a multiple-
choice question, a corrected typo). Conversely, we consider as
structure tokens all tokens necessary to satisfy the formatting
requirements, which do not pertain to the content of the
base task. This includes commas, colons, spaces, new-line
characters, curly brackets, angle brackets, and quotation marks.

As the tokenization scheme depends on the model', the
expected ground truth, i.e., the list of structure tokens and
the list of content tokens, is computed for each model’s
tokenizer separately when evaluating it. For some datasets
(e.g., Reasoning in JSON), the keys (e.g., “person 1”) are
also considered structure tokens, as these are pre-determined
by the expected template. When the dictionary keys are not
predetermined (e.g., for finding typos or entities in a text),
they are considered content tokens, as finding them is part of
the base task. Details regarding the structure tokens of each
dataset and task can be found below. Second, the individual
probability distribution of each token is computed, conditioned
on the current context prefix (i.e., the concatenation of the
reasoning tokens, followed by the prefix tokens of the expected
answers), similar to [48], [49]. Finally, the joint probabilities
of the structure tokens and the content tokens are calculated
separately. Figure 1 illustrates this method.

B. Datasets for structure generation

In order to evaluate the LLMs’ ability to produce structured
content, we introduce a new collection of datasets. It includes
several base tasks commonly used to evaluate Large Language
Models, such as reasoning, knowledge, and entity recognition
abilities. Each base task is available in various formats, includ-
ing JSON, CSV, XML, HTML, and STARS (which leverages
asterisk symbols, see below for details). Table I provides an

'Example of variations include: the presence of leading spaces before
numbers, the splitting of numbers into individual tokens, the grouping of
some special characters into a single token, etc.

overview of all base task datasets and their expected formats,
while additional details on each dataset can be found below.

a) Knowledge retrieval: For knowledge base tasks, we
use three subsets (high-school statistics, sociology, and vi-
rology) of the MMLU benchmark [4], considered among the
hardest subtopics for LLM performance. This dataset consists
of multiple-choice questions, where one of four provided
answers is correct. Furthermore, we use a subset of the
MMLU-Pro benchmark [5], which consists of a more difficult
set of multiple-choice questions with 10 possible answers per
task. Two possible structures are available for these datasets:
STARS and JSON. For the STARS structure, the answer (a
single capital letter) must be repeated five times, separated
by an asterisk symbol (for instance, “AxAxAxA*A”). This
structure is arbitrary and intentionally unlikely to be part of
any LLM training set to assess out-of-distribution behavior.
Consequently, the models’ performance on this structure is
expected to hint at their potential to generate unseen structures.
For the JSON format, the LLM is asked to produce a JSON
with a single “answer” key, whose value is the capital letter
of the chosen answer, similar to [29].

b) Reasoning: The reasoning-based tasks were built from
the Web of Lies, originally proposed by Big-Bench Hard [25]
and LiveBench [6]. Each task consists of evaluating the truth
value of a random Boolean function expressed in natural
language. A set of statements about fictional people is pro-
posed, and the binary truthfulness of three people needs to
be determined. We evaluate models on four structures for
this base task: JSON, CSV, XML, and HTML. For the JSON
format, we require a dictionary with the keys “person 1/2|3”
and the values: “yes|no”. The CSV expects a header row
(“person,candid”), followed by rows of person IDs and their
truthfulness, separated by a comma. To format the response in
valid XML, a tag for each person, with the attribute “person
id” and their truthfulness as the text content, must be wrapped
into an “<answer>" tag. For HTML, we expect an ordered
list (“<01>"). Each list item (“<1i>") stands for a person
(in order) and contains as its text value their truthfulness.

c) Named entity recognition: The entity recognition base
task is based on the traditional CoNLL-2003 dataset [50]. It
consists of segments of news stories and aims at recognizing
named entities (e.g., places, people). The model’s response is
expected in a two-column CSV format, where each entity and
its assigned category is to be written as a comma-separated
row under an “entity,category” header.

d) Mathematical sequences: We introduce a new Math-
ematical sequence dataset, where the models are requested to
generate the first elements of various mathematical sequences.
These sequences include prime numbers, multiples of an
integer, and named sequences (e.g., Catalan numbers). Four
formats are available for this dataset. For CSV, the model must
generate one row per answer value (with columns “index”
and “number”). The XML variant must be formatted as a list
of number tags, each with an “id” attribute and the value as
its text content, all wrapped into an <answer> root tag.
Similarly, for HTML, the answer must be an ordered list

containing a list item tag for each value. Finally, in JSON,
each key-value pair maps the position of the number in the
sequence to its value (e.g., “{..., "number 7": 17}”).

e) Typos: We also introduce a new Typos dataset, which
contains a sample of texts with multiple typographical errors.
The text snippets are based on news article excerpts from the
Guardian, collected using the provided API?, where multiple
words were randomly selected and then altered to exhibit
typographic errors. The model’s objective is to find and correct
the misspelled words. Four formats are available for this
dataset, including a JSON dictionary and a two-column CSV,
mapping each erroneous word to its correction. For XML, each
misspelled word is contained as the “word” attribute value
of a <misspelled> tag and the corrected version as its
text content. For the HTML format, each misspelled word is
contained within an item of an ordered list and is followed by
a hyphen and its corrected version.

C. Experiments

In the following experiments, we investigate the aptitude of
various LLMs to produce structured content under different
conditions, by varying datasets, structures, number of in-
context examples, and presence of constrained generation.

a) Instructions and few-shot prompting: The general
structure of the prompt was organized as follows. In the first
part, the models are instructed to follow a specific structure
when generating their response to the base task. The struc-
ture includes specific dictionary keys, column headers, tags,
attributes, etc., depending on the dataset (see Section III-B).
This instruction is followed by examples, each consisting of
a question and the corresponding well-structured answer. To
measure the impact of few-shot in-context learning, we vary
the number of examples shown to the model in the prompt,
up to four shots. The zero-shot setting corresponds to pure
format-restricting instruction-following: the prompt contains
only the description of the expected structure, followed by the
base task to be solved. The few-shot examples are randomly
selected from the remaining dataset (while ensuring no overlap
with the evaluated task).

b) Reasoning tokens: As discussed in Section III-A, we
allow each model to generate intermediate reasoning tokens
prior to their final answer, which starts with delimitation
tokens (here, two square brackets “[[”). If the model exceeds
the limit of 10,000 intermediary tokens without generating the
delimitation token, its reasoning phase is considered failed.
Failure during the reasoning phase is extremely rare and was
observed to occur less than 1% of the time in our few-
shots experiments. Most failures occurred with smaller models
(<10B parameters) and were generally caused by either a
generation loop or a refusal to answer the base task.

c) Constrained decoding: To investigate the impact of
constrained decoding and the distortion effect in particular, we
used both pure instruction-following and instruction-following
combined with a template-based approach. More specifically,

2open-platform.theguardian.com/access.

Entity (CSV
Typos (xMr) iy (CSV)

Typos (JSON) ™ "

MMLU-Pro (JSON)

Typos (HTML)
Typos (CSV)

Reasoning (XML) [

Reasoning (JSON) \.,

Reasoning (HTML)

Reasoning (CSV) B
MathSequence (CSV)
MathSequence (HTML)

MathSequence (XML)
MathSequence (JSON)

Nb. shots: = = 0 === | —

(a) Median joint probability for Llama3.1-8B.

Entity (CSV)

Typos (XML)
Typos (JSON)

MMLU-Pro (JSON)
& MMLU-Pro (stars)

MMLU-soc. (JSON)

MMLU-soc. (stars)

MMLU-stat. (JSON)

MMLU-stat. (stars)

MMLU-vir. (JSON)

Reasoning (CSV) ¥ MMLU-vir. (stars)
MathSequence (XML) g
MathSequence (JSON)

MathSequence (CSV)
MathSequence (HTML)

Nb. shots: = = 0 =" p—

(b) Median joint probability for Llama3.1-70B.

Fig. 2: Structure compliance scores (median of the joint probability assigned to the structure tokens) for Llama3.1 models at
two scales (8/70)B on all datasets with zero, one, and two-shot prompting.

after the reasoning tokens (see Section III-A), all the structure
tokens are imposed to match the ground truth, and only the
content tokens are sampled by the LLMs. While this approach
is guaranteed to produce the expected structure, it may distort
the distribution of the content tokens, and thus the evaluation
of the answers (see Section IV).

d) Models: In our experiments, we compare various
models of sizes and families®. The models were selected
based on their instruction-following scores on the IFEval
benchmark [51], as reported on the Hugging Face Open LLM
Leaderboard*. We exclusively selected models with available
open weights (as we require access to the full logits) and
omitted third-party variants (e.g., fine-tuned and merged mod-
els). This process resulted in models from the Llama3.1 [52],
Qwen2.5 [53], and Mistral families. For Llama3.1, we use
the 8 and 70 billion parameter variants. For Qwen2.5, we use
the 72 billion variant for the main evaluation and compare
the effect across model scales additionally for the 7, 14, and
32 billion parameter variants. From the Mistral family, we
use the Mistral-Large-2407 (123 billion) and the Ministral-8B
variants. To diversify the set of evaluated models, we also
include a model using a different architecture (Mixture of
Experts) Mixtral-8x22B [54], with 141 billion parameters.

e) Metrics: To assess the performance of the models, we
use the Structure Compliance Error (SCE) and the Content
Quality (CQ). The SCE is defined as 1 — P(S), i.e., the
probability that the model outputs a structure that differs from
the ground truth (see Section III-A). It is important to note
that this error is an upper bound of the model’s probability of
producing an invalid structure, as the ground truth is more
constraining (e.g., the order of the keys of a dictionary is
fixed in the ground truth). The CQ is defined as the proportion
of samples with a geometric average of C above a threshold

3For all models, we use their instruction fine-tuned variant.
“huggingface.co/spaces/open-1lm-leaderboard/open_llm_leaderboard.

of 95%. Using the geometric average allows us to take into
account the compounding effect of joint probabilities.

CQ o< # ¢ Content C, s.t. e[[P(tok) > 0.95

tokeC

Thus, CQ represents the proportion of contexts that had a
correct answer (with probability > 0.95). Importantly, our
experiments showed that CQ is robust to threshold variations
and that our analysis holds for various thresholds.

IV. RESULTS

We present here the main results of our experiments, orga-
nized into three main findings.

A. Finding 1: Two shots are enough for structure compliance

Figure 3 reports the SCE for models of two families at two
scales, for up to four shots, on five representative datasets.
We observe that most models reach near-maximal structure
compliance (i.e., minimal SCE) with two in-context examples.
Additional examples generally do not appear to yield signifi-
cant improvement in the structure compliance scores for most
models. We can observe that in particular instances, the error
reduces slightly further when provided with a third shot in one
of the datasets (e.g., the Ministral-8B model for Reasoning in
XML). However, in other situations (e.g. Llama3.1-70B for
the same dataset), the error increases with more than two
shots. It is important to note that in both of these cases,
the SCE for N = 2 is already below 0.001 - i.e., less than
0.1% probability for the model to produce an invalid structure.
Therefore, we hypothesize that such variations may be due to
the inherent randomness induced by the reasoning tokens, such
as the reasoning steps of Chain-of-Thought.

—— Llama3.1-70B — Mixtral-8x22B

Entity (CSV)

MathSequence (HTML)

Reasoning (XML)

— Llama3.1-8B — Ministral-8B

Typos (XML) MMLU-statistics (JSON)

Structure Compliance Error [log]

Number of shots

Fig. 3: Structure Compliance Error (SCE) on five representative combinations of datasets and structure, for a number of

examples ranging between zero and four.

—— Llama3.1-70B — Mixtral-8x22B

CSv

Llama3.1-8B —— Ministral-8B

HTML

STARS

XML

Structure Compliance Error [log]
3 %=

Number of shots

Fig. 4: Aggregated SCE for the different data structures (JSON, HTML, XML, CSV, STAR), for a number of examples ranging

between zero and four.

a) Impact of Structure: Figure 4 reports the average
SCE aggregated over each of the available data structures
(JSON, HTML, XML, CSV, STAR). First, we observe that the
different formatting structures pose various levels of difficulty
to the models. For instance, generating CSV or HTML without
examples (N = 0) leads to very high SCEs for all models,
while the use of at least one in-context example leads to a
reduction of SCE by an order of magnitude. On the other hand,
simple structures such as STARS, where the models are asked
to alternate between the response token and a delimitation
asterisk, appear to be easily produced by LLMs, even without
examples. Note that some models (e.g, Mixtral-8x22B), show
an SCE for N = 1 larger than for N = 0. However, it is
important to note that in those cases, the SCE remains low
(<0.01). We hypothesize that such behavior stems from the
fact that STARS is an arbitrary structure, which the models
have never met during training. Regardless of the structure, the
models’ performance saturates around two few-shot examples.

b) Influence of models’ size: Figure 5 reports the SCE
of models of the same family (Qwen2.5) across the different
model sizes (7B to 72B parameters) on the same datasets.
Interestingly, a similar phenomenon can be observed at every
model scale. Indeed, we also note that models generally
achieve near-optimal performance when provided with two in-
context examples, with smaller models generally saturating at
higher structure compliance error rates.

¢) Llama3.1 Case Study: Finally, Figure 2 reports the de-
tailed structure compliance of Llama3.1-8B and Llama3.1-70B
on all combinations of datasets and structure for N = 0, 1, and
2 examples. We observe that pure instruction-following with
N = 0 (the zero-shot setting) yields unreliable results for both
models. This can be observed across many base tasks and
for most data structures, with structure compliance rates far
below 1 in the majority of cases. For instance, both Llama3.1
models achieve particularly poor structure compliance for data
formatted as CSV, e.g., Entity (§B: .0; 70B: .21), HTML,
e.g., Reasoning (8B: .20, 70B: .70), and JSON, e.g., Sequence
(8B: .61, 70B: .21).

In contrast, adding a single in-context example (N = 1)
significantly improves results across all datasets. We observe
that both models reach near maximum structure compli-
ance performance on several datasets. Multiple exceptions
remain, however, including for the Reasoning (CSV) dataset
for both Llama3.1 models, as well as Entity (CSV), Rea-
soning (HTML), and MMLU-Pro (STARS) for the smaller
Llama3.1-8B model.

Finally, we observe that providing a second in-context
example (N = 2) is generally sufficient to saturate the
performance of structured output generation. Indeed, for most
base tasks and data formats, the models comply with the given
data format almost perfectly at both parameter scales, with
limited exceptions.

Qwen2.5-7B — Qwen2.5-14B

Entity (CSV)

10-1 \“.—/I

1073 \\

MathSequence (HTML)

Reasoning (XML)

Qwen2.5-32B Qwen2.5-72B

Typos (XML) MMLU-statistics (JSON)

1075 ey

Structure Compliance Error [log]

Number of shots

Fig. 5: SCE comparison across Qwen2.5 model sizes.

B. Finding 2: Additional shots may impair content

Table II reports the CQ of both Llama3.1-70B and Qwen2.5-
72B with constrained generation for the reasoning datasets and
for all four formats with N = 0, 1, 2, 3, 4 in-context examples.
While the content of the answer is not directly linked to
its structure, and the examples of few-shot prompting only
contain information regarding the structure of the answer, we
observe a significant influence of the number of examples on
the content quality.

First, the CQ is significantly lower for N = 0 than
for N > 1, for both models and all four formats. This
phenomenon might be caused by the distortion effect. Indeed,
both Llama3.1 and Qwen2.5 achieve high SCE with zero
examples, as shown in Table IV. As the models are unlikely to
spontaneously produce the expected structure, the intervention
of the external verifier may significantly skew the model’s
next token distribution, resulting in subpar performance. The
distortion effect is further investigated below.

Second, we observe that the CQ decreases for N = 3 and
N = 4 compared to N = 2 for some data structures. As the
SCE does not decrease for N = 3,4, we hypothesize that this
slight deterioration in content quality might be explained by
the additional context provided to the model (see Section V).

TABLE II: Content Quality (CQ) of Llama3.1-70B and
Qwen2.5-72B for the reasoning datasets with all four formats
(JSON, CSV, HTML, XML) with up to four-shot examples.
Models are instructed to generate Chain-of-Thought tokens.

Model Format Examples
N=0 N=1 N=2 N=3 N=4
— JSON 026 052 076 074 062
S csv 004 044 068 054 060
£ HTML 026 068 070 070 058
S5 XML 024 060 068 068 062
ww JSON 048 060 050 068 0.60
a4 csy 006 050 050 044 050
S HIML 032 056 066 068 0.50
S XML 050 062 048 050 0.60

TABLE III: Content Quality scores (CQ) and Distortion impact
of the format STARS for the MMLU-statistics dataset with
N = {0, 1} few-shot examples, for both Llama3.1 variants.

Model Size Structure Examples
N=0 N=1
STARS 780 .883
Llama3.1 70B NONE 840 876
Distortion 060 007
STARS .520 667
Llama3.1 - 8B \oNE 657 664
Distortion 137 .003

C. Finding 3: In context-learning can alleviate distortion

To further investigate the distortion impact of structures, we
compare the CQ of the same models with a format constraint
(STARS) and without (normal answer). Table III reports the
CQ of models at two scales (of the Llama 3.1 family) for the
MMULUjgistics dataset and N = 0, 1. The results corroborate
the previous observation: a significant decrease in performance
can be observed for N = 0 when a structure is imposed (—.137
CQ for Llama3.1-8B and —.06 CQ for Llama3.1-70B). This
difference is reduced when one example is provided (/N = 1):
the unconstrained CQ remains the same, while the constrained
CQ increases. As a result, the difference is significantly
lower (—0.003 CQ for Llama3.1-8B and —0.007 CQ for
Llama3.1-70B). Since the provided example only contains
information about the expected structure, we hypothesize that
this phenomenon reflects the distortion effect.

D. Structure Compliance Error types

In Table IV we summarize the results of the largest models
over all datasets. We show for each experimental configuration
(dataset X model x number of in-context examples) the
proportion of samples for which the model has an SCE
< .05, i.e., a probability over 95% to generate the correct
structure. As measured in this work, when presented with
too few in-context examples, models often fail to comply
with a given structure. In the following, we survey the most
common Structure Compliance Error types observed across
model families, scales, and output formats when no or too few

TABLE IV: Proportion with joint structure probability > 95% for the largest models. Zero to three-shot settings.

Mistral-Large Mixtral-8x22B Llama3.1-70B Qwen2.5-72B
| Dataset N-shots — 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
Entity (CSV) 0.0 95.0 94.1 93.1 0.0 79.2 86.1 842 0.0 752 693 743 9.9 88.1 88.1 87.1
MMLU-Pro (JSON) 100 99.3 100 993 904 904 97.1 100 80.1 86.0 88.2 904 985 100 100 100
MMLU-Pro (stars) 100 92.6 99.3 993 919 875 963 985 61.8 33.1 69.9 83.8 100 97.8 99.3 100
MMLUsq.. (JSON) 100 100 100 100 95.5 100 100 100 91.0 99.0 98.5 99.5 100 100 100 100
MMLUs .. (stars) 99.0 100 100 100 100 100 100 100 90.0 92.0 96.5 98.0 100 100 100 100
MMLUs.. (JSON) 100 100 100 100 93.5 99.1 100 100 90.3 93.1 96.3 954 99.5 98.1 100 100
MMLU . (stars) 99.1 98.1 99.5 99.5 100 96.3 99.5 100 88.9 644 92.1 949 100 93.5 99.5 99.5
MMLUyv;i. (JSON) 98.2 100 100 100 855 98.8 994 994 69.3 74.7 735 747 964 97.6 994 994
MMLUy;; (stars) 85.5 86.1 92.8 97.0 97.0 98.2 982 97.6 59.6 59.6 69.9 69.9 100 98.8 99.4 99.4
Sequence (CSV) 90.6 99.1 99.1 100 17.0 100 100 100 0.0 96.2 99.1 98.1 90.6 90.6 97.2 99.1
Sequence (HTML) 50.0 99.1 100 100 66.0 99.1 99.1 100 2.8 99.1 99.1 99.1 90.6 100 100 100
Sequence (JSON) 0.0 99.1 100 100 0.0 100 100 100 0.0 100 98.1 99.1 98.1 72.6 100 100
Sequence (XML) 92.5 99.1 100 100 62.3 100 100 100 100 100 100 99.1 98.1 99.1 100 100
Reasoning (CSV) 72.0 92.0 100 100 0.0 98.0 100 100 0.0 14.0 96.0 98.0 76.0 18.0 90.0 100
Reasoning (HTML) 20 74.0 100 100 0.0 100 100 100 0.0 82.0 100 100 66.0 100 100 100
Reasoning (JSON) 0.0 86.0 98.0 100 0.0 100 100 100 0.0 78.0 100 100 100 98.0 100 100
Reasoning (XML) 2.0 96.0 100 100 0.0 100 100 100 14.0 96.0 100 100 100 100 100 100
Typos (CSV) 100 100 100 100 5.0 95.0 98.0 97.0 0.0 96.0 91.0 92.0 100 100 100 100
Typos (HTML) 98.0 98.0 97.0 98.0 0.0 57.0 61.0 61.0 0.0 84.0 83.0 76.0 85.0 89.0 100 100
Typos (JSON) 0.0 93.0 98.0 98.0 91.0 70.0 62.0 58.0 55.0 96.0 94.0 90.0 100 100 100 100
Typos (XML) 0.0 0.0 70.0 97.0 0.0 6.0 38.0 35.0 0.0 86.0 94.0 91.0 0.0 99.0 100 100

examples are provided in-context. The fine-grained evaluation
method proposed in this work lets us detect these token-
level failures, which often go unnoticed when the evaluation
relies strictly on binary parsing success. We identify two types
of SCE: errors within syntactically valid outputs and strict
schema violations. As can be observed from our empirical
evaluations, both of these error types are addressed by using
sufficient in-context examples.

Extraneous content and type/value mismatches When
presented with no or a single example, models often insert
additional content within their final response structure. For
instance, instead of generating the requested JSON structure
{"person 1": ...}, models frequently attempt to specify
the person’s name: {"person 1 (Ash)": ...}. Similar
phenomena with superfluous information (e.g., a person’s
name, when only the person’s ID was requested) occur in
multiple choice answers (e.g., {"answer": "E is the
correct solution"}), in CSV structures within other-
wise compliant columns as well as with additional unrequested
columns, and in HTML/XML structures with extra children
tags or XML comments.

Furthermore, models may fail to comply with the expected
formatting of the content. A typical situation is the generation

of an unevaluated arithmetic expression, e.g., writing “10°”
instead of the expected value “1”. When producing this type
of SCE, the models generate structures that are syntactically
valid and would thereby be missed by a purely parsing-based
evaluation.

However, the subtle deviations from the expected formatting
can cause a downstream parser in a broader automated system
to fail. Furthermore, if instead of increasing the number of
few-shot examples, a strict template-based constrained decoder
were used, it would need to intervene in the sampling process
at this stage, with the risk of distorting the model’s predicted
probability distribution.

Schema violations: These types of errors appear when
models do not comply with the specified conventions of the
target schema. A common case is omitting quotation marks
enclosing string values in a JSON structure, especially when
the value can also be interpreted as a number. This behavior is
indicative of the impact of structured data in the training data:
numerical values in JSON structure are often not enclosed
within quotes, and models will have learned this pattern. When
a requested structure deviates from a common template, the
bias towards reproducing patterns seen during training must
be overcome by providing sufficient in-context examples.

Furthermore, models sometimes attempt to end their re-
sponse before the structure is complete. In the STARS struc-
ture, for example, models occasionally output fewer than five
repetitions of the selected answer or omit the structure’s clos-
ing symbols. This failure mode is particularly frequent when
the models produce a particularly long Chain-of-Thought
sequence to solve the base task.

V. DISCUSSION

In this work, we studied the impact of few-shot prompting
on constrained generation. Our experimental analysis shows
that two shots are sufficient to obtain nearly optimal structure
compliance across evaluated models and datasets. Indeed,
when using only format-restricting instructions with a de-
scription of the output format (i.e., the zero-shot setting), we
observe that models often do not produce the required data
structures on many base tasks. Conversely, when provided with
at least one example (i.e., an example pair of question and
answer), the models’ performance — their structure compliance
error, or SCE — significantly improves. We believe the low
scores without few-shot prompts are caused by the divergence
of the constrained generation task from the usual natural
language generation task for which LLMs are trained. Indeed,
structured data represents a small share of the global training
set, and the token probability distribution will hence be biased
towards natural language. Prompting the model with well-
structured examples in the context may guide the model toward
the structured part of the embedding space. This interpretation
may also explain why LLMs’ SCE do not change significantly
with more than two examples, as the embedding space may
have already shifted to said structured part.

Additionally, we observed in our experiments that more
than two examples may degrade Content Quality (CQ). We
argue that these results are in line with previous works such
as [31], where the authors observed that additional context may
negatively impact the LLM’s performance. Moreover, while
examples contain information regarding the structure of the
output, they are not relevant to the content of the answer.
Therefore, it may be argued that these additional examples
can have the same detrimental impact as irrelevant context on
the quality of the answer — similarly to what was observed
in [32]. Additionally, the lengthened context also increases
the computational costs of the task. Consequently, we argue
that two shots appear to achieve the optimal trade-off between
context length and structure compliance.

Finally, we observed that the presence of examples in the
prompt alleviates the distortion problem that may be induced
by the constrained generation of some structured output. We
hypothesize that this phenomenon may result from the near-
optimal structure compliance achieved by the models with
N > 1, which, in turn, minimizes the skewing of the next-
token distribution. Conversely, this is not the case for N = 0,
where SCE was substantially larger in our experiments, result-
ing in the significant distortion observed in our results.

Importantly, while the previous observations hold for many
datasets, models, and data structures, these results may not

apply to every existing LLM and structure. For instance, it is
possible that LLMs fine-tuned to the production of structured
output may not suffer from poor performance with N = 0,
or from the distortion effect. However, fine-tuning an LLM
comes with different trade-offs, such as additional training cost
or unintended security issues [55], and as a consequence, few-
shot prompting may be a better approach in some settings. It
is also likely that particularly intricate structures may require
more than two examples to achieve optimal SCE. Nevertheless,
we argue that our results are general enough to warrant
choosing N = 2 shots for structured output in most cases,
and only adding additional examples when necessary.

REFERENCES

[1] B. Zhang, B. Haddow, and A. Birch, “Prompting large language model
for machine translation: A case study,” in Proceedings of the 40th Inter-
national Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt,
S. Sabato, and J. Scarlett, Eds., vol. 202. PMLR, 23-29 Jul 2023, pp.
41092-41110.

[2] S. Wang, X. Sun, X. Li, R. Ouyang, F. Wu, T. Zhang, J. Li, and G. Wang,
“Gpt-ner: Named entity recognition via large language models,” arXiv
preprint arXiv:2304.10428, 2023.

[3] X. Sun, X. Li, J. Li, E. Wu, S. Guo, T. Zhang, and G. Wang, “Text
classification via large language models,” in Findings of the Association
for Computational Linguistics: EMNLP 2023, 2023, pp. 8990-9005.

[4] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and
J. Steinhardt, “Measuring massive multitask language understanding,” in
International Conference on Learning Representations, 2021.

[51 Y. Wang, X. Ma, G. Zhang, Y. Ni, A. Chandra, S. Guo, W. Ren,
A. Arulraj, X. He, Z. Jiang et al., “Mmlu-pro: A more robust and chal-
lenging multi-task language understanding benchmark,” arXiv preprint
arXiv:2406.01574, 2024.

[6] C. White, S. Dooley, M. Roberts, A. Pal, B. Feuer, S. Jain, R. Shwartz-
Ziv, N. Jain, K. Saifullah, S. Naidu, C. Hegde, Y. LeCun, T. Gold-
stein, W. Neiswanger, and M. Goldblum, “Livebench: A challenging,
contamination-free 1lm benchmark,” 2024.

[71 M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman ef al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[8] T. Guo, X. Chen, Y. Wang, R. Chang, S. Pei, N. Chawla, O. Wiest,
and X. Zhang, “Large language model based multi-agents: A survey
of progress and challenges.” 33rd International Joint Conference on
Artificial Intelligence (IJCAI 2024), 2024.

[9] J. C. M. Tan, P. Saroj, B. Runwal, H. Maheshwari, B. L. Y. Sheng,
R. Cottrill, A. Chona, A. Kumar, and M. Motani, “Taskgen: A
task-based, memory-infused agentic framework using strictjson,” arXiv
preprint arXiv:2407.15734, 2024.

[10] Q. Wang, T. Wang, Q. Li, J. Liang, and B. He, “Megaagent: A
practical framework for autonomous cooperation in large-scale 1lm agent
systems,” arXiv preprint arXiv:2408.09955, 2024.

[11] S. Arora, B. Yang, S. Eyuboglu, A. Narayan, A. Hojel, I. Trummer,
and C. Ré, “Language models enable simple systems for generating
structured views of heterogeneous data lakes,” Proc. VLDB Endow.,
vol. 17, no. 2, p. 92-105, Oct. 2023.

[12] S. Shankar, H. Li, P. Asawa, M. Hulsebos, Y. Lin, J. Zamfirescu-Pereira,
H. Chase, W. Fu-Hinthorn, A. G. Parameswaran, and E. Wu, “spade:
Synthesizing data quality assertions for large language model pipelines,”
Proceedings of the VLDB Endowment, vol. 17, no. 12, pp. 4173-4186,
2024.

[13] M. Mondal, J. Audiffren, L. Dolamic, G. Bovet, and P. Cudré-Mauroux,
“Cleaning semi-structured errors in open data using large language
models,” in 2024 11th IEEE Swiss Conference on Data Science (SDS).
IEEE, 2024, pp. 258-261.

[14] T. Schick, J. Dwivedi-Yu, R. Dessi, R. Raileanu, M. Lomeli, E. Hambro,
L. Zettlemoyer, N. Cancedda, and T. Scialom, “Toolformer: Language
models can teach themselves to use tools,” Advances in Neural Infor-
mation Processing Systems, vol. 36, pp. 68 539-68 551, 2023.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23

[t

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Y. Qin, S. Hu, Y. Lin, W. Chen, N. Ding, G. Cui, Z. Zeng, X. Zhou,
Y. Huang, C. Xiao et al., “Tool learning with foundation models,” ACM
Computing Surveys, vol. 57, no. 4, pp. 1-40, 2024.

C. Fourrier, N. Habib, J. Launay, and T. Wolf, “What’s going on with
the open llm leaderboard,” Hugging Face Blog (June 2023). URL:
https://huggingface. co/blog/evaluatingmmlu-leaderboard, 2023.

J. Zhou, T. Lu, S. Mishra, S. Brahma, S. Basu, Y. Luan, D. Zhou, and
L. Hou, “Instruction-Following Evaluation for Large Language Models,”
Nov. 2023, arXiv:2311.07911 [cs].

Y. Qin, K. Song, Y. Hu, W. Yao, S. Cho, X. Wang, X. Wu, F. Liu, P. Liu,
and D. Yu, “Infobench: Evaluating instruction following ability in large
language models,” arXiv preprint arXiv:2401.03601, 2024.

Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi,
and H. Hajishirzi, “Self-instruct: Aligning language models with self-
generated instructions,” in Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2023, pp. 13484-13508.

S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu,
T. Zhang, F. Wu et al., “Instruction tuning for large language models:
A survey,” arXiv preprint arXiv:2308.10792, 2023.

R. Agarwal, A. Singh, L. M. Zhang, B. Bohnet, L. Rosias, S. C. Chan,
B. Zhang, A. Faust, and H. Larochelle, “Many-shot in-context learning,”
in ICML 2024 Workshop on In-Context Learning, 2024.

S. Zhao, T. Nguyen, and A. Grover, “Probing the decision bound-
aries of in-context learning in large language models,” arXiv preprint
arXiv:2406.11233, 2024.

Q. Dong, L. Li, D. Dai, C. Zheng, J. Ma, R. Li, H. Xia, J. Xu, Z. Wu,
B. Chang, X. Sun, L. Li, and Z. Sui, “A Survey on In-context Learning,”
Jun. 2024, arXiv:2301.00234 [cs].

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, and A. Askell, “Language models
are few-shot learners,” in Proceedings of the 34th International Confer-
ence on Neural Information Processing Systems, 2020, pp. 1877-1901.
M. Suzgun, N. Scales, N. Schirli, S. Gehrmann, Y. Tay, H. W. Chung,
A. Chowdhery, Q. Le, E. Chi, D. Zhou, and J. Wei, “Challenging BIG-
bench tasks and whether chain-of-thought can solve them,” in Findings
of the Association for Computational Linguistics: ACL 2023, A. Rogers,
J. Boyd-Graber, and N. Okazaki, Eds. Toronto, Canada: Association
for Computational Linguistics, Jul. 2023, pp. 13 003-13051.

B. T. Willard and R. Louf, “Efficient guided generation for 1lms,” arXiv
preprint arXiv:2307.09702, 2023.

L. Beurer-Kellner, M. Fischer, and M. Vechev, “Guiding LLMs the
right way: Fast, non-invasive constrained generation,” in Forty-first
International Conference on Machine Learning, 2024.

S. Geng, M. Josifoski, M. Peyrard, and R. West, “Grammar-constrained
decoding for structured NLP tasks without finetuning,” in Proceedings
of the 2023 Conference on Empirical Methods in Natural Language
Processing, Dec. 2023, pp. 10932-10952.

Z. R. Tam, C.-K. Wu, Y.-L. Tsai, C.-Y. Lin, H.-y. Lee, and Y.-
N. Chen, “Let me speak freely? a study on the impact of format
restrictions on performance of large language models,” arXiv preprint
arXiv:2408.02442, 2024.

M. Abdin, J. Aneja, H. Awadalla, A. Awadallah, A. A. Awan, N. Bach,
A. Bahree, A. Bakhtiari, J. Bao, H. Behl et al., “Phi-3 technical report:
A highly capable language model locally on your phone,” arXiv preprint
arXiv:2404.14219, 2024.

M. Levy, A. Jacoby, and Y. Goldberg, “Same Task, More Tokens:
the Impact of Input Length on the Reasoning Performance of Large
Language Models,” 2024, publisher: arXiv Version Number: 2.

F. Shi, X. Chen, K. Misra, N. Scales, D. Dohan, E. H. Chi, N. Schiirli,
and D. Zhou, “Large language models can be easily distracted by
irrelevant context,” in International Conference on Machine Learning.
PMLR, 2023, pp. 31210-31227.

O. Yoran, T. Wolfson, O. Ram, and J. Berant, “Making retrieval-
augmented language models robust to irrelevant context,” in The Twelfth
International Conference on Learning Representations, 2024.

F. D. Keles, P. M. Wijewardena, and C. Hegde, “On the computational
complexity of self-attention,” in International conference on algorithmic
learning theory. PMLR, 2023, pp. 597-619.

Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient transformers:
A survey,” ACM Computing Surveys, vol. 55, no. 6, pp. 1-28, 2022.
Y. Leviathan, M. Kalman, and Y. Matias, ‘“Fast inference from transform-
ers via speculative decoding,” in International Conference on Machine
Learning. PMLR, 2023, pp. 19 274-19 286.

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

P. Wang, L. Li, L. Chen, Z. Cai, D. Zhu, B. Lin, Y. Cao, Q. Liu,
T. Liu, and Z. Sui, “Large language models are not fair evaluators,”
arXiv preprint arXiv:2305.17926, 2023.

C. Shen, L. Cheng, X.-P. Nguyen, Y. You, and L. Bing, “Large language
models are not yet human-level evaluators for abstractive summariza-
tion,” in Findings of the Association for Computational Linguistics:
EMNLP 2023, H. Bouamor, J. Pino, and K. Bali, Eds. Singapore:
Association for Computational Linguistics, Dec. 2023, pp. 4215-4233.
J. Ye, Y. Wang, Y. Huang, D. Chen, Q. Zhang, N. Moniz, T. Gao,
W. Geyer, C. Huang, P.-Y. Chen et al., “Justice or prejudice? quantifying
biases in llm-as-a-judge,” arXiv preprint arXiv:2410.02736, 2024.

C. Xia, C. Xing, J. Du, X. Yang, Y. Feng, R. Xu, W. Yin, and C. Xiong,
“Fofo: A benchmark to evaluate 1lms’ format-following capability,”
arXiv preprint arXiv:2402.18667, 2024.

B. Wen, P. Ke, X. Gu, L. Wu, H. Huang, J. Zhou, W. Li, B. Hu,
W. Gao, J. Xu, Y. Liu, J. Tang, H. Wang, and M. Huang, “Benchmarking
Complex Instruction-Following with Multiple Constraints Composition,”
Jul. 2024, arXiv:2407.03978 [cs].

H. J. Kim, H. Cho, J. Kim, T. Kim, K. M. Yoo, and S.-g. Lee,
“Self-generated in-context learning: Leveraging auto-regressive language
models as a demonstration generator,” arXiv preprint arXiv:2206.08082,
2022.

O. Ram, Y. Levine, I. Dalmedigos, D. Muhlgay, A. Shashua, K. Leyton-
Brown, and Y. Shoham, “In-context retrieval-augmented language mod-
els,” Transactions of the Association for Computational Linguistics,
vol. 11, pp. 1316-1331, 2023.

N. De Cao, W. Aziz, and I. Titov, “Editing factual knowledge in language
models,” in EMNLP 2021-2021 Conference on Empirical Methods in
Natural Language Processing, Proceedings, 2021, pp. 6491-6506.

K. Wu, E. Wu, and J. Y. Zou, “Clasheval: Quantifying the tug-of-
war between an llm’s internal prior and external evidence,” Advances
in Neural Information Processing Systems, vol. 37, pp. 33402-33422,
2024.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824-24 837, 2022.

S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and
K. Narasimhan, “Tree of thoughts: Deliberate problem solving with large
language models,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

J. Hu and R. Levy, “Prompting is not a substitute for probability mea-
surements in large language models,” arXiv preprint arXiv:2305.13264,
2023.

M. Mondal, L. Dolamic, G. Bovet, P. Cudré-Mauroux, and J. Audiffren,
“Do large language models exhibit cognitive dissonance? studying the
difference between revealed beliefs and stated answers,” arXiv preprint
arXiv:2406.14986, 2024.

E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the CoNLL-
2003 shared task: Language-independent named entity recognition,” in
Proceedings of the Seventh Conference on Natural Language Learning
at HLT-NAACL 2003, 2003, pp. 142-147.

J. Zhou, T. Lu, S. Mishra, S. Brahma, S. Basu, Y. Luan, D. Zhou, and
L. Hou, “Instruction-following evaluation for large language models,”
arXiv preprint arXiv:2311.07911, 2023.

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
A. Mathur, A. Schelten, A. Yang, A. Fan et al., “The 1lama 3 herd of
models,” arXiv preprint arXiv:2407.21783, 2024.

A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou, C. Li, C. Li,
D. Liu, F. Huang, G. Dong, H. Wei, H. Lin, J. Tang, J. Wang, J. Yang,
J. Tu, J. Zhang, J. Ma, J. Xu, J. Zhou, J. Bai, J. He, J. Lin, K. Dang,
K. Lu, K. Chen, K. Yang, M. Li, M. Xue, N. Ni, P. Zhang, P. Wang,
R. Peng, R. Men, R. Gao, R. Lin, S. Wang, S. Bai, S. Tan, T. Zhu, T. Li,
T. Liu, W. Ge, X. Deng, X. Zhou, X. Ren, X. Zhang, X. Wei, X. Ren,
Y. Fan, Y. Yao, Y. Zhang, Y. Wan, Y. Chu, Y. Liu, Z. Cui, Z. Zhang,
and Z. Fan, “Qwen?2 technical report,” arXiv preprint arXiv:2407.10671,
2024.

A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bam-
ford, D. S. Chaplot, D. d. 1. Casas, E. B. Hanna, F. Bressand et al.,
“Mixtral of experts,” arXiv preprint arXiv:2401.04088, 2024.

X. Qi, Y. Zeng, T. Xie, P.-Y. Chen, R. Jia, P. Mittal, and P. Henderson,
“Fine-tuning aligned language models compromises safety, even when
users do not intend to!” arXiv preprint arXiv:2310.03693, 2023.

