
NoizCrowd: A Crowd-Based Data Gathering
and Management System for Noise Level Data

Mariusz Wisniewski1, Gianluca Demartini1, Apostolos Malatras2,
and Philippe Cudré-Mauroux1

1 eXascale Infolab, University of Fribourg—Switzerland
2 Pervasive and Artificial Intelligence Group, University of Fribourg—Switzerland

{firstname.lastname}@unifr.ch

Abstract. Many systems require access to very large amounts of data
to properly function, like systems allowing to visualize or predict me-
teorological changes in a country over a given period of time, or any
other system holding, processing and displaying scientific or sensor data.
However, filling out a database with large amounts of valuable data can
be a difficult, costly and time-consuming task. In this paper, we present
techniques to create large amounts of data by combining crowdsourc-
ing, data generation models, mobile computing, and big data analytics.
We have implemented our methods in a system, NoizCrowd, allowing to
crowdsource noise levels in a given region and to generate noise models
by using state-of-the-art noise propagation models and array data man-
agement techniques. The resulting models and data can then be accessed
using a visual interface.

1 Introduction

Big data has become a key element to support decision making at different levels
of granularity, for example on continuous streams of data generated by sensors
spread around a given environment (e.g., meteorological stations in cities). An-
alytics on sensor data is of high importance to support many critical decisions,
such as when stopping the car traffic on certain days to limit pollution. However,
sensors are expensive to install and maintain and need to be placed at specific
geographical locations, which are typically application and context-dependent.
Acquiring, deploying, and maintaining a large-scale sensing infrastructure for a
given problem is hence difficult, costly and time-consuming.

In this paper we propose NoizCrowd: a crowd-sensing approach to big data
generation using commodity sensors. The proposed system, built on top of a
database management system for data-intensive applications, is able to collect
streams of data from participating users’ mobile devices and generate additional
data thanks to statistical models based on the crowd input. NoizCrowd also
provides dynamic visualizations of both sensor and model data to support user
decision queries, for instance to determine regions with low noise levels in a given
neighborhood to build a house or buy an apartment.

In more detail, NoizCrowd consists of four different components: i) a mobile
application allowing the crowd to measure noise levels accurately using com-
modity smartphones ii) a scalable array storage layer to manage all the pieces
of data gathered from the smartphones iii) a higher-level modeling layer capable
of generating continuous models from the (potentially) sparse data gathered by
the crowd and iv) a data export and visualization layer to interface with the
end-users and support interactive decision making.

The proposed approach has the following advantages: i) it allows any mobile
user to report the noise level at any place and time ii) it generates and manages
large-scale data about noise levels in order to cover different regions and time
intervals and iii) it supports users by answering data analytics requests on noise
levels.

The rest of the paper is structured as follows. We start below in Section 2
by comparing NoizCrowd with previous work including sensor data generation
applications running smartphones and noise mapping applications. In Section 3,
we describe the architecture components of NoizCrowd in more detail, includ-
ing the mobile application used to gather sensor data as well as the scalable
storage system. We present in Section 4 the crowdsourcing model used to ob-
tain noise-level data from geographically distributed users, as well as the data
generation models used to integrate and extend potentially sparse user data.
Section 5 presents the results of an experimental evaluation of the proposed sys-
tem based on several live deployments. Finally, Section 6 concludes the paper
by highlighting the main findings of our project.

2 Related Work

The notion of participatory sensing [2], namely user-centric monitoring and sens-
ing of environmental conditions by means of high-end mobile phones, has recently
emerged as a promising, low-cost alternative to traditional large-scale, costly and
difficult to manage sensing infrastructures based on sensor networks [6]. Whereas
there are several potential shortcomings for such an approach, especially in terms
of privacy [4] and quality of data collection [11], its benefits nonetheless are far
from negligible. In particular, attributed to the ubiquity of users with mobile de-
vices equipped with sensors, participatory sensing applications can provide great
data collection services at high granularity (spatial and temporal) and with a low
cost [14]. Such applications, spurred by active research and development efforts
in the domains of pervasive computing and the Internet of Things, are inherently
distributed and lacking centralized infrastructures and therefore ensure robust
operation and minimal management needs [3].

Participatory sensing applications have been considered for a wide range of
sensed information, with typical examples including environmental impact [19],
green vehicle routing [10], bargain shopping [7], etc. NoizCrowd focuses instead
on the collection of urban noise levels using participatory sensing applications
and their spatio-temporal representation on maps. This has generated great in-
terest in the research community for a variety of reasons, the most important of

which is the ubiquity of sound sensors, i.e. microphones, in current mobile de-
vices. Moreover, urban noise levels are becoming increasingly important due to
the related health concerns [18], as well as the associated regulatory frameworks
and citizen concerns [1]. It is noteworthy that during an experiment regarding
citizen engagement based on participatory sensing applications [8], people iden-
tified noise pollution as one of the most prominent information that should be
monitored using applications like NoizCrowd.

NoiseTube [9] is one of the most interesting participatory noise mapping
applications. It has been made available to the public through an open-source
license and this has led to its widespread usage leading to contributions regard-
ing noise levels for more than 250 locations around the world. NoiseTube allows
users to annotate their data readings with social tags, thus allowing for semantic
analysis of the collected data, while it additionally provides powerful signal pro-
cessing techniques on the mobile phones to process received sound levels with a
high degree of accuracy. NoiseMap [24] is an application built on the same prin-
ciples as NoiseTube, with the distinctive characteristics of allowing users control
over the collected data, while in parallel supporting real-time representation of
user submitted data. Another application that maps noise levels in a city exploit-
ing participatory sensing readings is SoundOfTheCity [23], in which semantic
tags are also used to annotate noise readings. The SoundSense framework [15]
also collects audio data from the user’s vicinity, but instead of submitting raw
data to the centralized participatory application it instead utilizes lightweight
yet powerful machine learning algorithms to classify sound-related events that it
then depicts on a map. Amongst other similar systems, we distinguish the Nois-
eSPY [12] application that maps noise levels using users’ smartphones as sensors;
the latter pre-processes the data prior to making it available, by calculating noise
levels according to specific guidelines. This ensures more homogeneous data be-
ing represented on the map, namely classes of different noise levels, as well as
reduced communication overhead in terms of information reporting.

As compared to existing systems, the advantages of NoizCrowd are twofold:
NoizCrowd is capable of producing noise data in RDF format. This enables
new kind of semantic applications by linking the generated data with other
datasets in the Linked Open Data cloud3. Furthermore, the use of a scalable
storage system together with noise propagation models to generate missing data
guarantee better coverage of user requests both in time and space.

Regarding the collected data, there are a lot of issues concerning their gran-
ularity, i.e., lack of data for particular locations, which can compromise the
operation of such participatory sensing applications. The Ear-Phone participa-
tory noise mapping system [21] has a functional behavior similar to that of the
previous applications and aims to address the problem of incomplete data in
the context of noise collection. In this respect, it employs compressive sensing
techniques and data projection models to enhance and account for the aforemen-
tioned problem. The simulation and real-world deployment evaluation results
regarding data optimization are quite promising. In the same line of thinking,

3 http://linkeddata.org

Mendez et al. present several data interpolation methods to improve the quality
of incomplete and random data in participatory sensing applications targeting
environmental monitoring [17]. With the same optimization goal, the DrOPS
system that was recently presented in [20] utilizes model-driven approaches and
online learning mechanisms to predict missing data readings from existing ones.
We diverge from this work by focusing on noise data collection and their par-
ticularities, i.e. sound dissipation. Lastly, one of the biggest concerns in partici-
patory sensing is ensuring that users are actively contributing and sharing their
data [22], since it could eventually lead to poor performance due to the lack of
accurate and informative representations. This problem has also been consid-
ered in the context of noise mapping, where a persuasive, motivating game was
considered in [16] to stimulate user data collection and sharing.

3 Architecture

As stated above, NoizCrowd consists of a scalable system allowing the crowd to
accurately measure noise levels using their mobile phones, an array-based storage
component for data-intensive applications, a model generation and management
layer, as well as a data export and a visualization interface to support decision
making. The overall system architecture is depicted in Figure 1. The rest of this
section presents each of those four components in more detail.

3.1 Data Gathering

For a noise level mapping system such as NoizCrowd, gathering vast amounts of
data over wide areas is key. Deploying noise sensors over a large geographical area
would introduce substantial deployment and maintenance costs. Our approach to
solve this problems is to use crowdsourcing. Indeed, nowadays many people use
smartphones with an integrated global positioning system (GPS), a microphone
as well as an Internet connection. These are the elements needed to record noise
levels, measure the coordinates of the location where it was measured, and send
such data to the NoizCrowd back-end server.

Since smartphones were typically not designed as noise meters, the first prob-
lem we face is to map the sound levels one can capture with his or her smart-
phones to standards decibels. This requires a third-party sound level meter to
calibrate the microphone of the smartphone. Since such devices are relatively
uncommon, we decided to crowdsource this problem too; For each smartphone
model, any user from the crowd can enter through our application a conversion
table linking the noise levels as recorded by his or her device to real decibels
as recorded by a sound level meter. Such conversion tables are then shared to
all other participants having a similar smartphone through our application. We
apply a majority-vote algorithm to select the most popular values in those con-
version tables when several participants register different values for a given sound
level.

Fig. 1. NoizCrowd architecture diagram: participants can share noise level data in
their surroundings using a smartphone application; All measurements are then durably
stored in an array database back-end; users can query the system using a visual inter-
face, which triggers the generation of high-level interpolation models based on the raw
data.

The main goal of our smartphone application is to allow participants to
determine and share the sound levels in their surroundings. Our application,
which is currently available for the iOS platform, allows the users to record
the noise level at their current time and location by leveraging the embedded
microphone and the iOS SDK audio recording functionalities. It returns the
average noise level in decibels thanks to the crowdsourced conversion tables
described above. Next, the application connects to the data back-end (see below)
through a Web service and transmits the median and peaks of the measured
values over few seconds.

3.2 Data Storage

We designed a new scalable back-end to be able to durably store and efficiently
process all data points shared by the users. Since the data we are working with
is highly non-relational (we are dealing with multidimensional data in space
and time mostly in the context of this project), we decided to base our storage

components on SciDB [5], a new array-based open-source database system for
data-intensive applications. The back-end of NoizCrowd is responsible for three
main tasks: receiving and durably storing all the data points shared by the users,
providing all the required data to build higher-level models, and transforming
and exporting relevant data for visualization purposes.

We store all value points shared by the user in multidimensional arrays. Two
of the array dimensions represent spatial information (latitude and longitude),
discretized using a fixed grid size4. The third array dimension represents an
unbounded temporal axis, also discretized every hour in order to regroup tem-
porally close measurements into one single value. All array values received by
the crowd are durably stored in the database; the cell values are versioned [25]
such that if a new value is received for a given array cell within one hour, it is
stored as new versions of the older value.

This potentially extremely large array is stored as a compressed and sparse
matrix on disk (i.e., only those cells that contain an actual value are materialized
on disk). The array is chunked (i.e., split) both in time and space, and the
resulting array chunks are stored on clusters of commodity machines if very large
amounts of data are received from the crowd (see [5] for details on chunking and
distributed storage in SciDB).

This array database layer is used to efficiently build higher-level data models
(see below Section 3.3) by selecting slices of values in space and time. It is
used in a similar manner by the data export and visualization component to
extract relevant data and present them to the end-user to support aggregated
information visualization and decision making.

3.3 Noise Modeling

The noise level values captured by the crowd are intrinsically sparse and noisy.
We cannot expect all areas and time periods to be covered by end-users. Re-
alistically, the data gathered will hence be highly skewed, with urban areas
receiving way more data points than remote areas for instance. Also, the values
collected by the users are inherently noisy, because of potential hardware dif-
ferences between the smartphones (e.g., slightly different microphones used for
a given smartphone model), and the high variability of ambient noise levels in
urban areas.

To tackle both data sparsity and data fluctuations, NoizCrowd does not pro-
vide raw measurements to the end-users but builds instead higher-layer models
from the data gathered. The modeling component that integrates overlapping
values and generates missing data by interpolating crowdsourced observations is
described in more detail in Section 4, while our interpolation models are exper-
imentally validated in 5.

4 Typically, we use a grid size of 10m given the accuracy of current smartphone posi-
tioning systems.

3.4 Data Export and Visualization

The data gathered from the crowd as well as the data generated by means of
interpolation can then be used by end-users, either as an RDF export, or through
a data visualization layer.

The export component regularly pulls data from the models and converts
them into RDF triples for export. We use our own dipLODocus[RDF] system [26]
to compactly store all data and to expose a SPARQL interface to whomever is
interested in querying some of the exported data.

The visualization interface allows users to retrieve a representation of the
noise levels of a region over a map. In the visualization component, the region
we display is represented as a grid of squares with sides of 10 meters, hence
directly matching the data stored in the array back-end and processed by our
models. The temporal information (i.e., different noise levels at different points in
time) is shown as an additional chart, as illustrated in Figure 2). An alternative
visualization of NoizCrowd data may be obtained by adding a third axis for
time and have our data model represented as a cube with latitude, longitude
and time.

We use the Google Map API to display additional information at the location
where the noise levels are visualized. This allows us to overlay noise levels on
top of the map of a given region. Each time the user uses the zoom or moves
the map, the model component is queried for new values corresponding to the
displayed area. The opacity of our noise level overlay indicates the noise level,
while the color indicates if the displayed values are the average sound level or
the peak sound level, since the interface gives the users the choice of which value
should be displayed. Right now each square is represented on the map, and if
we zoom out too far, the overlays stop being displayed. We chose not to display
overlays in that case because of the important load on the database when all
squares of a big spatial region are queried and because of the prohibitive cost of
rendering a multitude of small squares on the client side.

We use Highcharts5 to generate the graphs. Highcharts is a charting library
written in JavaScript, offering an easy way of adding interactive charts to Web
sites or Web applications. The graph is used to display statistics of a given area.
The user can select what type of statistics he is interested in and then retrieves
the statistics of an area by clicking on it on the map. Right now the interface
allows the users to get the average of all the measurements of a given area for
every hour of a chosen day, to show the average of all the measurements of the
area for every day of the week, and to show the average of all the measurements
of the area for every month of the year.

Both average and peak values are always displayed on the graph simultane-
ously using the same colors as for the map (red for peak values and blue for
average values). The axes of the chart change according to the options chosen
and the values returned by the database management system. A future improve-

Fig. 2. NoizCrowd Visualization Interface.

ment would be to allow the users to select a whole region of the map and to get
detailed statistics over it.

4 Models

As compared to well positioned sensors, the use of crowdsourcing does not guar-
antee an even coverage of the monitored geographical area over time. Thus,
there will be missing data points both on the time and space dimensions. Since
NoizCrowd needs to be able to answer queries about any location and time inter-
val, our system adopts data generation methods by means of interpolation over
different dimensions. In addition, the use of crowdsourcing can add fluctuations
to the measurements as described above, and hence require models to integrate
the measurements taken by different participants. In the following, we present
the various models we have developed to tackle these issues in the context of
NoizCrowd.

4.1 Spatial Interpolation Model

NoizCrowd uses an interpolation model to generate missing data between two
measurements that have been provided by the crowd and stored in the database

5 http://www.highcharts.com/

over the same time interval. In order to obtain valuable interpolations we need
to carefully select different measurements based on their geographical distance.
Note that we do not consider temporal interpolation at this point and focus on
space solely in the following. To restrict the inference to adjacent measurements
only, NoizCrowd defines a maximal distance threshold on the distance between
two measurements used for inference6. In order to maintain the computational
complexity of the inference tractable given the large-scale data NoizCrowd poten-
tially needs to handle, we defined computationally simple interpolation models
specifically tailored for our array database back-end. User queries can be gen-
eralized in our case as slab queries, i.e., bi-dimensional range queries in space:
q = {xi, xj , yi, yj}. Once such a query is received, the back-end proceeds to
a full-scan of the array values overlapping the slab (such slab scans are ex-
tremely optimized in SciDB, since the data is store in a compressed, vertical and
sparse format using multidimensional chunks). Once all the values stored in the
database for the given query are selected, we interpolate the data and compute
the noise level for every cell value v in the slab by using a k-nearest neighbor
interpolation based on the Manhattan distance:

vi,j = MD

n∑
k=1

vkmd
−1(vi,j , vk)

where md represents the Manhattan distance between two cells and MD is a
normalization factor (MD = 1/

∑n
k=1md

−1(vi,j , vk)). Figure 3 shows an exam-
ple of our spatial interpolation with k = 2, i.e, interpolating values given their
two nearest-neighbors only.

The above interpolation can be executed very efficiently and in a scalable
manner in our array backend, by keeping a small index on the available values
in main memory and by executing a parallel swipe over all the missing values
and computing each new value in parallel.

4.2 Temporal Interpolation Models

We experimented with two different time interpolation models. For short time
ranges (e.g., time intervals lasting a few minutes), we extend the spatial model
above to take into account spatiotemporal slab queries and Manhattan distances
in three dimensions. In order to infer data over longer unobserved time intervals
(e.g., hours or days), NoizCrowd adopts inference models that look for common
patterns in the available data. We focus on finding repetitive patterns based
on hour and day intervals in that context. For example, if every Monday at 11
a.m. the noise level for a given area is around 50dB and if we did not get any
measurement last Monday, then we can assume that there is a high probability
that the missing value is also 50dB. As another example, if we had a value for a
given area two hours ago and another similar one for the same area right now,

6 In the current version of NoizCrowd the maximum distance has been set to 50 meters.

Fig. 3. Noise signal interpolation using two nearest-neighbors and three noise sources.
The noise value of each region is computed as the average noise level of the two nearest
noise sources.

then we can assume that doing an interpolation over those two values might
lead to reasonable results. On the other hand, NoizCrowd does not perform
interpolation for such cases when the values are too dissimilar (i.e., when for
longer time intervals |vt1 − vt2| > τ , where τ is a system constant).

4.3 Noise Propagation Models

In addition to the interpolation models described above, we have created a model
implementing the formula for the propagation of sound in real atmosphere based
on Lamancusa’s model [13]. Such complex models can be particularly useful in
case we know the location of a sound source or want to locate a particular source
given some measurement. The sound pressure level Lp is derived in this model
as follows:

Lp = Lw − 20log(r)− 11 +DI −Aabs−Ae

Where Lw stands for the sound power level, r is the distance from the source in
meters, DI is a directivity index, Aabs is the atmospheric absorption, and Ae is
the excess attenuation.

In free space, the directivity index value is 0dB while it is 3dB on a perfectly
reflecting surface. Our models take the case of a perfectly reflecting surface into
consideration. The atmospheric absorption is the energy dissipated in the air by
viscous loss and relaxational processes over some distance. While the concept is
easy to understand, it is difficult to measure such parameters using smartphones.
However, we can set this variable as a constant if the region we take our measures
in is known a priori.

The excess attenuation variable is defined as follows:

Ae = Aweather +Aground+Aturbulence+Abarrier +Avegetation

where Aweather represents the meteorological conditions including the effects of
wind and temperature. In our case, we only take the temperature into account
(since we can get it directly using smartphone sensors or by looking up values
given the GPS coordinates and time). Aground represents the ground interaction
and Aturbulence the atmospheric turbulence. We take standard values for both
parameters due to the difficulty of measuring/looking up such parameters in our
context. Abarrier and Avegetation represent obstructions and vegetation. We
do not take these parameters into account.

By using the formula above, our model can generates accurate data values
for the area surrounding a noise source. Locating the source of some sound by
using three or more measurements in decibels can also be performed using the
sound propagation in atmosphere formula. For each of the measurement we give
to the model, we check each nearby cell and measure the value it would have
if it were the source. The square that has the closest resulting values for each
measurement is selected as the most likely source. We experiment with such
models in Section 5.

4.4 Models & Late Materialization

As described above, we store data in two different ways: We store raw measure-
ments in our SciDB backend, and higher-level, cleaned and interpolated data
using higher-level models. As for traditional view mechanisms in database sys-
tems, we thus have to choose how we materialize (i.e., precompute and store) the
model data. Since some of the models described above can be computationally
intensive, and since the total time and geographical areas covered by the sys-
tem can be very large, we decided to opt for late materialization strategies. The
materialization of the models is thus performed at query-time: NoizCrowd only
generates model data when a request is sent by the visualization interface about
a specific spatiotemporal range. The resulting data is then cached and indexed
as a new array in our backend, and can also be cached for future requests.

The model views are stored using a dedicated storage space in SciDB and are
replaced using a scalable clock-replacement policy. When new data is inserted
into the system, all views overlapping with the new data are selected. Two
outcomes can then occur depending on the view: If the view can be updated
(i.e., for the spatial and temporal models described above), then our backend
updates the view incrementally by inserting the new data only and recomputes
parts of the values only. It the view cannot be updated incrementally (i.e., for
the noise propagation model), then the view is dropped and will have to be
materialized again for future queries.

5 Performance Evaluation

In order to test the validity of our models, we performed series of live deployments
using smartphones and mobile sound sources. We report below on a few of such
experiments.

5.1 Spatial Interpolation

We tested our interpolation model through 30 outdoor deployments, 10 times
using 2 smartphones simultaneously, 10 times with 3 smartphones, and 10 times
with 4 smartphones. The location of the smartphones in the deployments were
randomly selected in a given flat region of 50 by 50 meters. We chose a relatively
busy neighborhood in an urban setting with relatively constant noise levels. We
took a professional-grade noise level meter to measure the real values of the
sound levels we were trying to interpolate using the smartphones available and
our model.

In summary, the results we obtained were as follows: 85% of the resulting
interpolated data was with an error of less than 6dB to the real values, with 63%
of those values within 4dB or less. We find those results very encouraging given
the setting chosen and the few values recorded.

5.2 Sound Dissipation and Source Location

We used a controlled setting to test our sound dissipation and source localization
approaches. We picked a 100dB sound source on a 60 by 60 meter baseball field,
covered in snow to avoid reverberation. We placed the source in one corner of
the field, and then measured the sound levels in the neighboring area using our
application and three smartphones. Figure 4 shows the results. Normally, the
values should steadily decrease as we get further and further from the source.
However, as we can observe on the figure, this is not strictly the case in practice,
given that the measurements were taken over several minutes in an open area
using different smartphones.

We then tested our sound propagation and source localization models given
this relatively noisy input (which is in our opinion close to what the crowd would
give us in a larger-scale deployment). We performed 10 tests using 3 random
measurements picked from our live deployment, 10 using 4 measurements, and
10 others using 5 measurements.

In summary, the results we obtained are as follows: the error on the sound
level value of the source determined by sound dissipation and our smartphone
measurements decreases steadily with the number of measurements available:
on average, the error is 16% for 3 available measurements, 10% with 4 measure-
ments, and 9% with 5 measurements. The sound localization performed well too,
as we were able to locate the source within a 3 meter radius on average.

Fig. 4. NoizCrowd live measurements in space using three smartphones and a noise
source of 100 db (lower left of the figure).

6 Conclusions

Generation and management of large-scale data is key for data exploration and
decision making. In this paper, we have proposed NoizCrowd: a system to crowd-
source noise level data using smartphones. Our system is able to scale out the
gathering and management of noise level signals by means of a mobile application
and a scalable array back-end. In addition, NoizCrowd autonomously generates
missing data by means of interpolation over time and space. Finally, a visual
dashboard allows users to query for the noise levels in a specific time and space
interval. Our experimentations using real-world deployments of our system have
shown that the proposed interpolation models can accurately generate noise level
data with noisy input values.

As future work, in addition to porting our application to different mobile
platforms (e.g., Android), we plan to extend it with additional functionalities
to incentive people to use it. Indeed, using an application just to measure and
share the surrounding noise brings little incentives on its own. Therefore, the
data recording should be processed in the background while the participant uses
the application for other purposes.

Finally, since computing models dynamically at query-time for any user query
can be expensive, we plan to explore materialization strategies in more detail
in the future. More specifically, we plan to materialize models at various granu-
larities in an offline manner in order to let the users freely zoom in or out on a
maps in real-time.

7 Acknowledgments

This work was supported (in part) by the Swiss National Science Foundation un-
der grant numbers PP00P2 128459 (Infrastructures for Community-Based Data
Management) and 200021 130132 (BioMPE).

References

1. Jess Barreiro-Hurl, Mercedes Sanchez, and Montserrat Viladrich-Grau. How much
are people willing to pay for silence? a contingent valuation study. Applied Eco-
nomics, 37(11):1233–1246, 2005.

2. J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and
M. B. Srivastava. Participatory sensing. In In: Workshop on World-Sensor-Web
(WSW06): Mobile Device Centric Sensor Networks and Applications, pages 117–
134, 2006.

3. A.T. Campbell, S.B. Eisenman, N.D. Lane, E. Miluzzo, R.A. Peterson, Hong Lu,
Xiao Zheng, M. Musolesi, K. Fodor, and Gahng-Seop Ahn. The rise of people-
centric sensing. Internet Computing, IEEE, 12(4):12–21, 2008.

4. Delphine Christin, Andreas Reinhardt, Salil S. Kanhere, and Matthias Hollick. A
survey on privacy in mobile participatory sensing applications. Journal of Systems
and Software, 84(11):1928 – 1946, 2011.

5. Philippe Cudré-Mauroux, Hideaki Kimura, Kian-Tat Lim, Jennie Rogers, Roman
Simakov, Emad Soroush, Pavel Velikhov, Daniel L. Wang, Magdalena Balazinska,
Jacek Becla, David J. DeWitt, Bobbi Heath, David Maier, Samuel Madden, Jig-
nesh M. Patel, Michael Stonebraker, and Stanley B. Zdonik. A Demonstration of
SciDB: A Science-Oriented DBMS. PVLDB, 2(2):1534–1537, 2009.

6. Dana Cuff, Mark Hansen, and Jerry Kang. Urban sensing: out of the woods. ACM
Communications, 51(3):24–33, March 2008.

7. Linda Deng and Landon P. Cox. Livecompare: grocery bargain hunting through
participatory sensing. In Proceedings of the 10th workshop on Mobile Computing
Systems and Applications, HotMobile ’09, pages 4:1–4:6, New York, NY, USA,
2009. ACM.

8. Carl DiSalvo, Illah Nourbakhsh, David Holstius, Ayça Akin, and Marti Louw. The
neighborhood networks project: a case study of critical engagement and creative
expression through participatory design. In Proceedings of the Tenth Anniversary
Conference on Participatory Design 2008, PDC ’08, pages 41–50, Indianapolis, IN,
USA, 2008. Indiana University.

9. Ellie DHondt, Matthias Stevens, and An Jacobs. Participatory noise mapping
works! an evaluation of participatory sensing as an alternative to standard tech-
niques for environmental monitoring. Pervasive and Mobile Computing, (0):–, 2012.

10. Raghu K. Ganti, Nam Pham, Hossein Ahmadi, Saurabh Nangia, and Tarek F.
Abdelzaher. Greengps: a participatory sensing fuel-efficient maps application. In
Proceedings of the 8th international conference on Mobile systems, applications,
and services, MobiSys ’10, pages 151–164, New York, NY, USA, 2010. ACM.

11. R.K. Ganti, Fan Ye, and Hui Lei. Mobile crowdsensing: current state and future
challenges. Communications Magazine, IEEE, 49(11):32–39, 2011.

12. Eiman Kanjo. Noisespy: A real-time mobile phone platform for urban noise mon-
itoring and mapping. Mob. Netw. Appl., 15(4):562–574, August 2010.

13. J. S. Lamancusa. Outdoor sound propagation. PA: Penn State University. pp.
10.610.7.

14. N.D. Lane, E. Miluzzo, Hong Lu, D. Peebles, T. Choudhury, and A.T. Campbell. A
survey of mobile phone sensing. Communications Magazine, IEEE, 48(9):140–150,
2010.

15. Hong Lu, Wei Pan, Nicholas D. Lane, Tanzeem Choudhury, and Andrew T. Camp-
bell. Soundsense: scalable sound sensing for people-centric applications on mobile

phones. In Proceedings of the 7th international conference on Mobile systems, ap-
plications, and services, MobiSys ’09, pages 165–178, New York, NY, USA, 2009.
ACM.

16. Irene Garcia Mart́ı, Luis E. Rodŕıguez, Mauricia Benedito, Sergi Trilles, Arturo
Beltràn, Laura Dı́az, and Joaqúın Huerta. Mobile application for noise pollution
monitoring through gamification techniques. In Marc Herrlich, Rainer Malaka,
and Maic Masuch, editors, Entertainment Computing - ICEC 2012, volume 7522
of Lecture Notes in Computer Science, pages 562–571. Springer Berlin Heidelberg,
2012.

17. D. Mendez, M. Labrador, and K. Ramachandran. Data interpolation for partic-
ipatory sensing systems. Pervasive and Mobile Computing, 9(1):132 – 148, 2013.
Special Section: Pervasive Sustainability.

18. Anne Vernez Moudon. Real noise from the urban environment: How ambient
community noise affects health and what can be done about it. American Journal
of Preventive Medicine, 37(2):167 – 171, 2009.

19. Min Mun, Sasank Reddy, Katie Shilton, Nathan Yau, Jeff Burke, Deborah Estrin,
Mark Hansen, Eric Howard, Ruth West, and Péter Boda. Peir, the personal envi-
ronmental impact report, as a platform for participatory sensing systems research.
In Proceedings of the 7th international conference on Mobile systems, applications,
and services, MobiSys ’09, pages 55–68, New York, NY, USA, 2009. ACM.

20. Damian Philipp, Jaroslaw Stachowiak, Patrick Alt, Frank Dürr, and Kurt Rother-
mel. DrOPS: Model-Driven Optimization for Public Sensing Systems. In 2013
IEEE International Conference on Pervasive Computing and Communications
(PerCom) (PerCom 2013), pages 1–8, San Diego, CA, USA, March 2013. IEEE
Computer Society.

21. Rajib Kumar Rana, Chun Tung Chou, Salil S. Kanhere, Nirupama Bulusu, and
Wen Hu. Ear-phone: an end-to-end participatory urban noise mapping system.
In Proceedings of the 9th ACM/IEEE International Conference on Information
Processing in Sensor Networks, IPSN ’10, pages 105–116, New York, NY, USA,
2010. ACM.

22. Sasank Reddy, Deborah Estrin, and Mani Srivastava. Recruitment framework
for participatory sensing data collections. In Patrik Floren, Antonio Krger, and
Mirjana Spasojevic, editors, Pervasive Computing, volume 6030 of Lecture Notes
in Computer Science, pages 138–155. Springer Berlin Heidelberg, 2010.

23. Lukas Ruge, Bashar Altakrouri, and Andreas Schrader. Soundofthecity - con-
tinuous noise monitoring for a healthy city. In 5th International Workshop on
Smart Environments and Ambient Intelligence (SENAmI 2013) at IEEE Interna-
tional Conference on Pervasive Computing and Communication (PerCom 2013),
San Diego, California, USA, March 18-22 2013.

24. Immanuel Schweizer, Roman Bärtl, Axel Schulz, Florian Probst, and Max
Mühlhäuser. Noisemap - real-time participatory noise maps. In Second Interna-
tional Workshop on Sensing Applications on Mobile Phones, ACM SenSys 2011,
2011.

25. Adam Seering, Philippe Cudré-Mauroux, Samuel Madden, and Michael Stone-
braker. Efficient Versioning for Scientific Array Databases. In ICDE, pages 1013–
1024. IEEE Computer Society, 2012.

26. Marcin Wylot, Jigé Pont, Mariusz Wisniewski, and Philippe Cudré-Mauroux.
dipLODocus[RDF] - Short and Long-Tail RDF Analytics for Massive Webs of
Data. In International Semantic Web Conference, pages 778–793, 2011.

