
Analyzing Reinforcement Learning Benchmarks with Random
Weight Guessing

Declan Oller
Providence, Rhode Island, USA

declanoller@gmail.com

Tobias Glasmachers
Institute for Neural Computation,
Ruhr-University Bochum, Germany

tobias.glasmachers@ini.rub.de

Giuseppe Cuccu
eXascale Infolab, University of

Fribourg, Switzerland
giuseppe.cuccu@unifr.ch

ABSTRACT
We propose a novel method for analyzing and visualizing the com-
plexity of standard reinforcement learning (RL) benchmarks based
on score distributions. A large number of policy networks are gener-
ated by randomly guessing their parameters, and then evaluated on
the benchmark task; the study of their aggregated results provide
insights into the benchmark complexity. Our method guarantees
objectivity of evaluation by sidestepping learning altogether: the
policy network parameters are generated using Random Weight
Guessing (RWG), making our method agnostic to (i) the classic RL
setup, (ii) any learning algorithm, and (iii) hyperparameter tuning.
We show that this approach isolates the environment complexity,
highlights specific types of challenges, and provides a proper foun-
dation for the statistical analysis of the task’s difficulty. We test
our approach on a variety of classic control benchmarks from the
OpenAI Gym, where we show that small untrained networks can
provide a robust baseline for a variety of tasks. The networks gener-
ated often show good performance even without gradual learning,
incidentally highlighting the triviality of a few popular benchmarks.

KEYWORDS
Evolutionary algorithms; learning agent capabilities; machine learn-
ing
ACM Reference Format:
Declan Oller, Tobias Glasmachers, and Giuseppe Cuccu. 2020. Analyzing Re-
inforcement Learning Benchmarks with Random Weight Guessing. In Proc.
of the 19th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2020), Auckland, New Zealand, May 9–13, 2020, IFAAMAS,
8 pages.

1 INTRODUCTION
Reports on new Reinforcement Learning (RL) algorithms [18] are
frequently presented with the scores achieved on standard bench-
mark environments such as the OpenAI Gym [2]. These environ-
ments are chosen for their solvability and widespread use, meaning
that scores for a new algorithm can be compared to methods in the
literature that use the same environments. In many cases however
we lack a solid understanding of the actual challenges posed by
such environments [3]. This limits the comparison to statements
about general performance, and it precludes insights about specific
strengths and limitations of RL algorithms. As commonly found
in optimization, an ideal RL benchmark suite should offer variable,
discriminative difficulty over a representative set of challenges.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

In optimization there exist well-understood challenges such as
non-convexity, non-smoothness, multi-modality, ill-conditioning,
noise, high dimensions, and others. They are attributed to certain
problems, hence defining categories, and some of them even serve
as numerical (hence quantitative) measures of problem hardness.
This work takes a first, major step in building an analogous measure
of difficulty for RL tasks, by designing and open sourcing a tool that
allows analysis of existing (and future) benchmarks based on an
external and unbiased measure of complexity. It is understood that
our proposal is not the only possible measure. In order to capture
the many facets of task difficulty in RL we resist the temptation
to capture complexity in a single number. Instead, we leverage
the performance distribution to visualize rich information about RL
tasks.

We are concerned with measuring task difficulty in a way that is
appropriate for RL, and in particular for direct policy search. Instead
of the optimization-related challenges listed above, we measure
hardness in terms of the probability mass in the weight space that
corresponds to acceptable solutions. It is in this sense that we address
a fundamental problem of RL research. We are not concerned with
how to address specific difficulties with actual learning algorithms,
like deep representation learning, exploration strategies, off-policy
learning, and the like.

Gauging a benchmark’s complexity though is not a straight-
forward task. As most RL environments are typically distributed
as black-box software, the only way to interact with them that is
guaranteed to be available is through the environment’s control
loop. Exploring such interaction in a meaningful way requires a
potentially sophisticated controller. It would be tempting to use any
arbitrary learning approach for this task. Any choice of training
method however would in turn unavoidably bias the analysis, lim-
iting the extent and applicability of consequent findings. The only
viable alternative to maintain objectivity is thus to avoid learning
completely.

For our analysis, we propose the simplest procedure conceiv-
able: (i) direct policy search; (ii) controller models of minimal but
increasing complexity; (iii) parameter selection based on a random
sampling. In practice, this corresponds to selecting a Neural Net-
work (NN) controller of minimal size and complexity, selecting its
weights by means of Random Weight Guessing (RWG; [14]), and
directly using it in the observation-decision-action loop of control
with the environment of choice. There is no training, no gradient
descent, no classical RL framework, and sampled controllers are
completely independent from each other. It’s important to empha-
size that RWG is not an approach for solving RL problems, but rather
an analysis method that can complement any learning strategy.



Figure 1: Screenshots for the five Classic Control environments from the OpenAI Gym. From left to right: CartPole, Acrobot
and Pendulum, while the last is representative of both MountainCar and MountainCarContinuous.

Environment name # observations # controls control type solved score

CartPole-v0 4 2 discrete 195
Acrobot-v1 6 3 discrete -60
Pendulum-v0 3 1 continuous -140
MountainCar-v0 2 3 discrete -110
MountainCarContinuous-v0 2 1 continuous 90

Table 1: Properties of the environments used in this study. The “solved score” is derived from current leader boards. Intuitively,
performance close to or above this value corresponds to performance that is meaningful for the task.

The extreme simplicity of RWG for parameter assignment presents
several attractive benefits:

(1) if obtaining controllers of satisfactory performance is likely,
it directly raises the question of whether the environment
constitutes a useful, nontrivial benchmark for more powerful
algorithms;

(2) it is easy to reproduce and hence especially useful as a base-
line, as it does not depend on implementation details (such
as software ecosystem) nor on meta-optimization techniques
(such as hyperparameters tuning);

(3) it does not suffer from random seed issues such as the meth-
ods investigated in [5]; and

(4) it properly reflects the properties of the benchmarks, de-
spite the curse of dimensionality, i.e., the high volume of the
weight space it involves searching.

On the topic of hyperparameters, RWG performance is depen-
dant on the neural network architecture of choice, and on the
distribution from which weights are drawn. We propose addressing
the first point by performing a thorough parameter study, where a
set of architectures of increasing model complexity is tested in turn.
The choice of the distribution instead turns out to be uncritical:
our results are nearly invariant under the shape of the distribution
(we tested uniform and Gaussian), and unit variance turns out to
be a solid default. One should keep in mind that the bounds of
the distribution (be there hard bounds as in the case of uniform
distributions, or soft bounds as with the variance of a Gaussian)
define the tested value range for the weights, which may be critical
depending on application and network size (e.g. with the number
of weights entering a neuron). However, in our experiments we did
not find a need to tune the scale.

It is important to notice at this point that the weights generated
by RWG are the final weights used, as opposed to initial configu-
rations followed by learning, as is more common in deep learning.

For example, a concern often linked to the magnitude of the initial
weights is neuron saturation: if the weighted sum of a neuron’s
input is high enough, the output of the sigmoidal activation func-
tion will be asymptotically close to its bounds, making its behavior
indistinguishable from a step function. This in turn squashes the
error gradient to zero, hindering learning. As described however
in our case we are not interested in further learning: generated
networks (with or without neuron saturation) are feasible solutions,
and the overall performance of the network will be captured and
interpreted by the final score on the task.

While neuron saturation limits the information capacity of the
network [12], there is in principle no correlation with lower net-
work performance: the generated network is final and as such
evaluated uniquely based on its performance on the task, not based
on the potential of networks that can be derived from it through
learning. In any case, our settings make neuron saturation unlikely:
while the value range for weight generation is orders of magni-
tudes higher than commonly used in initialization in deep learning,
the networks proposed in this work are also orders of magnitude
smaller: the number of connections entering each neuron (and
hence the number of terms in the weighted sum) is, proportionally,
orders of magnitude less, effectively balancing weight magnitude.

Our experimental results address a set of broadly adopted RL
benchmarks available from the OpenAI Gym [2], specifically the
Classic Control suite of benchmark environments1. A framework
that we open source takes a benchmark environment and studies
it by interacting with it using a sequence of increasingly complex
neural networks. The proposed procedure is immediately applicable
to any RL benchmark implementing the widespread OpenAI Gym
interface, including both discrete and continuous control tasks.

We find that the statistical study derived from the distributions
of scores highlights large qualitative differences among the tested
1https://gym.openai.com/envs/#classic_control

https://gym.openai.com/envs/#classic_control


environments. The information made available provides far more
detailed insights than standard aggregated performance scores com-
monly reported in the literature.

Related Work. RWG refers to applying the simplistic and usually
non-competitive optimization technique of pure random search2
to the weights of neural networks. To the best of our knowledge it
was first used in [14] for demonstrating that certain widely used
benchmark problems in sequence learning with recurrent neural
networks are trivial. In contrast, we consider RL benchmarks, and
our work develops the approach further by turning it into a useful
analysis methodology for RL environments.

Pure random search was also proposed for tuning the hyper-
parameters of learning machines [1], although it is usually less
efficient than Bayesian optimization [7]. However, most Bayesian
approaches start out with an initial design, which can be based on
a random sample generated by RWG.

Random weight guessing by itself can be considered a simplistic
baseline method for direct policy search learners such as Neuroevo-
lution [4]. In contrast to RWG, Evolution Strategies and similar
algorithms adapt the search distribution online, which turns them
into competitive RL methods [3, 11, 13]. In a direct policy search
context, RWG can be thought of as a pure non-local exploration
method.

It is crucial to distinguish RWG from such methods, since they
sometimes come “in disguise”, e.g., using the term random search for
elaborate procedures that do actually adapt distribution parameters
and hence demonstrate competitive performance on non-trivial
tasks [9]. We argue that such algorithms should instead be termed
randomized search, and they are best understood as zeroth order
cousins of stochastic gradient descent (SGD). Although such algo-
rithms can be simplistic (as is SGD) they clearly perform iterative
learning, and hence their performance can hardly be considered
unbiased measures of task difficulty.

Understanding the overall complexity of an RL task is usually
approached through theoretical analysis, which yields general re-
sults, e.g., in terms of regret bounds [6] and convergence guaran-
tees [8, 15–17]. That line of work highlights principal strengths
and limitations of RL paradigms, but it is hardly suitable for ana-
lyzing and systematically understanding specific challenges posed
by complex RL environments. In addition, theoretically promised
results of RL often break down when parts of the so-called “Deadly
Triad”3 are violated [19]. In particular, we are not aware of any
work that considers widely used benchmarks like the OpenAI Gym
collection of tasks in this perspective. Our study aims to provide a
practical tool for such an analysis.

Our Contributions. The above lines of work are mostly concerned
with learning and optimization, as well as with myth busting [14].
Here we propose to use RWG for a different purpose, namely for
the analysis of RL tasks. Our contributions are as follows:

2Pure random search is a simplistic optimization technique drawing search points
independently from a fixed probability distribution. Its search distribution is memory
free, but the algorithm keeps track of the best point so far. It can be considered as a
randomized variant of exhaustive search without taboo list.
3The term refers to combining function approximation, bootstrapping, and off-policy
learning.

• We show that RWG is a surprisingly powerful method for the
analysis of RL environments. In particular, the performance
distribution provides information about different solution
regimes, noise, and the minimal sophistication of a NN that
can act as an effective controller.

• We provide compact and informative visualizations of task
difficulty that help to identify specific challenges and differ-
ences between environments at a single glance.

• Nearly 20 years after the work of Schmidhuber et al. [14]
we show that it is still common to (often unwittingly) report
state-of-the-art results on benchmarks which should rather
be considered trivial.4

• We provide an open source software framework5 to the com-
munity that allows immediate application of our analysis to
any environment implementing the OpenAI Gym interface.

The remainder of this paper is organized as follows. In the next
section we describe in detail how we turn RWG into a methodology
for the analysis of RL environments. The following section demon-
strates its discrimination and explanation power with exemplary
results on selected OpenAI Gym environments. We close with our
conclusions.

2 ANALYSIS METHODOLOGY
In this section we describe our methodology. Given an RL environ-
ment we conduct a fixed series of experiments as follows.

Neural Network Controllers. We construct a series of NN archi-
tectures suitable for the task at hand with the following implemen-
tation:

• The NN input and output sizes match the dimensionality of
the environment observation and action spaces, respectively.
These numbers are specific to the environment of choice.

• The number of hidden layers and their sizes are specified as
an experiment parameter (discussed below).

• All networks use a non-linear tanh activation function.
• In environments with a discrete action space, the output is
translated into an action index with the argmax operator.

• For continuous action spaces, each output is scaled to within
the action boundaries.

• We consider 𝑁architectures = 3 simple connectivity patterns
of increasing complexity:
– The simplest case of a network without hidden layers,
which is also equivalent to a linear model

– A network with a single hidden layer of 4 units
– A network with two hidden layers of 4 units each
Alternative architectures were tried without discernible ad-
ditional insight, though of course benchmarks of higher
complexity may benefit from larger controller models.

• All networks considered are tested with and without bias
inputs to the neurons, which interestingly produces better
performance in the absence of bias (see Figure 2).

4https://github.com/openai/gym/wiki/Leaderboard
5https://github.com/declanoller/rwg-benchmark

https://github.com/openai/gym/wiki/Leaderboard
https://github.com/declanoller/rwg-benchmark


Figure 2: Histograms of mean sample scores for 2 hidden layer, 4 hidden unit networks with (top row) and without (bottom
row) bias connections. In all five environments, the probability mass on top-performers generally increases when dropping
bias connections. The difference is particularly striking for the MountainCarContinuous and MountainCar environments.

For each of the network architectures we sample 𝑁samples = 104
instances by drawing each of their weights i.i.d. from the stan-
dard normal distribution N(0, 1), i.e. we draw 𝑁samples weight vec-
tors𝑤𝑛 ∈ R𝑑 from the multi-variate standard normal distribution
N(0, 𝐼 ), where𝑑 is the number of weights of a network architecture,
and 𝐼 ∈ R𝑑×𝑑 denotes the identity matrix. Equivalently, a random
matrix of size 𝑁samples × 𝑑 is drawn from the corresponding multi-
variate standard normal distribution.

The Score Tensor. Each of the 𝑁samples networks implements a
controller, which maps observations (input) to actions (output).
Each controller is repeatedly tested on the environment’s control
loop for 𝑁episodes independent episodes. Repetition is only neces-
sary for environments featuring a stochastic component, as com-
monwith random initial conditions. For deterministic environments
we propose setting 𝑁episodes = 1.

In each episode we record the rewards obtained in each time
step. The total reward (the non-discounted sum of all rewards in the
episode) is assigned as a score. For clarity, the procedure is formally
defined in Algorithm 1.

The resulting score tensor has dimensions𝑁architectures×𝑁samples×
𝑁episodes, for 𝑁architectures = 3 network architectures, 𝑁samples =

104 independent networks per architecture, and 𝑁episodes = 20 in-
dependent episodes per network. We denote the tensor by 𝑆 , and
refer to the score achieved by network 𝑛 of architecture 𝑎 in the
𝑒-th episode as 𝑆𝑎,𝑛,𝑒 .

Algorithm 1 Environment evaluation
Initialize environment
Create array 𝑆 of size 𝑁architectures × 𝑁samples × 𝑁episodes
for 𝑎 = 1, 2, . . . , 𝑁architectures do

Initialize the current NN architecture
for 𝑛 = 1, 2, . . . , 𝑁samples do

Sample NN weights randomly from N(0, 1)
for 𝑒 = 1, 2, . . . , 𝑁episodes do

Reset the environment
Run episode with NN
Store accrued episode reward in 𝑆𝑎,𝑛,𝑒

A benefit of this search algorithm’s simplicity and the indepen-
dence between network architectures, networks, and episodes is

that the algorithm is embarrassingly parallel. Also, our default
numbers for 𝑁samples and 𝑁episodes can be adapted based on the
available computational resources. Running the full evaluation as
described above on all five Classic Control environments from the
OpenAI Gym (Figure 1) with three architectures took under 20
hours on a single machine, using a 32-core Intel(R) Xeon(R) E5-
2620 at 2.10GHz, with a RAM utilization below 5GB. Runtimes per
architecture and environment are shown in Table 2.

It is understood in principle that generating 𝑁samples = 104
random networks is not a reasonable learning strategy. The number
is far too large, e.g., for an initial design of a Bayesian optimization
approach, or as a population size in a neuroevolution algorithm.
We want to emphasize that such a large set of samples here serves a
very different purpose: we do not aim to optimize the score this way,
but instead we aim to draw statistical conclusions about properties
of the environment.

The Score Distribution. We visualize the score tensor 𝑆 as follows.
First of all, each network architecture 𝑎 is treated independently,
resulting in series of plots. For each network architecture the scores
𝑆𝑎 form an 𝑁samples × 𝑁episodes matrix. From each row of this ma-
trix, corresponding to a single network 𝑛, we extract the mean
performance

𝑀𝑎,𝑛 =
1

𝑁episodes

𝑁episodes∑
𝑒=1

𝑆𝑎,𝑛,𝑒

of the network, as well as its variance

𝑉𝑎,𝑛 =
1

𝑁episodes + 1

𝑁episodes∑
𝑒=1

(
𝑆𝑎,𝑛,𝑒 −𝑀𝑎,𝑛

)2
.

A crucial ingredient of the subsequent analysis is that we sort the
all networks of the same architecture by their mean score 𝑀𝑎,𝑛 ,
and we refer to the position of the network within the sorted list
as its rank 𝑅𝑎 (𝑛) (in the rare cases of exact ties of mean scores, the
tied samples are left in the order they were originally). Then we
aggregate the score matrix in three distinct figures:

(1) A log-scale histogram of𝑀𝑎,𝑛 ;
(2) A scatter plot of the individual sample scores 𝑆𝑎,𝑛,𝑒 over their

corresponding 𝑅𝑎 (𝑛) sorted by mean score, with a (naturally
monotonically increasing) curve of their𝑀𝑎,𝑛 overlaid; and

(3) A scatter plot of score variance 𝑉𝑎,𝑛 over mean score𝑀𝑎,𝑛 .



Figure 3: Plots of aggregate statistics produced byRWG, here for a networkwithout hidden layers on the CartPole environment.
From left to right: histogram of mean scores (note the log-scale), scatter plot of scores over rank sorted by mean score, and
scatter plot of score variance over mean score. In the left plot, the counts decrease with mean episode score until the sharp
increase of the highest score bin (scores 195 - 200), indicating that in general higher scores are harder to achieve, aside from
a non-negligible number of samples that fully solve the problem. In the center plot, the top performing 0.1% of all episodes
(from all sampled networks) is colored in green.

Environment 0 HL 1 HL, 4 HU 2 HL, 4 HU

CartPole-v0 189.7 210.1 214.1
Pendulum-v0 3206.8 3677.6 3438.3
MountainCar-v0 2969.4 2808.4 2718.7
MountainCarContinuous-v0 1820.9 1928.6 2305.8
Acrobot-v1 14368.8 14611.0 14956.1

Table 2: Runtime (seconds) for the 3 architectures and 5 environments investigated. Statistics for each pair were collected for
104 samples.

Figure 3 shows an example visualization for a single-layer net-
work applied to the OpenAI Gym CartPole environment. A num-
ber of interesting properties can be extracted:

• Left. Unsurprisingly, the vast majority of networks achieve
relatively low scores. The histogram of mean scores decreas-
ing throughoutmost of its range (mean scores 10-190) reflects
our intuition that achieving higher scores is increasingly dif-
ficult. However, the fraction of networks solving the task is
surprisingly high, with over 3% of the randomly generated
networks achieving an average score sufficient to solve the
task (above 195; see Table 1). We can conclude that the task
is trivial, and probably not a suitable benchmark for testing
sophisticated RL algorithms.

• Center. The distribution of the mean scores, indicated by
the black curve, shows a smooth slope without jumps. This
indicates that many RL algorithms should find it easy to
learn the task incrementally with low risk of converging
to local optima. In contrast, significant jumps in the curve
would indicate the existence of distinct controller regimes,
suggesting the need for algorithms capable of disruptive ex-
ploration (such as restart strategies). The highlighted green
points at the top are the scores of the highest 0.1% scores
of all episodes (across all sampled controllers). The loca-
tions of these points indicate that a number of controllers
with relatively low mean scores are often able to solve the
environment, depending on initialization conditions. The

right algorithm could exploit such early partial successes to
significantly influence learning trajectories.

• Right. The variance at lowest mean score is minimal, corre-
sponding to controllers incapable of succeeding in the task
regardless of initial conditions. In themid-plot, scores instead
have a wide spread, indicating controllers that achieve their
mean score by succeeding on only some episodes and failing
at others. For a controller to reach the highest mean score,
consistency is required, as indicated by the tight variance at
the rightmost end of the plot. Overall the plot highlights a
significant noise in the non-deterministic fitness evaluation,
which may conceivably pose a barrier to some learning algo-
rithms. At the same time other methods may instead thrive
by focusing on the successful episodes, highlighting the im-
portance of such a study for proper method selection. It is
important to note that this specific behavior is not general
to all possible environments; while it is conceivable that in
some environments the optimal strategy could yield substan-
tial variance, for all tasks considered in this study optimality
goes hand in hand with stability.

3 EXAMPLE STUDY: OPENAI CLASSIC
CONTROL

In this section we demonstrate that significant insights about en-
vironments and their differences can be gained for the procedure



Figure 4: Score distribution plots for all five classic control tasks. Each row of five plots corresponds to one environment. The
first three columns show scatter plots of episode scores for the three network architectures studied. The green dots in the
scatter plots represent the 0.1% best episodes. The fourth column shows a scatter plot of score variance over mean score, and
the fifth column shows the score histogram, both for networks with 2 hidden layers of 4 units each (2 HL, 4 HU). Plots in the
same row of the fourth and fifth columns share the same x-axis range, which has been scaled to the full width for clarity. The
exact ranges can be read in figure 2.



Environment 0 HL 1 HL, 4 HU 2 HL, 4 HU

CartPole-v0 200.0 (200.0) 200.0 (200.0) 200.0 (200.0)
Pendulum-v0 -811.6 (-916.7) -870.4 (-932.5) -635.3 (-939.5)
MountainCar-v0 -120.2 (-144.2) -137.7 (-147.6) -123.3 (-149.2)
MountainCarContinuous-v0 -0.0 (-0.0) 44.0 (4.1) 96.1 (73.5)
Acrobot-v1 -75.6 (-80.5) -77.3 (-80.2) -76.0 (-81.4)

Table 3: Best mean sample score found and 99.9th percentile score (in parentheses) for each architecture and environment
combination.

Environment 0 HL 1 HL, 4 HU 2 HL, 4 HU

CartPole-v0 200.0 (200.0) 200.0 (200.0) 200.0 (200.0)
Pendulum-v0 -828.2 (-1052.5) -797.0 (-980.1) -813.8 (-969.3)
MountainCar-v0 -158.1 (-200.0) -136.3 (-200.0) -139.4 (-200.0)
MountainCarContinuous-v0 -0.0 (-0.0) 38.1 (-0.0) 74.2 (-0.0)
Acrobot-v1 -72.8 (-79.9) -73.8 (-81.4) -73.8 (-81.5)

Table 4: Best mean sample score found and 99.9th percentile score (in parentheses) for each architecture and environment
combination, for networks with bias connections. Comparison with table 3 shows that for the majority of environment and
architecture pairs, having a bias node hurts performance.

above. To this end we consider the five “classic control” environ-
ments from the OpenAI Gym collection (Table 1). Performance on
Gym environments is typically measured in one of two ways:

(1) by defining a threshold “solved score”, and reporting the
number of training/search episodes it takes until a given
algorithm can achieve this score as its mean score across 100
consecutive episodes, or

(2) by reporting the best score the controller achieves on average
across 100 consecutive episodes.

Both methods are imperfect: method 1) does not account for the (of-
ten significant) number of episodes evaluated during hyperparame-
ter search, and can also depend critically on random effects such as
experiencing an early reward in sparse environments; method 2)
provides an upper bound for the performance, but does not take
computation and learning time into account.

Our analysis proposes a more sensible, objective aggregation for
the run results. It is easy to read off an estimate of the probability 𝑝
of achieving a certain score ≥ 𝑠 (e.g., the solved score), and from that
number we can trivially derive the probability 1−(1−𝑝)𝑁 of solving
an environment at least once with a given number 𝑁 of sampled
networks. The waiting time for this event follows a geometric
distribution with parameter 𝑝 , hence the expected waiting time in
simply 1/𝑝 , which represents the expected run time of RWG until
hitting that score.

Results. We ran the analysis procedure described in the previ-
ous section on the tasks listed in Table 1. Selected representative
results are listed in Table 3 and Figure 4. Figure 2 demonstrates our
surprising findings on NN performance with and without bias.

Discussion. The following effects are observed:
• Figure 4 highlights the environments showing qualitatively
very different characteristics, while the network architecture

has a minor impact on the overall shape of the plots. This is
due to the vast majority of NN samples of any architecture
having relatively poor performance. A closer inspection of
the top performers however is available in Table 3, with
larger networks performing distinctively better for some
environments.

• Some environments (e.g. CartPole, MountainCar,
MountainCarContinuous) can be solved with rather simple
networks, or even with linear controllers. In some cases the
probability of randomly guessing a successful controller is
so high that the benchmark can be considered trivial, as it
could be solved by straight RWG in reasonable time. This is
clearly the case for the CartPole environment.

• The score histograms and mean score curves in Figure 4
differ significantly across environments. This highlights the
diversity of challenges posed for RL algorithms, in itself a
desirable property for a benchmark suite.

• With the exception of the MountainCar environment, all
mean curves are nicely sloped (above a reasonably easy to
find rank) and continuous, which means that gradual (e.g.,
gradient-based) iterative learning algorithms should be suit-
able in principle. For MountainCar thesemethods are instead
confronted with a large plateau of minimal scores, which
means that the task would be better addressed with methods
strong in exploration.

• The distribution of variance discussed in the last section,
with low variance in correspondence of both the lowest and
highest mean scores, is to be expected as a common pattern.
All samples should conceivably fall into one of the follow-
ing three categories: 1) never receives reward; 2) reward
depends on favorable initial condition, but is inconsistent;
and 3) reliably achieving good scores, independent of initial



conditions. Categories 1 and 3 naturally lead to low variance,
as the scores are either all low, or all high.
This implies that the score variance is to be expected highest
in the range where learning takes place. For the CartPole,
Acrobot, and Pendulum tasks the variability covers a huge
range of scores, which makes it difficult to even measure
progress online during learning. We can therefore expect
that despite the fact that learning trajectories with smoothly
increasing mean scores exist, some types of RL algorithms
(like direct policy search) may be expected to suffer sig-
nificantly from the high score variance. In contrast, the
MountainCarContinuous task is nearly unaffected by noise.
In the interesting range it still has a large variance due to the
fact that only few controllers solve the task in a few episodes,
while the vast majority is caught in a large local optimum.

• It is at first glance surprising that NN controllers without bias
terms outperform NNs with bias (Figure 2). We find that this
effect is systematic across all tested environments, barring
negligible statistical fluctuations. The analogous overview
of results presented in Table 3, but instead for NNs with bias
units, is shown in Table 4.

Our open source reference implementation (in Python) makes
it easy to extend the study to other classes of environments, espe-
cially if already compatible with the widely adopted OpenAI Gym
control interface. Testing a large number of environments over
time would create a broad data base of characterized environments,
constituting a strong baseline for the study of existing and new
learning methods.

4 CONCLUSION
Evaluating task complexity in the context of reinforcement learning
problems is a multifaceted and understudied problem. Rather than
aiming at providing a single score of overall complexity, which
would inevitably remain incomplete, we present a framework to
analyze in depth the complexity of RL tasks. Our analysis uses
no learning and does not require any hyperparameter tuning. We
produce test controllers in a direct policy search fashion using
Random Weight Guessing, then draw a statistical analysis based
on the complexity of the controllers, their performance on the task,
and the distribution of collected reward.

We validate our approach on the set of Classic Control bench-
marks from the OpenAI Gym. Due to this limitation of the scope
of our study we consider it only a first step. We nevertheless re-
gard this step as an important contribution to a study subject that
deserves more attention in the future. Our results clearly identify
the distinctive characteristics of each environment, underlying the
challenges that induce their complexity, and pointing at promising
approaches to address them. Moreover we offer an upper bound
on required model complexity. We find RWG to be surprisingly
effective e.g. in the case of the CartPole problem, pointing at its
triviality.

Future Work. One apparent limitation of RWG regards scaling
to large network architectures, which (at first glance) seems to
preclude its application to tasks relying on visual input such as
Atari games [10]. In future work we will address this widely used
class of benchmarks by separating feature extraction from the actual

controller, following [3]. Yet another straightforward extension is
to include recurrent NN architectures to better cope with partially
observable environments.

A striking open question is how well our analysis predicts the
performance of different classes of algorithms, like temporal differ-
ence approaches, policy gradient methods, and direct policy search.
Answering this question would have the potential to extend our
analysis methodology into a veritable recommender system for RL
algorithms.

ACKNOWLEDGMENTS
This work was supported by the Swiss National Science Foundation
under grant number 407540_167320.

REFERENCES
[1] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

optimization. Journal of Machine Learning Research (JMLR) 13 (2012), 281–305.
[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. (2016).
arXiv:arXiv:1606.01540

[3] Giuseppe Cuccu, Julian Togelius, and Philippe Cudré-Mauroux. 2019. Playing
Atari with Six Neurons. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems. 998–1006.

[4] Christian Igel. 2003. Neuroevolution for reinforcement learning using evolution
strategies. In The 2003 Congress on Evolutionary Computation, 2003. CEC’03., Vol. 4.
IEEE, 2588–2595.

[5] Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. 2017. Re-
producibility of benchmarked deep reinforcement learning tasks for continuous
control. arXiv preprint arXiv:1708.04133 (2017).

[6] Thomas Jaksch, Ronald Ortner, and Peter Auer. 2010. Near-optimal regret bounds
for reinforcement learning. Journal of Machine Learning Research (JMLR) 11, Apr
(2010), 1563–1600.

[7] Donald R Jones, Matthias Schonlau, and William J Welch. 1998. Efficient global
optimization of expensive black-box functions. Journal of Global optimization 13,
4 (1998), 455–492.

[8] Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, and Marek Petrik.
2015. Finite-Sample Analysis of Proximal Gradient TD Algorithms.. In UAI.
504–513.

[9] Horia Mania, Aurelia Guy, and Benjamin Recht. 2018. Simple random search
of static linear policies is competitive for reinforcement learning. In Neural
Information Processing Systems, Vol. 31.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[11] Nils Müller and Tobias Glasmachers. 2018. Challenges in high-dimensional
reinforcement learning with evolution strategies. In International Conference on
Parallel Problem Solving from Nature. Springer, 411–423.

[12] Anna Rakitianskaia and Andries Engelbrecht. 2015. Measuring saturation in
neural networks. In 2015 IEEE Symposium Series on Computational Intelligence.
IEEE, 1423–1430.

[13] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017.
Evolution strategies as a scalable alternative to reinforcement learning. Technical
Report arXiv:1703.03864. arXiv.org.

[14] Jürgen Schmidhuber, S Hochreiter, and Y Bengio. 2001. Evaluating benchmark
problems by random guessing. A Field Guide to Dynamical Recurrent Networks,
ed. J. Kolen and S. Cremer (2001), 231–235.

[15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust region policy optimization. In International conference on machine
learning. 1889–1897.

[16] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. 2014. Deterministic policy gradient algorithms. In JMLR
conference proceedings, International Conference on Machine Learning, Vol. 32.

[17] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[18] Richard S Sutton, Andrew G Barto, et al. 1998. Introduction to reinforcement
learning. Vol. 2. MIT press Cambridge.

[19] Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat,
and Joseph Modayil. 2018. Deep reinforcement learning and the deadly triad.
arXiv preprint arXiv:1812.02648 (2018).

http://arxiv.org/abs/arXiv:1606.01540

	Abstract
	1 Introduction
	2 Analysis Methodology
	3 Example Study: OpenAI Classic Control
	4 Conclusion
	Acknowledgments
	References

