
Benchmarking OLTP/Web Databases in the Cloud:
The OLTP-Bench Framework

[Extended Abstract]
∗

Carlo Curino Djellel E. Difallah
Microsoft, USA U. of Fribourg, Switzerland

ccurino@microsoft.com djelleleddine.difallah@unifr.ch

Andrew Pavlo Philippe Cudre-Mauroux
Brown University, USA U. of Fribourg, Switzerland

pavlo@cs.brown.edu pcm@unifr.ch

ABSTRACT
Benchmarking is a key activity in building and tuning data manage-
ment systems, but the lack of reference workloads and a common
platform makes it a time consuming and painful task. The need
for such a tool is heightened with the advent of cloud computing—
with its pay-per-use cost models, shared multi-tenant infrastruc-
tures, and lack of control on system configuration. Benchmarking
is the only avenue for users to validate the quality of service they
receive and to optimize their deployments for performance and re-
source utilization.

In this talk, we present our experience in building several ad-
hoc benchmarking infrastructures for various research projects tar-
geting several OLTP DBMSs, ranging from traditional relational
databases, main-memory distributed systems, and cloud-based scal-
able architectures. We also discuss our struggle to build mean-
ingful micro-benchmarks and gather workloads representative of
real-world applications to stress-test our systems. This experience
motivates the OLTP-Bench project, a “batteries-included” bench-
marking infrastructure designed for and tested on several relational
DBMSs and cloud-based database-as-a-service (DBaaS) offerings.
OLTP-Bench is capable of controlling transaction rate, mixture,
and workload skew dynamically during the execution of an ex-
periment, thus allowing the user to simulate a multitude of prac-
tical scenarios that are typically hard to test (e.g., time-evolving
access skew). Moreover, the infrastructure provides an easy way
to monitor performance and resource consumption of the database
under test. We also introduce the ten included workloads, derived
from either synthetic micro benchmarks, popular benchmarks, and
real world applications, and how they can be used to investigate
various performance and resource-consumption characteristics of
a data management system. We showcase the effectiveness of our
benchmarking infrastructure and the usefulness of the workloads
we selected by reporting sample results from hundreds of side-by-
side comparisons on popular DBMSs and DBaaS offerings.

∗Full version will appear at: http://oltpbenchmark.com.
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1. INTRODUCTION
Much of database and system research and development is cen-

tered around innovation in system architectures, algorithms, and
paradigms, that deliver significant performance advantages or in-
crease the hardware utilization efficiency for important classes of
workloads. Therefore, in order to establish whether a piece of re-
search or a development effort achieved its goals, it is often neces-
sary to compare the performance or efficiency of alternative solu-
tions targeting some representative workload. In this sense, bench-
marking is central to most research and development efforts.

When considering data management systems, this implies: (1)
the availability of representative workloads (data and data accesses),
(2) an infrastructure to run such workloads against existing systems
in a consistent and repeatable way (e.g., without introducing artifi-
cial bottlenecks), and (3) a way to collect detailed performance and
resource-consumption statistics during the runs and compare them.
At least in our experience in both academic and industrial settings,
the three above components are often hard to come by. The net re-
sult is that significant effort is repeatedly devoted by independent
researchers/practitioners in gathering or worse inventing workloads
and in building one-off solutions for running such workloads and
measuring performance. This is problematic for highly concurrent
transactional or web workloads, since they are characterized by a
multitude of small operations that must be executed in parallel by
multiple clients and thus require a more sophisticated infrastructure
and tighter performance monitoring.

Cloud platforms, with their pay-per-use billing models, shared
multi-tenant infrastructure, and lack of control over infrastructure
and tuning (e.g., Amazon RDS or SQL Azure), exacerbate the need
for proper benchmarking solutions that are capable of accounting
for performance and resources and executing representative work-
loads.

Each of the authors of this extended abstract has independently
developed partial solutions for the issues listed above within pre-
vious research projects [1, 2]. This repeated and tedious work is
what motivated us to join forces and try to provide a systematic,
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Figure 1: The architecture of the OLTP-Bench framework; On the left-
hand side, the client-side driver handles workers and generates throttled
workloads according to configuration provided by the user. On the right-
hand side, the DBMS server monitor gathers resource utilization statistics.

reusable and extensible solution to this problem. In order to scope
our effort, we decided to focus on transactional and web work-
loads targeting relational databases, although much of our design
can be generalized beyond this scope. This was the seed of the
OLTP-Bench effort, an open-source framework for benchmarking
relational databases.

2. REQUIREMENTS AND ARCHITECTURE
From our experience and from extensive discussions with other

researchers and practitioners we gather that, in order to simulate
real-world scenarios and stress tests data management systems, a
benchmarking infrastructure needs to provide:
(R1) Scalability: the ability to drive the system under test at high

transactional rates (i.e., test for max throughput);
(R2) Fine-Grained Rate Control: the ability to control the rate

of requests with great precision;
(R3) Mixed and Evolving Workloads: the ability to support mixed

workloads, and to change the rate, composition, and access
distribution of the workloads dynamically over time;

(R4) Synthetic and Real Data & Workloads: support for both
synthetic and real data sets and workloads (and thus both
programmatically-generated and trace-based executions);

(R5) Ease of Deployment/Portability: the ability to deploy ex-
perimental settings and run experiments easily on a variety
of DBMSs and DBaaSs using an integrated framework;

(R6) Extensibility: the ability to extend the set of workloads and
systems supported with a minimal engineering effort (e.g.,
centralizing SQL dialect localizations);

(R7) Lightweight, Fine-Grained Statistics Gathering: the abil-
ity to collect detailed statistics of both client-side activity and
server-side resource utilization with minimum impact on the
overall performance;

Next we present the OLTP-Bench architecture (shown in Fig-
ure 1), and discuss how it fulfills the above requirements. OLTP-
Bench is comprised of a Java-based client framework and a Python-
based monitoring infrastructure (derived from DSTAT) on the server.

The user controls the behavior of the system by means of a con-
figuration file, which instructs the system on how to connect to the
DBMS under test, what experiment to run, the level of parallelism
desired, and how to vary rate, and mixture over time. A second file
is used optionally to replay an exact execution trace, and is lever-
age to support dynamic skew variations. Trace-based execution is
useful for more faithful replay of real-world workloads, while pro-
grammatic generation of the load is ideal for synthetic workloads
since it allows for more compact deployments (R4).

The client is organized with a centralized Workload Manager
tightly controlling the characteristics of the load via a work queue.
To achieve parallelism and high concurrency a user-specified num-
ber of worker threads consumes from the work queue and directly

communicate with the system under test—in our current implemen-
tation via a JDBC interface.

The work queue offers a trade-off between requirements R1,
R2, and R3; the centralized manager not only enables us to con-
trol the exact throughput rates and mixtures of the benchmark, but
it also allows the workers to be light-weight enough to achieve
good scalability—for YCSB we could push 12.5k transactions per
second per CPU core over the network while tightly controlling
speed and mixture of transactions. The currently released version
is single-machine on the client side (while it supports a distributed
DBMSs), but a multi-machine client version of OLTP-Bench is in
the work.

Supporting multiple DMBSs is typically problematic, due to the
many SQL dialects in existence. To cope with this we structured
our codebase carefully so that SQL dialect “localization” is rather
easy to achieve and thus adding support for new DBMSs or include
a new workload running on all DBMSs we support is straightfor-
ward (R5, R6).

Workers collects detailed performance statistics, which are then
aggregated and analyzed by the system which provides several com-
mon metrics such as throughput, and latency (at any percentile)
with customizable windowing. The results are easy to correlate
with the carefully time-aligned resource utilization statistics col-
lected on the server side. OLTP-Bench supports single-node, DBaaS,
and distributed DBMSs. Our discussion in this extended abstract
focuses on the first two types, but we note that an earlier version of
OLTP-Bench was used in our research on distributed systems [1,
2].

3. WORKLOADS
In this section, we briefly report about the set of workloads we

implemented and that are released with the infrastructure.
Table 1 summarizes some of the statistics about the ten currently

available workloads. While discussing each of the benchmarks is
beyond the scope of this extended abstract, we would like to cite
two examples to showcase the breadth of workloads included in
our system:

Resource Stresser: This benchmark has been designed to pro-
vide a simple micro-benchmark for stress-testing specific hardware
resources. As such the benchmark consists of transactions/queries
that target individual resources (cpu, disk, locks, ram) and can be
used to challenge a system in a specific area (e.g., how efficiently
it handles high lock contention or disk-intensive workloads etc.).
This benchmark is fully synthetic, and thus trivial to scale up and
down and compact to ship.

Wikipedia: At the opposite side of the spectrum there is a bench-
mark derived from a long (and tedious) analysis of the actual Wiki-
pedia website. We leveraged knowledge of the source code, the
availability of the raw data, various interactions with the database
administrators, and special access to extensive execution traces (10%
of 3 months of the actual wikipedia website workload) to design a
model of the actual wikipedia installation. Although we cannot
claim this is an accurate model, much attention has been devoted
to capture the key characteristics of the workload, and is thus a rea-
sonable representation of the corresponding real-world application.

These two workloads exemplify different uses of our benchmark-
ing infrastructure (e.g., performance debugging of a system, and
testing against a real-world workload). The many other workloads
we included complete this picture—more details on all of our work-
loads are available at http://oltpbenchmark.com.

One fundamental design principle of the OLTP-Bench project is
that it does not impose any fixed set of configuration rules or pre-
defined metrics of success for the benchmarks. We believe that
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Workloads Tables Columns PKeys Indexes FKeys # Txns Read-Only Txns # Joins Application Domain Operations
AuctionMark 16 125 16 14 41 9 55.0% 10 On-line Auctions Non-deterministic, heavy transactions
Epinions 5 21 2 10 0 9 50.0% 3 Social Networking Joins over many-to-many relationships
JPAB 72 682 62 52 32 43 25.0% N/A3 Object-Relational Mapping Bursts of random reads, pointer chasing
ResourceStresser 4 23 4 0 0 6 33.3% 2 Isolated Resource Stresser CPU-, disk-, lock-heavy transactions
SEATS 10 189 9 5 12 6 45.0% 6 On-line Airline Ticketing Secondary indices queries, foreign-key joins
TATP 4 51 4 5 3 7 40.0% 1 Caller Location App Short, read-mostly non-conflicting trans.
TPC-C 9 92 8 3 24 5 8.0% 2 Order Processing Write-heavy concurrent transactions
Twitter 5 18 5 4 0 5 0.9% 0 Social Networking Client-side joins on graph data
Wikipedia 12 122 12 40 0 5 92.2% 2 On-line Encyclopedia Complex trans, large data, skew
YCSB 1 11 1 0 0 6 50.0% 0 Scalable Key-value store Key-value queries

Table 1: Profile information for the benchmark workloads.

Instance Type CPU (v-core) RAM I/O Perf.
Small (S) 1 EC2 (1) 1.7G Moderate
Large (L) 4 EC2 (4) 7.5 G High
HighMem XLarge (XL-HM) 6.5 EC2 (2) 17.1 G Moderate
HighMem 2XLarge (2XL-HM) 13 EC2 (4) 34.2 G High
HighMem 4XLarge (4XL-HM) 26 EC2 (8) 68.4 G High

Table 2: EC2 RDS Experimental Systems

standardizations of how to run a benchmark are often biased by
the proposers opinions and their context (e.g., the hardware avail-
able at the time). As evidence consider the many alterations of
popular benchmarks that appear in various papers (it is rare to see
a paper using a benchmark as it was originally intended). There-
fore we concentrate our attention on providing a broad spectrum of
raw functionalities and workloads and argue that, if this effort is
successful, different user groups will spontaneously standardize its
use in ways we are unlikely to foresee today.

4. SAMPLE EXPERIMENTS
We now present a few experiments sampled by the hundreds we

ran. The experiments we report are designed to highlight the func-
tionalities of our benchmarking infrastructure and not to compare
or judge alternative DBMSs and DBaaS offerings.

The experiments we present have all been executed on Amazon’s
EC2 platform. Each of the DBMSs were deployed within the same
geographical region, with a single instance dedicated to workers
and collecting statistics and another instance running the DBMS
server. For each DBMS server, we used a four virtual core instance
with an 8GB buffer pool (this was sufficient to accommodate the
working-set size of our workloads). The worker’s transaction iso-
lation levels were set to serializable. We flushed each system’s
buffers before each experiment trial. All of the changes made by
each transaction were logged and flushed to disk by the DBMS at
commit time. As reported in [3], EC2 is a “noisy” cloud environ-
ment where machine variability and cluster conditions can signifi-
cantly affect benchmark results. To mitigate such problems, we ran
all of our experiments with restarting our EC2 instances as little as
possible, and executed the benchmarks multiple times and averaged
the results.

4.1 Performance-vs.-Cost Comparison
First, we use OLTP-Bench ability to run at high throughput and

to carefully monitor performance to measure the (max-throughput)
performance-vs.-cost ratio of a single DBaaS provider using dif-
ferent workloads. Such a comparison allows a user to decide what
the right trade-off is between performance and cost for their ap-
plication. We pick YCSB and Wikipedia as candidate benchmarks
for this test and leverage OLTP-Bench to test against five differ-
ent instance sizes on Amazon’s RDS (Table 2). We then ran each
benchmark separately at its maximum speed for a total of 30 min-
utes. We show average maximum sustained throughput and 95th
percentile latency from the middle 20 minutes of the experiment.

The graph in Fig. 2 shows throughput and latency measurements
collected by OLTP-Bench compared to the different instance sizes.
For YCSB, the L instance yields the best cost/performance ratio,
with good overall throughput and low latency. Anything beyond
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Figure 2: DBaaS Performance-vs-Cost – Comparing RDS using the
Wikipedia and YCSB workloads within same data center.

that price point does not yield in our tests significant throughput
improvements. We suspect that this is because at high through-
put rates the disk subsystem becomes the main bottleneck (and
larger number of cores and more RAM are essentially not utilized),
though we can only speculate on that point since this is an OS statis-
tic that OLTP-Bench is unable to retrieve from a DBaaS (we will
show next that for DBMSs we deploy this statistic is available).

Fig. 2 shows different results for executing the Wikipedia bench-
mark on Amazon RDS. Irrespective of the differences in absolute
values with YCSB, which are dependent on the actual workload,
the results indicate that the Wikipedia benchmark obtains better
throughput and latency for the larger, more expensive instances. We
suspect that since Wikipedia’s workload is read-intensive, the CPU
is the main bottleneck because the benchmark’s working set fits in
memory. As for the price/performance ratio, the results suggest that
the XL-HM instance is the best choice for this workload. Although
the 2XL-HM and 4XL-HM instances provide better performance,
the additional cost incurred by the more expensive machines is un-
likely to outweigh their performance advantage for most customers.

4.2 Evolving Workload Mixtures
We now test OLTP-Bench’s ability to smoothly evolve the trans-

action mixture during an experiment. We choose YCSB as our tar-
get workload since it is composed of a series of simple transactions
that each performs a specific type of operation (as opposed to the
more complex transactions in other benchmarks that execute a di-
verse set of queries). The default scale factor for YCSB for this
and the previous experiment is 1.2M tuples. Using MySQL, we
first run the system at its maximal throughput using a single trans-
action type from YCSB (ReadRecord). Then, over a 10 minute
period, we gradually transition to a workload mixture consisting of
100% of the next transaction type (InsertRecord), by changing
the ratio by 10% every minute. We repeat this process for the four
remaining transaction types in YCSB.

The graphs in Fig. 3 show the throughput and 95th percentile la-
tency, and several resource metrics to indicate how different trans-
actions types stress different resources. Each figure is annotated
at the time when the next transition is started in the workload mix-
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Figure 3: Evolving Mixture – MySQL running YCSB demonstrating evolving mixture of transactions.

ture. These results are revealing of the underlying type of operation
performed by the transactions. For example, Fig. 3b shows that
the ReadRecord transactions are CPU-intensive due to parsing
and in-memory index look-ups, while the ScanRecord transac-
tions show heavy network I/O in Fig. 3e and longer latencies in
Fig. 3c due to MySQL becoming network-bound. Fig. 3d shows
that the transactions that write data, such as InsertRecord and
UpdateRecord, cause the DBMS to become disk-bound. Deletes
are also disk-intensive, but since less data is written for each oper-
ation (only undo logs), throughput and CPU load are higher.

The throughput of the ReadModifyWrite transaction in Fig. 3a
is particularly interesting. This transaction performs the same up-
date operation as the UpdateRecord transaction (but with a se-
lect query before the update), yet it achieves a significantly higher
throughput. This is because the DeleteRecord phase removes
a large number of tuples right before the ReadModifyWrite
phase, and as a result a large percentage of the ReadModify-
Write transactions are trying to modify non-existing tuples. A
simple reordering of the phases in the experiment would correct
this issue, but we left it as is to illustrate how the detailed OS re-
source and performance metrics helped us track down this problem.

4.3 Comparing DBaaS Providers
In this final experiment, we compare all of the major DBaaS of-

ferings using the SEATS benchmarks. Since network latency is an
important factor for OLTP workloads, we ran all of the workers on
virtual machines hosted in the same datacenter region but in a dif-
ferent data center from the DBMSs under test to ensure fairness be-
tween the DBaaS providers. We anonymize the providers name to
prevent direct comparisons. The results in Fig. 4 show that DBMS-
A has an erratic latency behavior but offers the best performance-
vs.-cost ratio. DBMS-B achieves a steadier throughput and lowest
latency for a higher price. Again, this is a simple yet convincing ex-
ample of how proper benchmarking can help better understand the
trade-offs between different aspects of cloud-based deployments.

Even the small sample of experiments we present is sufficient to
highlight how DBaaS and the cloud, are a new terrain that can be
understood by users only through careful benchmarking.

5. CONCLUSIONS
Benchmarking has alway been central for high-performance and

efficient data management system design, deployment and mainte-
nance. The advent of cloud-based data management solutions with
their highly shared resources, non-user controlled system tuning,
and novel pricing schemes further exacerbate the need for careful
benchmarking.
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(b) Latency
Figure 4: DB as a Service: Performance tradeoff across competing DBaaS
offerings for SEATS across data-centers (opaque names and different work-
load to preserve anonymity of commercial vendors.)

The OLTP-Bench effort we presented in this extended-abstract is
our answer to the lack of available workloads and of an appropriate
testing infrastructure that made so far benchmarking a costly and
error-prone activity. The larger campaign of testing from which
we presented some samples convinced us that the current combina-
tion of workloads and the many features of the infrastructure can
be of great help in many practical situations and help increase re-
peatability and ease of comparison across research results, and help
practitioners to cope with the wild environment we call the cloud.
What we provide today is an open-source extensible infrastructure
and the initial critical mass of workloads that we hope will foster a
community interest and development.
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