
ActiveLink: Deep Active Learning
for Link Prediction in Knowledge Graphs

Natalia Ostapuk
University of Fribourg
Fribourg, Switzerland

natalia.ostapuk@unifr.ch

Jie Yang∗
University of Fribourg
Fribourg, Switzerland
jie.yang@unifr.ch

Philippe Cudré-Mauroux
University of Fribourg
Fribourg, Switzerland

pcm@unifr.ch

ABSTRACT
Neural networks have recently been shown to be highly effective
at predicting links for constructing knowledge graphs. Existing
research has mainly focused on designing 1) deep neural network
models that are expressive in capturing fine-grained semantics,
e.g., NTN and ConvE, but that are however less scalable; or 2)
shallow models that are scalable, e.g., TransE and DistMult, yet
limited in capturing expressive semantic features. In this work,
we demonstrate that we can get the best of both worlds while
drastically reducing the amount of data needed to train a deep
network by leveraging active learning.

We present a novel deep active learning framework, ActiveLink,
which can be applied to actively train any neural link predictor.
Inspired by recent advances in Bayesian deep learning, ActiveLink
takes a Bayesian view on neural link predictors, thereby enabling
uncertainty sampling for deep active learning. ActiveLink extends
uncertainty sampling by exploiting the underlying structure of
the knowledge graph, i.e., links between entities, to improve sam-
pling effectiveness. To accelerate model training, ActiveLink fur-
ther adopts an incremental training method that allows deep neural
networks to be incrementally trained while optimizing their gen-
eralizability at each iteration. Extensive validation on real-world
datasets shows that ActiveLink is able to match state-of-the-art
approaches while requiring only 20% of the original training data.

CCS CONCEPTS
• Theory of computation → Active learning; • Computing
methodologies → Reasoning about belief and knowledge;
Semantic networks;

KEYWORDS
Deep active learning; neural link prediction; incremental training

ACM Reference Format:
Natalia Ostapuk, Jie Yang, and Philippe Cudré-Mauroux. 2019. ActiveLink:
Deep Active Learning for Link Prediction in Knowledge Graphs. In Pro-
ceedings of the 2019 World Wide Web Conference (WWW’19), May 13–17,
2019, San Francisco, CA, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3308558.3313620

∗Corresponding author

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313620

1 INTRODUCTION
Knowledge graph construction is a key application for transforming
Web content into machine-processable data [9]. A fundamental task
in knowledge graph construction is link prediction, where the goal
is to create or recover missing links in knowledge graphs, e.g.,
identifying the birthplace of a person or the CEO of a company.
This task is generally formulated as a statistical relational learning
problem, for which a variety of techniques such as latent factor
models [25], randomwalks [19] and neural networks [22] have been
explored. Among them, neural network-basedmethods, which learn
semantic representations of entities and relations, have significantly
advanced the state of the art in the past few years [5, 8, 30, 33, 38].

A focal point of research efforts on neural network-based meth-
ods has been designing models that are scalable enough to be ap-
plied to large knowledge graphs (e.g., millions of facts), while being
able to precisely capture the semantics of entities and relations. Shal-
low models, such as translational distance models (e.g., TransE [5]
and TransH [36]) and semantic matchingmodels (e.g., DistMult [38],
ComplEx [33]), were proposed to leverage simple algebraic opera-
tions – e.g., inner product and matrix-vector product – for modeling
interactions among entities and relations in learning their repre-
sentations [35]. While being scalable, these models are intrinsically
lacking expressive power and thus are limited in capturing fine-
grained semantics [8]. In contrast, deep models [9, 30] are better at
learning expressive features. However, these models are more com-
plex in terms of parameters. Consequently, model training requires
very large amounts of data, which are rarely available in real-world
scenarios [35].

Few studies have tackled this problem from the perspective of
data selection. Better selecting training data is not only useful for
reducing the size of the training data, thereby improving the effi-
ciency of model training, but also beneficial for reducing the cost in
acquiring additional data to improve link prediction performance.
In this work, we propose to adopt active learning [7, 13, 27], which
allows the model to choose the data from which it learns best.
In the active learning setting, models initially trained on a small
amount of data actively select the most informative data samples
(often based on model uncertainty), which are then used in combi-
nation with existing training data to retrain the model. With such a
selecting-retraining process iterating multiple times, the model can
reach state-of-the-art performance with significantly less training
data compared to conventional supervised learning settings.

The idea of combining deep learning models and active learning,
i.e. deep active learning, has recently drawn attention for image [13,
16, 34] and text classification [29, 40]. Few approaches have however
considered deep active learning for link prediction in knowledge
graphs. Unlike image and textual data, the underlying data for link

https://doi.org/10.1145/3308558.3313620
https://doi.org/10.1145/3308558.3313620
https://doi.org/10.1145/3308558.3313620

prediction is relational: entities are connected by relations. This
inherently provides an additional source of signals for data sampling
in deep active learning: entities that are close to each other in the
knowledge graph are more likely to share some similarity, thus to
be more redundant for data sampling in the active learning process.
By taking advantage of the underlying data structure, it is therefore
possible to improve the effectiveness of data sampling.

While active learning is sample-efficient, it can still be computa-
tionally expensive since it requires to retrain models from scratch
at every iteration of the active learning process. This problem be-
comes significant for deep active learning as it typically takes much
more time to train a deep learning model than traditional machine
learning models. Reducing the computational complexity is thus
particularly important in our context, where the size of the training
samples can easily blow up to tens of thousands of samples (an order
of magnitude larger than what is used for image classification [13]).
A straightforward workaround would be to incrementally train the
model using the newly selected data or combining it with existing
training data [29]. However, these methods will potentially bias
the model towards the small amount of newly selected data, or
towards the data selected in early iterations of the process. How
to incrementally train deep link prediction models with optimal
generalizability hence remains a key open research question.

In this paper, we introduce ActiveLink, a novel deep active learn-
ing framework for knowledge graphs that takes advantage of the
underlying graph structure to improve the sampling effectiveness
and to allow deep models to be incrementally trained in an un-
biased manner. Our framework inherits from recent advances in
Bayesian deep neural networks [12, 37] and takes a Bayesian view
on existing neural link predictors. By doing so, it allows any neural
link predictor to take into account uncertainty, thus enabling un-
certain sampling in a deep active learning setting. In order to fully
exploit the graph structure, ActiveLink incorporates uncertainty
sampling into a clustering algorithm, which allows to identify re-
dundant pieces of data in the knowledge graph for more effective
data sampling. To accelerate model training, ActiveLink further
adopts a principled method for unbiased incremental training based
on meta-learning [2, 10]. Specifically, at each active learning iter-
ation, we update the model parameters using the newly selected
data samples with the meta-goal of generalizing the model for fu-
ture predictions, which is approximated by generalizing the model
based on the samples selected in preceding iterations. To do so, we
strike a balance between the importance of newly and previously
selected data in order to reach an unbiased estimate of the model
parameters.

In summary, we make the following key contributions:

• We present a unified Bayesian view on neural link prediction,
which allows any neural link predictor to be used in an
uncertainty-based deep active learning setting;
• We propose a new data sampling algorithm that takes ad-
vantage of both model uncertainty and the underlying graph
data structure to improve data sampling effectiveness;
• We introduce a new meta-learning method to incrementally
train deep neural networks for link prediction through deep
active learning with optimized generalizability;

• We demonstrate the effectiveness of our approach through
an extensive evaluation on real-world datasets. Overall, Ac-
tiveLink is able to match the state-of-the-art approach while
requiring significantly less (20% only) training data.

To the best of our knowledge, this is the first work considering
deep active learning for link prediction in knowledge graphs. Our
work is an initial yet important step towards improving link pre-
diction performance through the efficient creation of training data.
By strategically picking which data samples are used to train neu-
ral link predictors, ActiveLink provides an approach to effectively
refine large training data and offers a route to efficiently create
high-quality data (e.g., through crowdsourcing [39]). The later is
highly important for scenarios where data creation is expensive,
e.g., knowledge graph construction for specific domains.

2 RELATEDWORK
In this section, we first discuss related work on neural network-
based methods for link prediction, then review recent advances in
deep active learning.

2.1 Neural Link Prediction
Existing neural link prediction methods fall into two broad cate-
gories, i.e., deep and shallow models, depending on whether or not
the network contains at least one hidden layer. In the following, we
review representative techniques for each category and discuss the
limitations these techniques suffer from.
Shallow Models. Translational distance models are typical shal-
low models. A representative model is TransE [5], which learns
low-dimensional representations (i.e., embeddings) for both enti-
ties and relations in a knowledge graph by minimizing the dis-
tance between linked entities. Extensions such as TransH [36] and
TransR [21] project embeddings onto relation hyperplanes/spaces
to learn relation-specific representations of entities. Another line
of work learns representations for entities and relations by consid-
ering the match of their semantic representations as the learning
target. A representative model of that line is RESCAL [24], which
learns embeddings of entities while representing relations as a ma-
trix to model the pairwise interactions between latent factors of
two entities. DistMult [38] extends such a method by restricting
relation matrices to diagonal ones; while being efficient, it can
only be applied for symmetric relations. ComplEx [33] overcomes
this issue by adopting complex-valued embeddings to model asym-
metric relations. HolE [23] uses cross-correlation to decrease the
number of parameters in relation representation and allows for
modeling asymmetric relations. All these methods model the inter-
actions between entities and relations through simple operations,
e.g., matrix-vector products between relation matrices and entity
embeddings.
DeepModels. Instead of using simple algebraic operations, a differ-
ent line of work considers the use of neural networks with hidden
layers to model the complex interaction patterns between entities
and relations. An early piece of work [30] proposes Neural Tensor
Network (NTN), which matches the embeddings of paired entities
and relations by considering both linear and non-linear mappings,
including those represented by relation-specific matrices and ten-
sors and a hidden layer with non-linear transformation. Similar

models include semantic matching energy (SME) [4] and multilayer
perceptrons (MLP) [9], which simplify NTN by discarding tensor
parameters to improve model scalability. ConvE [8] is a recent work
demonstrating that employing a 2-dimensional convolution and
hidden-layers makes it possible to improve the model expressive-
ness while keeping a relatively smaller number of parameters.

Shallowmodels intrinsically lack expressive power, making them
incapable of capturing fine-grained semantics of entities and re-
lations [8]. Deep models have more expressive power but often
involve much more parameters; consequently, model training is
not scalable for large knowledge graphs in real-world scenarios.
For instance, NTN has a time complexity two order of magnitude
greater than TransE [35]. Our work takes an orthogonal perspective
to improve the training efficiency of deep models by reducing the
amount of training data while maintaining excellent performance
through deep active learning.

2.2 Deep Active Learning
While extensive research has been carried out on both deep learning
and active learning, researchers only recently started to investigate
active learning approaches for deep neural networks. In the follow-
ing, we briefly review related work that converges to the current
notion of deep active learning.

Active Learning. In the traditional active learning setting, the
model selects unlabeled data samples which supposedly can pro-
vide the strongest supervision; these samples are labeled and then
used to retrain the model. The potential benefit of a data sample
is generally measured by the model’s uncertainty in making pre-
dictions for that sample, i.e., the so-called uncertainty sampling
[7, 20]. It can be instantiated through different acquisition func-
tions, such as maximum entropy [28], BALD [15], and variation
ratios [11]. Besides uncertainty sampling, additional criteria can
also be taken into account, e.g., how well a data sample will reduce
the estimate of the expected error [26], which attempts to select
data samples that directly optimize prediction performance. Such
a criterion, however, is less practical as it is generally difficult to
have an analytical expression for the expected prediction error.

Deep Active Learning. A key obstacle in applying active learning
to deep neural networks is the fact that neural networks only make
deterministic predictions, making it challenging to represent model
uncertainty. A popular workaround has been to employ an active
learning model (e.g., a Gaussian process) which is kept separate
from the neural network classifier [17]. A more consistent solu-
tion is to leverage recent developments in Bayesian deep learning,
which can generally be categorized into two classes. The first one
is based on stochastic gradient descent (SGD). Welling et al. [1, 37]
show that by adding the right amount of noise to standard SGD,
the parameter converges to samples from the true posterior distri-
bution. The second class of methods is based on dropout, which is
a technique originally proposed to prevent over-fitting in training
deep learning models [14, 31]. Gal et al. [12] showed that when
considering dropout during prediction in a similar way as for model
training, the predictions are equivalent to sampling from the approx-
imate true posterior distribution of the parameters, thus turning a
deterministic predictive function into a stochastic (uncertain) one.

Recent Applications.Deep active learning was first applied to im-
age classification [13, 16]. These works showed that the Bayesian
approach significantly outperforms deterministic predictions in
deep active learning across multiple uncertainty-based acquisition
functions. Recently, a few studies have investigated deep active
learning approaches to textual data, including sentence classifica-
tion [40] and named entity recognition [29]. These applications
demonstrate that deep active learning can considerably reduce the
amount of data used to train the model.

To the best of our knowledge, we are the first ones to leverage
deep active learning for link prediction. Unlike image and textual
data, data samples in link prediction are connected by a set of
links, which provides an additional source of signals that we take
advantage of thanks to a new data sampling algorithm. Moreover,
we introduce a new principled method for incremental training,
which is particularly useful to improve the computational efficiency
of deep active learning on link prediction.

3 THE ACTIVELINK FRAMEWORK
This section introduces our proposed framework for deep active
learning, which we refer to as ActiveLink. We first introduce a
unified Bayesian view on neural link prediction, which allows any
neural link predictor to represent prediction uncertainty, thereby
enabling uncertainty sampling in ActiveLink. Next, we introduce
two key features of ActiveLink: 1) structured uncertainty sampling,
a data sampling method that leverages both model uncertainty
and the underlying structure of the knowledge graph to better
approximate sample informativeness ; 2) meta-incremental training,
a meta-learning approach that allows the link prediction model to
be incrementally trained in new iterations of the active learning
process by optimizing the generalizability of the model for future
predictions.

Problem Statement. Throughout this paper we use boldface low-
ercase letters to denote vectors and boldface uppercase letters to
denote matrices. We use capital letters (e.g., P) in calligraphic math
font to denote sets. Following this, we denote a knowledge graph
by G = {(s, r ,o)} ⊂ E × R × E, where E is the entity set, R is the
relation set, and where a triple (s, r ,o) represents a relationship
r ∈ R between a subject s ∈ E and an object o ∈ E.

Given a budget B, our goal is to select B triples from G to train a
deep neural link predictor with optimal performance. We consider
an active learning approach to this problem, which decomposes
the problem into multiple iterations. At every iteration, we select k
(k < B) triples from G, and update the parameters of the link pre-
dictor using these triples in combination with previously selected
triples. We consider data sampling performed in a greedy fashion,
that is, at each iteration we select only k triples with the highest
informativeness as determined by ActiveLink. The key problem
for ActiveLink is therefore two-fold. 1) Effectiveness: selecting the
most informative triples at each iteration, which is important for
training a link predictor with high accuracy. 2) Efficiency: train-
ing the link predictor in an incremental fashion. Effectiveness and
efficiency are addressed by structured uncertainty sampling and
meta-incremental training, respectively, as we introduce next.

3.1 Uncertainty Sampling
We start by introducing a unified Bayesian view on neural link pre-
dictors. Based on this abstraction, we then introduce an uncertainty
sampling method for deep active learning of neural link predictors.
Neural Link Predictors as Scoring Functions. Neural link pre-
dictors are often viewed as scoring functions fr (s,o), which in our
context take as input a potential triple (s, r ,o), and output a score
representing the plausibility of the triple being true. Taking this
view, the classic MLP model [9] is defined as follows:

fr (s,o) = w
⊺
д([s; r; o]W) (1)

where s and o are entity embeddings, and r is a relation embedding;
these embeddings are concatenated (denoted by [;]) to be used as
the input for a fully connected layer parameterized by the linear
transformation matrixW and a non-linear function д (e.g., tanh);
w is a linear transformation vector that takes as input the output
of the fully connected layer to obtain the final score.

The state-of-the-art model Convolutional 2D Knowledge Graph
Embeddings (ConvE) [8] is similarly defined as follows:

fr (s,o) = д(vec(д([s̄; r̄] ∗w))W)o (2)

where s̄ and r̄ are 2D reshaping of the entity and relation em-
beddings, which are concatenated and used as an input for a 2D
convolutional layer with filtersw ; vec is a vectorization operation
that transforms the feature map given by the convolutional layer
to a vector;W is the weight matrix and д is a non-linear function
(rectified linear units (ReLU) [18] are used in the original work).
Neural Link Predictors as Bayesian Models. To allow for un-
certainty sampling in deep active learning, we adopt the Bayesian
approach to deep neural networks recently developed by Gal and
Ghahramani [12]. To this end, we first reformulate neural link pre-
dictors as parameterized likelihood functions, such that the output
represents the probability of a triple being true. We then pose a
prior distribution on the parameters, to transform a deterministic
neural link predictor into a Bayesian model.

Denoting all parameters, including entity and relation embed-
dings and all weight parameters (i.e., linear transformation matri-
ces and vectors), as Θ, we can rewrite any neural link predictor as
f Θr (s,o), which can then be reformulated as a likelihood function
by introducing an additional softmax layer:

p(y |(s, r ,o),Θ) = softmax (f Θr (s,o)) (3)

where y is the output of the link predictor representing whether a
triple is true or not. To make neural link predictors Bayesian, we
define a prior over the parameters Θ:

Θ ∼ p(Θ|K) (4)

e.g., a standard Gaussian prior parameterized by K (the co-variance
matrix).With this definition, model trainingwill result in a posterior
distribution over the parameters, i.e. p(Θ|Dtrain) (where Dtrain
is the training data), instead of point estimates (i.e., fixed values for
the parameters). The prediction for an arbitrary input (s, r ,o) can
be described as a likelihood function:

p(y |(s, r ,o),Dtrain) =
∫

p(y |(s, r ,o),Θ)p(Θ|Dtrain)dΘ (5)

which provides a more robust prediction than non-Bayesian meth-
ods as it takes into account the uncertainty of the parameters.

The problem of inferring the exact posterior distribution for
the parameters, p(Θ|Dtrain), is intractable. Gal and Ghahramani
[12] recently proposed in that context Monte Carlo (MC) dropout,
which is a simple yet effective method for performing approximate
variational inference. MC dropout is based on dropout [14, 31],
which is typically used during model training to randomly drop
hidden units of the network at each parameter update iteration;
this reduces complex co-adaptations of neurons that can easily lead
to overfitting. Gal and Ghahramani [12] prove that by performing
dropout during the forward pass when making predictions, the
output is equivalent to the prediction when the parameters are
sampled from a variational distribution of the true posterior.

Formally, MC dropout is equivalent to sampling from a varia-
tional distribution q(Θ) that minimizes the Kullback-Leibler (KL)
divergence to the true posterior p(Θ|Dtrain). Given this, we can
perform a Monte Carlo integration to approximate Equation 5:

p(y |(s, r ,o),Dtrain) ≈
∫

p(y |(s, r ,o),Θ)q(Θ)dΘ

≈ 1
T

T∑
t=1

p(y |(s, r ,o), Θ̂)
(6)

where Θ̂ is the parameters sampledT times fromq(Θ), i.e., Θ̂ ∼ q(Θ).
To summarize, MC dropout provides a practical way to approxi-
mately sample from the true posterior without explicitly calculating
the intractable true posterior.
Deep Uncertainty Sampling. Active learning aims at selecting
the most informative data samples (triples, in our case) to train the
model. This is often formulated as an acquisition function, defined
as follows:

(s, r ,o)∗ = arg max
(s,r,o)∈G

ϕ((s, r ,o)) (7)

The key to developing a good sampling strategy is designing an
effective informativeness measure. With the Bayesian formulation
of neural link predictors, the informativeness of a triple can be
quantified by model uncertainty. A typical uncertainty measure is
Shannon entropy:

ϕ((s, r, o)) = H [y |(s, r, o), Dtrain]

= −
∑

C∈{0,1}
p(y = C |(s, r, o), Dtrain) logp(y = C |(s, r, o), Dtrain)

= −
∑

C∈{0,1}
(1
T

∑
t
p̂tC) log(1

T

∑
t
p̂tC) (8)

where 1
T
∑
t p̂

t
C is the averaged predicted probability of classC for

(s, r ,o) (C ∈ {0, 1} i.e., the triple being true or not), sampledT times
by Monte Carlo dropout. Note that Θ is marginalized in the above
equation as in Equation 6.

3.2 Structured Uncertainty Sampling
Besides model uncertainty, knowledge graphs provide an additional
source of signals to represent data informativeness given their data
structure: entities are linked by relations. Considering an existing
pool of data sampled in preceding iterations, we make the following
assumptions:

(1) Entities linked with those in the training pool are less infor-
mative than entities not linked;

(2) More generally, entities that are intensively linked with each
other are less informative with respect to each other than
those sparsely linked.

Relations therefore provide a source for measuring the informa-
tiveness of data samples from the perspective of the redundancy
between data samples. This comes in contrast to representing infor-
mativeness from the perspective of the models. We are, therefore,
interested in designing a data sampling method that exploits rela-
tions in knowledge graphs and that potentially combines it with
model uncertainty.

To this end, we leverage clustering algorithms to identify groups
of entities based on relations among entities. Our basic assumption
is that entities belonging to the same cluster are more redundant
with each other. Therefore, we construct our initial training set
by picking from each of the c clusters a single data sample (i.e.,
a triple). After the model is trained on the initial set, at each of
the following active learning iterations we select clusters based on
their potential redundancy with respect to existing training data.
Following the idea that data samples belonging to the same cluster
are less informative, we select a sample from each of the selected
clusters to form a new dataset for model training.

The above process is described by the high-level pseudo code in
Algorithm 1. The key steps are the selection of clusters (row 10-12)
and the selection of data samples from the clusters (row 13-15). For
cluster selection, the redundancy score (row 11) is calculated as the
averaged similarity between all data samples — specifically, cosine
similarity between entity embeddings — in the cluster and those
in the existing training pool. The selection of data samples within
the cluster is based on model uncertainty (row 14). By doing so, we
incorporate uncertainty sampling into the sampling algorithm.

We consider K-means for clustering entities, which are repre-
sented by low-dimensional embedding learned through TransE [5].
K-means allows picking the number of resulting clusters c . If c is
less than the sample size k required for the active learning iteration,
the sampling algorithm will be collapsed such that cluster selection
is not considered and data samples will be selected from all clusters.
In this case, we take the nj most uncertain triples from cluster Cj ,
where nj is proportional to the size of Cj .

We note that our algorithm is not restricted to any specific clus-
tering algorithm. More advanced clustering methods can be applied,
e.g., those based on relations among entities as well as entity at-
tributes [3, 6]. Since our goal is to show that clustering can be an
effective means to leverage the underlying structure of knowledge
graphs for data sampling, we experiment on K-means as it is one
the most widely used clustering methods. Comparison of different
clustering methods is left for future work.

3.3 Meta-Incremental Training
In the traditional active learning setting, newly selected data sam-
ples are combined with existing training data to retrain the model
from scratch. This is highly time-consuming when training deep
models (our experiments show that model retraining from scratch
takes 3 times longer than updating the model parameters from the
previous iteration; see Section 4.3 for more details). We are, there-
fore, interested in incremental training of deep models using the
newly selected data samples in every iteration of active learning.

Algorithm 1: Structured Uncertainty Sampling
Input: Knowledge graph G = {(s, r ,o)}, budget B, #clusters c ,

#samples per iteration k (k < B), link predictor M
Output: Triples sampled at i-th iteration Ti (i ∈ {0, 1, . . .})

1 C ← Cluster entities in G;
2 Ck ← Pick k clusters from C;
3 T0 ← ∅;
4 foreach Cj ∈ Ck do
5 (s, r ,o) ← Pick a triple from Cj ;
6 Add (s, r ,o) to T0;
7 while

∑i
l=1 |Tl | ≤ B do

8 Incrementally train M on Ti ;
9 i + +;Ti ← ∅;

10 foreach Cj ∈ C do
11 Compute redundancy_score(Cj);
12 Ck ← Pick k clusters based on the scores;
13 foreach Cj ∈ Ck do
14 (s, r ,o) ← arg max ϕ((s, r ,o)), ∀s ∈ Cj ;
15 Add (s, r ,o) to Ti ;

A straightforward workaround is to fine-tune the model trained
on the previous iterations using the new data samples only, which
is a widely used approach in transfer learning. Such an approach,
however, is likely to bias the model to the small amount of newly
selected data. To prevent the model to get biased, recent work
has proposed to combine the newly selected data with the existing
training data and incrementally train themodel with a small number
of epochs [29]. This however, may not allow to fully exploit the
newly selected data, compared with the data selected early that
has already been used to update parameters in previous iterations.
A central problem here is how to strike a good balance between
the importance of new and previously selected data to reach an
unbiased estimate of model parameters.

To solve this problem, we propose to adopt a meta-learning
approach, where we update model parameters with the meta-goal
that the updated model is most generalizable to future predictions.
This is achieved in a two-step parameter updating scheme: we
temporarily update model parameters with a standard gradient
descent step using the newly selected data, followed by a meta-
learning step where the learning algorithm performs a gradient
descent step with the objective that model parameters will be more
generalizable. The generalizability of the updated model parameters
is approximated by the prediction loss on data samples selected in
the current and the previous iterations.

Formally, in the i-th active learning iteration, model parameters
learned in the previous iteration, denoted by Θi−1, are first updated
to Θ′i by a gradient descent step on the newly selected data Ti :

Θ′i = Θi−1 − α∆ΘL(fΘi−1 ,Ti) (9)

where f denotes the model, α is the learning rate, L(fΘi−1 ,Tk) is
the loss function applied to the data samples of Ti given existing
model Θi−1, and ∆Θ is the gradient of Θ with respect to the loss.

Algorithm 2:Meta-Incremental Training
Input: The current iteration i , data selected in the current

iteration Ti , model parameter from the previous
iteration Θi−1, window sizew , data selected in
iterations within the window
{Ti−w ,Ti−w+1, . . . ,Ti−1}, learning rate α and β

1 Output: Updated model parameters Θi
2 while True do
3 for l = i −w ; l ≤ i; l + + do
4 Evaluate ∆ΘL(fΘl ,Tl);
5 Θ′l ← Θi−1 − α∆ΘL(fΘi−1 ,Tl);
6 Θi ← Θi−1 − β∆Θ

∑i
l=i−w L(fΘ′l ,Tl);

7 Θi−1 ← Θi ;
8 if converged then
9 break;

To avoid overfitting, we use a meta-learner that makes use of the
triples selected in previous iterations within a certain time window
w , i.e. {Ti−w ,Ti−w+1, . . . ,Ti−1}, and update the parameters such
that the updated model generalizes well to data in these iterations:

min
Θ

i∑
l=i−w

L(fΘ′l ,Tl) =
i∑

l=i−w
L(fΘi−1−α∆ΘL(fΘi−1,Tl),Tl) (10)

wherein Θ′l represents the parameters updated with Equation 9
using data selected in the l-th iteration (i −w ≤ l ≤ i). With such
an objective, the meta-learning step is then performed by stochastic
gradient descent as follows:

Θi = Θi−1 − β∆Θ

i∑
l=i−w

L(fΘ′l ,Tl) (11)

where β is the meta-learning rate. Such a meta-learning step in-
volves a second-order derivative (i.e., Hessian) with respect to the
parameters, which is readily supported by some standard deep
learning libraries.

The overall incremental training algorithm is described in Algo-
rithm 2. We use mini-batch gradient descent for Meta-Incremental
training, where mini-batches of data samples selected in the cur-
rent and previous iterations are used in the inner loop of the meta-
learning process (row 3-5) and different mini-batches of these it-
erations are used for meta-learning loops. Parameters are updated
by the meta-learning step (row 6) several times until the current
iteration converges.

4 EXPERIMENTS AND RESULTS
In this section, we report on a set of experiments we have conducted
to evaluate the performance of ActiveLink.1 We first evaluate our
new data sampling method and the incremental training method of
ActiveLink separately, by answering the following question:
• Q1: How effective are our uncertainty sampling and struc-
tured uncertainty sampling methods in determining the in-
formativeness of data samples?

1Our code and data are available at https://github.com/eXascaleInfolab/ActiveLink.

• Q2: How effective is our meta-incremental training method
in speeding up the deep active learning process?

Subsequently, we evaluate ActiveLink as a whole by considering
the following issues:
• Q3: How effective is ActiveLink compared with a traditional
supervised learning method (i.e., non-active learning) for
training neural link predictors?
• Q4: How do parameter settings of ActiveLink, including
#samples per iteration and #clusters for data sampling and
window size for incremental learning, affect the performance?

In addition, we investigate the generalizability of Activelink across
neural link predictors and its scalability on a big dataset. In the
following, we start by introducing our experimental setup, before
answering each of the above questions in a separate subsection.

4.1 Experimental Settings
Dataset.We experiment on two publicly accessible datasets: FB15K-
237 and WikiMovie:
• FB15K-237 [32] is a subset of Freebase widely used for
link prediction evaluation [5, 8, 36]. The knowledge graph
mainly describes facts about sports, movies and actors. The
original dataset FB15K was contributed by Bordes et al. [5].
Toutanova and Chen [32] noted that FB15K suffers from the
test leakage problem: simple rule-based models can reach
high prediction performance on the test triples by inverting
triples in the training set. We use FB15k-237, a corrected
version where inverse relations are removed.
• WikiMovie is a subset of Wikidata2 that contains facts
aboutmovies such as directors, actors and genre. The original
data is large but sparse. For example, 53% of the entities ap-
pear in only one triple, making it difficult to evaluate the link
prediction models; by contrast, 95% of the entities in FB15K-
237 have at least three training examples. As such, we filtered
the dataset to keep a subset with only entities that appear
in at least two triples. We prepare two versions of the Wiki-
Movie dataset, namely WikiMovie-300K and WikiMovie-1M,
which contain 300K and 1M triples, respectively.

We report key statistics of our datasets in Table 1. We note that
WikiMovie-300K contains a comparable number of triples as FB15K-
237 yet much more entities. Consequently, link prediction is more
difficult on WikiMovie-300K. The comparison of ActiveLink per-
formance on these two datasets, therefore, helps to investigate the
impact of data sparsity on ActiveLink performance. WikiMovie-1M
is used below to study the scalability of the ActiveLink framework
in terms of reducing the amount of data needed to train neural link
predictors on large knowledge graphs.
Comparison Methods. To demonstrate the effectiveness of both
model uncertainty and data redundancy (considering the under-
lying data structure), we compare the following data sampling
methods:
• Random, which randomly selects data samples at every
active learning iteration;
• Structured, a variant of our method that randomly selects
triples from each cluster (similar to stratified sampling);

2https://www.wikidata.org/

https://github.com/eXascaleInfolab/ActiveLink
https://www.wikidata.org/

Table 1: Descriptive statistics of the datasets.

#Entities #Relationships #Triples

FB15K-237 14,541 474 310,116
WikiMovie-300K 36,001 588 286,683
WikiMovie-1M 104,500 788 987,896

• Uncertainty, a variant of our method that selects data sam-
ples based on Shannon entropy (Equation 8);
• Structured-Uncertainty, which selects data samples based
on both model uncertainty and data redundancy (our pro-
posed Algorithm 1).

We note that Uncertainty is a method that has been investigated in
image recognition [13]; however, to the best of our knowledge, we
are the first to apply it to link prediction in knowledge graphs.

To investigate the effectiveness of our proposed incremental
training method, we compare the following model training tech-
niques for deep active learning:
• Retrain, the conventional way of performing active learn-
ing, which trains the model from scratch at each new itera-
tion;
• Incremental [29], the baseline incremental training method
that combines newly and previously selected data to incre-
mentally train the model from the last iteration;
• Meta-Incremental, our incremental training method that
adopts meta-learning to get an unbiased estimate of the
model parameters (Algorithm 2).

We evaluate the above model training methods in terms of both
model performance and training efficiency.

Finally, to show the superiority of ActiveLink in model training
over traditional supervised learning settings as well as to demon-
strate the generalizability of ActiveLink on different neural link
predictors, we apply both training settings to two state-of-the-art
deep neural link predictors (see Section 3.1 for details):
• ConvE [8], a model that uses two-dimensional convolutions
over entity and relation embeddings for link prediction;
• MLP [9], a multi-perceptron model using fully-connected
layers over entity and relation embeddings.

Parameter Settings for Link Predictors & ActiveLink. The pa-
rameters of the link predictors and ActiveLink are empirically set
based on a held-out validation set that contains 10% of the original
data. For the link predictors (i.e., ConvE and MLP), we apply grid
search in {20, 50, 100, 200} for the dimension of the embeddings
and in {0.1. 0.3, 0.5} for the dropout on different layers of the pre-
diction model. We select learning rates from {0.0001, 0.001, 0.01,
0.1, 1} and batch size from {64, 128, 256}. In particular, we use 3 × 3
filters for the convolution in ConvE. For ActiveLink, the number
of samples per iteration is selected from {500, 1000, 5000, 10000}.
The number of clusters for the Structured-Uncertainty sampling
method is selected from {10, 100, 1000, 10000}. The window size
for our Meta-Incremental method is selected from {1, 5, 10, 20, inf },
where inf indicates that all preceding iterations are considered for
meta-learning.

Evaluation Protocols. Evaluation is performed on a test set that
contains 10% triples from the corresponding dataset; the remaining
data is used as the training and validation sets. Following previous
studies [5, 8, 21], we measure the performance using the following
two metrics: 1) Mean Rank of correct entities, and 2) proportion
of correct entities in the top-10 ranked entities (Hits@10). Lower
Mean Rank and higher Hits@10 indicate better performance.

4.2 Comparative Results on Data Sampling (Q1)
We start by investigating the effectiveness of our proposed sampling
methods (Uncertainty, Structured, and Structured-Uncertainty) by
comparing them against random sampling (Random). Results are
reported in Figure 1, where performance is shown as a function of
the fraction of training data (from zero to 50%) selected at different
iterations of the active learning process.

From the figure, we observe that Random sampling is outper-
formed by Structured sampling and Uncertainty sampling across
the two datasets and across the two performance metrics. This
clearly demonstrates the effectiveness of model uncertainty and
data redundancy in data sampling. Among Structured and Uncer-
tainty sampling, we observe that Structured sampling generally
performs better than Uncertainty sampling in the early iterations
of the active learning process (before 5% samples are selected); how-
ever, in the late iterations, Structured sampling is outperformed by
Uncertainty sampling. Such a pattern can be explained by the evo-
lution of the size of the samples during the active learning process.
In the early iterations of the active learning process, the size of the
data being sampled is big as compared with the size of data samples
already selected; it is, therefore, easy to select non-redundant data
samples by considering the underlying data structure; when the
size of selected data samples increases, the newly selected samples
get increasingly more redundant with the selected samples, thus
decreasing the effectiveness of Structured sampling. In comparison,
model uncertainty is less affected by the size of the selected data
samples. We note that, when the size of the selected data samples
increases (30% to 40%), the performance gains of the link predic-
tion model decreases even for Uncertainty sampling. This indicates
the decreased utility of the data samples in the late iterations for
improving model performance (see the next part of the results for
additional evidence on that point).

Structured-Uncertainty sampling, which combines both model
uncertainty and data redundancy in data sampling, achieves the best
performance across the two datasets and the two performance met-
rics. The performance gains are most obvious for the WikiMovie-
300K dataset measured by Mean Rank, as shown in Figure 1(c).
We note that while not visually obvious in the other subfigures
(due to the need for depicting the full range of the variations),
Structured-Uncertainty consistently outperforms Uncertainty in
every iteration as measured by both metrics: overall, the average
improvements are 29.37 (Mean Rank) and 0.1% (Hits@10) for the
FB15K-237 dataset when the sample size is between 40% and 50%;
for the WikiMovie-300K dataset with the same sample sizes, the
average improvements are 400.77 (Mean Rank) and 0.1% (Hits@10).
These results highlight the difference between model uncertainty
and data redundancy as data informativeness criterion and the
effectiveness of combining both of them for data sampling.

10% 20% 30% 40% 50%
Sample Size

8

9

10

11

12

lo
g2

(M
ea

n
Ra

nk
)

Random
Structured
Uncertainty
Structured-Uncertainty

(a) FB15K-237 - Mean Rank

10% 20% 30% 40% 50%
Sample Size

0.0

0.1

0.2

0.3

0.4

0.5

Hi
ts

 @
10

Random
Structured
Uncertainty
Structured-Uncertainty

(b) FB15K-237 - Hits@10

10% 20% 30% 40% 50%
Sample Size

10.5

11.0

11.5

12.0

12.5

13.0

13.5

lo
g2

(M
ea

n
Ra

nk
)

Random
Structured
Uncertainty
Structured-Uncertainty

(c) WikiMovie-300K - Mean Rank

10% 20% 30% 40% 50%
Sample Size

0.1

0.2

0.3

0.4
Hi

ts
 @

10

Random
Structured
Uncertainty
Structured-Uncertainty

(d) WikiMovie-300K - Hits@10

Figure 1: Comparison between data sampling methods. Up-
per figures compare the performance of the data sampling
methodsmeasured by (a) Mean Rank (semi-log scale) and (b)
Hits@10 on the FB15K-237 dataset; lower figures compare
the performance by (c) Mean Rank (semi-log scale) and (d)
Hits@10 on the WikiMovie-300K dataset.

Compared with Random sampling, Structured-Uncertainty im-
proves link prediction performance by 250.13 (Mean Rank) and 4.5%
(Hits@10) for the FB15K-237 dataset and by 1710.04 (Mean Rank)
and 5.2% (Hits@10) for the WikiMovie-300K dataset when 50% data
samples are selected in both datasets.

4.3 Comparative Results on Incremental
Training (Q2)

We now compare our Meta-Incremental training method with Re-
train and the Incremental training baseline. Among them, Retrain
should perform best in terms of model performance as Retrain uses
all data selected in the new and previous iterations to reach an
unbiased estimate of model parameters. Figure 2 shows the results.

From the results by Mean Rank in Figures 2(a,c), we observe that
both Retrain and our Meta-Incremental training method outper-
form the Incremental baseline, and importantly, that our method
performs as well as Retrain. This indicates that our proposed incre-
mental training method indeed succeeds in obtaining an unbiased
estimate of model parameters and achieves optimal model gener-
alizability. The performance difference between our method and
the Incremental baseline highlights the importance of including
an unbiased estimation of the model parameters. We note that all
three methods converge when the size of the data used in active
learning reaches 50% of the size of the original training data, which
also verifies the decreased utility of data selected in late iterations.

The above trends are not obvious from the results measured by
Hits@10 in Figure 2(b,d): no clear difference is observed between
the three model training methods. The different results measured
by Mean Rank and Hits@10 implies that Hits@10 is a less sensitive
metric in evaluating data sampling methods. This is likely due

10% 20% 30% 40% 50%
Sample Size

8

9

10

11

12

lo
g2

(M
ea

n
Ra

nk
)

Retrain
Incremental
Meta-Incremental

(a) FB15K-237 - Mean Rank

10% 20% 30% 40% 50%
Sample Size

0.1

0.2

0.3

0.4

Hi
ts

 @
10

Retrain
Incremental
Meta-Incremental

(b) FB15K-237 - Hits@10

10% 20% 30% 40% 50%
Sample Size

11

12

13

lo
g2

(M
ea

n
Ra

nk
)

Retrain
Incremental
Meta-Incremental

(c) WikiMovie-300K - Mean Rank

10% 20% 30% 40% 50%
Sample Size

0.1

0.2

0.3

0.4

Hi
ts

 @
10

Retrain
Incremental
Meta-Incremental

(d) WikiMovie-300K - Hits@10

Figure 2: Comparison between model training methods. Up-
per figures compare the performance of the model training
methodsmeasured by (a) Mean Rank (semi-log scale) and (b)
Hits@10 on the FB15K-237 dataset; lower figures compare
the performance by (c) Mean Rank (semi-log scale) and (d)
Hits@10 on the WikiMovie-300K dataset.

Table 2: Model training time (in minutes).

Retrain Meta-Incremental

FB15K-237 499 177
WikiMovie-300K 945 334

to the fact that Hits@10 is a set-based metric that does not take
into account the ranking position of true positives in the top-10
results, thus it is less sensitive in differentiating model performance,
especially given the large number of entities in the experimental
datasets.
Model Training Efficiency. In order to evaluate the runtime per-
formance of our proposed Meta-Incremental training method, we
investigate the model training time with up to 50% of the data sam-
ples selected using our test server3, for both the Retrain method
and our Meta-Incremental training method (both achieve optimal
model performance). Table 2 reports the results. As shown by the
table, our Meta-Incremental method requires a much shorter train-
ing time on both FB15K-237 and WikiMovie-300K: it speeds up
model training by 2.8x in both cases.

In summary, our Meta-Incremental training method not only
achieves optimal model generalizability, but also dramatically re-
duces the model training time.

4.4 ActiveLink vs. Non-active Learning (Q3)
To evaluate the effectiveness of ActiveLink as a whole, we compare
the performance of neural link predictors trained with ActiveLink
and those trained with a traditional supervised learning setting

3An Ubuntu 14.4 machine with a GeForce GTX TITAN X and 3.3 GHz CPU.

Table 3: Performance of ConvE and MLP trained by ActiveLink and the non-active learning setting on a varying fraction of
the FB15K-237 and WikiMovie-300K datasets, measured by both Mean Rank and Hits@10.

Predictor Fraction
FB15K-237 WikiMovie-300K

Mean Rank Hits@10 Mean Rank Hits@10
Non-Act. ActiveLink Non-Act. ActiveLink Non-Act. ActiveLink Non-Act. ActiveLink

ConvE

10% 1325.26 409.14 0.255 0.403 6857.77 2150.08 0.219 0.329
20% 822.88 351.98 0.282 0.440 5253.15 1641.98 0.259 0.365
30% 605.79 339.48 0.301 0.450 4317.67 1673.97 0.271 0.379
40% 537.12 329.21 0.326 0.459 3406.10 1658.99 0.296 0.388
50% 458.91 318.18 0.349 0.464 2832.33 1628.06 0.314 0.396

MLP

10% 1386.80 487.64 0.248 0.395 7094.62 2520.71 0.216 0.300
20% 848.21 374.75 0.283 0.440 5613.55 1536.02 0.248 0.357
30% 663.18 346.94 0.314 0.457 4463.22 1379.29 0.274 0.376
40% 547.16 326.11 0.332 0.467 3370.01 1326.25 0.298 0.389
50% 458.51 322.40 0.354 0.470 2680.69 1372.14 0.325 0.398

using varying fractions of the experimental datasets. To demon-
strate the generalizability of ActiveLink on different neural link
predictors, we experimented with two neural link predictors, i.e.,
ConvE and MLP, and report the results in Table 3.

We observe that as the size of the training samples increases,
the performance of ConvE and MLP also increases in both active
learning and non-active learning settings. Importantly, ActiveLink
consistently outperforms the traditional supervised learning setting
across all experimental configurations in terms of the neural link
predictor, the dataset, the fraction of the dataset for model training,
and the performance metric. Such a result clearly indicates the supe-
riority of ActiveLink in training neural link predictors when only a
fraction of the dataset is used for model training. The performance
gains achieved by ActiveLink flatten in the long run whenmost data
samples are used for model training; this implies that the training
set can no longer offer new informative data samples for improving
model performance. Comparing the results on the two datasets, we
observe that the performance gains through ActiveLink are larger
for WikiMovie-300K than for FB15K-237, as measured by Mean
Rank. Recalling that WikiMovie-300K contains 2.5x more entities
than FB15K-237 does, these results suggest that ActiveLink brings
more performance gains for sparse knowledge graphs.

We further compare the performance of ConvE and MLP trained
by ActiveLink using a fraction of the dataset and by the super-
vised learning setting with the full dataset. Our experiments show
that ActiveLink achieves nearly state-of-the-art results with only
half of the data: for the FB15K-237 dataset, ActiveLink reaches
99.6% in Mean Rank and 96.4% in Hits@10 for ConvE, and 99.4%
in Mean Rank and 94.6% in Hits@10 for MLP; for the WikiMovie-
300K dataset, ActiveLink reaches 98.6% in Mean Rank and 97% in
Hits@10 for ConvE, and 99.1% in Mean Rank and 97.4% in Hits@10
for MLP. These results strongly demonstrate the effectiveness of
ActiveLink in data utilization when training neural link predictors.

Scalability for Large Datasets. In order to evaluate the perfor-
mance of ActiveLink on large knowledge graphs, we compare it
against a non-active learning setting on the WikiMovie-1M dataset.
Results with ConvE as the neural link predictor are shown in Ta-
ble 4 (similar results are observed with MLP). Overall, ActiveLink

Table 4: Performance of ConvE trained by ActiveLink us-
ing 20% of the WikiMovie-1M dataset and by the non-active
learning setting using the full dataset.

Mean Rank Hits@10

ActiveLink 3356 0.337
Non-active learning 2341 0.371

reaches 99% in MeanRank and 91% in Hits@10 with only 20% of the
data used for training. Compared with the previous results on the
smaller datasets (FB15K-237 and WikiMovie-300K), these results
show that ActiveLink is more effective in reducing the amount of
training data required for large knowledge graphs.

As a remark, we note that ActiveLink is less time efficient com-
pared to the non-active learning setting due to the multiple training
iterations. This, however, comes as a necessity to reduce the amount
of data required for model training.

4.5 Parameter Sensitivity (Q4)
We now investigate the impact of parameters on the performance
of ActiveLink. Figure 3 shows the performance of ActiveLink with
different values for the number of samples per iteration (k), the
number of clusters (c) and the window size w on the FB15K-237
and WikiMovie-300K datasets.

Impact of k . Due to the high requirement in terms of training
data by deep models, the sample size k of individual iterations
is supposed to be bigger in deep active learning settings than in
traditional active learning settings. However, when the sample
size gets too large, the benefits of increased data samples might
be less significant than the benefits of training a better prediction
model using fewer data samples and using that model to select
new data samples for the next iteration. Figures 3(a-d) confirm
this hypothesis: as the sample size increases, the performance first
increases then decreases. The optimal performance is achieved
when k is set to 1000.

Impact of c. The number of clusters c in our proposed Structured-
Uncertainty sampling method controls the strength of the influence

10% 20% 30% 40% 50%
Sample Size

9

10

11

12

lo
g2

(M
ea

n
Ra

nk
)

k=500
k=1000
k=5000
k=10000

(a) k - Mean Rank (FB15K-237)

10% 20% 30% 40% 50%
Sample Size

0.0

0.1

0.2

0.3

0.4

Hi
ts

 @
10

k=500
k=1000
k=5000
k=10000

(b) k - Hits@10 (FB15K-237)

10% 20% 30% 40% 50%
Sample Size

11

12

13

lo
g2

(M
ea

n
Ra

nk
)

k=500
k=1000
k=5000
k=10000

(c) k - Mean Rank (WikiMovie-300K)

10% 20% 30% 40% 50%
Sample Size

0.0

0.1

0.2

0.3

0.4

Hi
ts

 @
10

k=500
k=1000
k=5000
k=10000

(d) k - Hits@10 (WikiMovie-300K)

10% 20% 30% 40% 50%
Sample Size

9

10

11

12

lo
g2

(M
ea

n
Ra

nk
)

c=10
c=100
c=1000
c=10000

(e) c - Mean Rank (FB15K-237)

10% 20% 30% 40% 50%
Sample Size

0.0

0.1

0.2

0.3

0.4
Hi

ts
 @

10

c=10
c=100
c=1000
c=10000

(f) c - Hits@10 (FB15K-237)

10% 20% 30% 40% 50%
Sample Size

10.5

11.0

11.5

12.0

12.5

13.0

13.5

lo
g2

(M
ea

n
Ra

nk
)

c=10
c=100
c=1000
c=10000

(g) c - Mean Rank (WikiMovie-300K)

10% 20% 30% 40% 50%
Sample Size

0.1

0.2

0.3

0.4

Hi
ts

 @
10

c=10
c=100
c=1000
c=10000

(h) c - Hits@10 (WikiMovie-300K)

10% 20% 30% 40% 50%
Sample Size

9

10

11

12

lo
g2

(M
ea

n
Ra

nk
)

w=1
w=5
w=10

w=20
w=inf

(i) w - Mean Rank (FB15K-237)

10% 20% 30% 40% 50%
Sample Size

0.0

0.1

0.2

0.3

0.4

Hi
ts

 @
10

w=1
w=5
w=10

w=20
w=inf

(j) w - Hits@10 (FB15K-237)

10% 20% 30% 40% 50%
Sample Size

10.5

11.0

11.5

12.0

12.5

13.0

13.5

lo
g2

(M
ea

n
Ra

nk
)

w=1
w=5
w=10

w=20
w=inf

(k) w - Mean Rank (WikiMovie-300K)

10% 20% 30% 40% 50%
Sample Size

0.1

0.2

0.3

0.4

Hi
ts

 @
10

w=1
w=5
w=10

w=20
w=inf

(l) w - Hits@10 (WikiMovie-300K)

Figure 3: Impact of (a) #samples per iteration k , (b) #clusters c and (c) window sizew on the performance of ActiveLink on both
FB15K-237 and WikiMovie-300K datasets, measured by Mean Rank (shown in semi-log scale) and Hits@10.

of the knowledge graph data structure on sampling. Structured-
Uncertainty sampling with a small c relies more on the model’s
uncertainty when selecting data samples, while a large c relies more
on the data structure of the knowledge graph. Figures 3(e-h) show
that as the value of c increases, the performance first increases
then decreases. The best performance is achieved when c is set to
1000, with a significant margin over the other settings. This result
suggests that with an appropriate setting for the number of clusters,
our proposed data sampling method can ideally combine model
uncertainty with the underlying structure of the knowledge graph.
Impact ofw . In the Meta-Incremental training approach, the win-
dow size w controls the size of the selected data samples for op-
timizing the generalizability of the incrementally trained model.
A larger window will include more data from previous iterations
when updating the model parameters, thereby better approximating
the model’s generalizability for future predictions. This intuition
is confirmed in Figures 3(i-l). We observe that the performance of
ActiveLink increases along with the increase of the window size.
The model is biased to the latest iterations when the window size is
too small (shown by the result ofw = 1). The best performance is
achieved when pieces of data from all preceding iterations are used
for incremental learning. However, training with bigger window
sizes takes more time. Therefore, in real applications, the selected
window size would need to strike a balance between model gen-
eralizability and training efficiency. Interestingly,w = 1 (i.e., only
data in the most recent iteration is used together with the current

iteration for meta-learning of model parameters) is outperformed
by all the other configurations by a large margin. Such low gener-
alizability indicates that the model is biased to the latest iterations
when the window size is too small.

5 CONCLUSION
We presented ActiveLink, a deep active learning framework for neu-
ral link prediction with optimized data sampling andmodel training.
By taking a Bayesian view on neural link predictors, ActiveLink
enables to use uncertainty sampling for deep active learning of
link predictors. ActiveLink extends uncertainty sampling by taking
advantage of the underlying data structure of the knowledge graph
to improve sampling effectiveness. In addition, it adopts a meta-
learning approach to incrementally train neural link predictors with
high generalizability. We extensively evaluated our framework on
three real-world datasets and showed that it can drastically reduce
the amount of data needed to train a neural link predictor while
reaching state-of-the-art performance. As future work, we plan
to apply ActiveLink to solicit high-quality data from a crowd of
annotators to further improve neural link prediction.

ACKNOWLEDGMENTS
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement 683253/GraphInt).

REFERENCES
[1] Sungjin Ahn, Anoop Korattikara, and Max Welling. 2012. Bayesian posterior

sampling via stochastic gradient fisher scoring. arXiv preprint arXiv:1206.6380
(2012).

[2] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David
Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. 2016. Learning to
learn by gradient descent by gradient descent. In Advances in Neural Information
Processing Systems (NIPS). 3981–3989.

[3] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment 2008, 10 (2008), P10008.

[4] Antoine Bordes, Xavier Glorot, JasonWeston, and Yoshua Bengio. 2014. A seman-
tic matching energy function for learning with multi-relational data. Machine
Learning 94, 2 (2014), 233–259.

[5] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In Advances in Neural Information Processing Systems (NIPS). 2787–2795.

[6] Lijun Chang, Wei Li, Lu Qin, Wenjie Zhang, and Shiyu Yang. 2017. pSCAN: Fast
and Exact Structural Graph Clustering. IEEE Transactions on Knowledge and Data
Engineering (TKDE) 29, 2 (2017), 387–401.

[7] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. 1996. Active Learning
with Statistical Models. Journal of Artificial Intelligence Research (JAIR) (1996).

[8] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.
Convolutional 2d knowledge graph embeddings. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence (AAAI). AAAI, 1811–1818.

[9] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-
phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. 2014. Knowledge vault:
A web-scale approach to probabilistic knowledge fusion. In Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). ACM, 601–610.

[10] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. arXiv preprint arXiv:1703.03400
(2017).

[11] Linton C Freeman. 1965. Elementary applied statistics: for students in behavioral
science. John Wiley & Sons.

[12] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. In Proceedings of the 33rd
International Conference on Machine Learning (ICML). 1050–1059.

[13] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. 2017. Deep bayesian active
learning with image data. Proceedings of the 34th International Conference on
Machine Learning (ICML), 1183–1192.

[14] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan R Salakhutdinov. 2012. Improving Neural Networks by Preventing Co-
adaptation of Feature Detectors. arXiv preprint arXiv:1207.0580 (2012).

[15] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. 2011.
Bayesian active learning for classification and preference learning. arXiv preprint
arXiv:1112.5745 (2011).

[16] Alex Kendall and Yarin Gal. 2017. What uncertainties do we need in bayesian
deep learning for computer vision?. In Advances in Neural Information Processing
Systems (NIPS). 5580–5590.

[17] Andreas Krause, Ajit Singh, and Carlos Guestrin. 2008. Near-optimal Sensor
Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical
Studies. Journal of Machine Learning Research (JMLR) 9, Feb (2008), 235–284.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in Neural Information
Processing Systems (NIPS). 1097–1105.

[19] Ni Lao, Tom Mitchell, and William W Cohen. 2011. Random walk inference
and learning in a large scale knowledge base. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, 529–539.

[20] David D Lewis and William A Gale. 1994. A Sequential Algorithm for Train-
ing Text Classifiers. In Proceedings of the 17th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR). ACM,
3–12.

[21] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
entity and relation embeddings for knowledge graph completion.. In Proceedings
of the 29th AAAI Conference on Artificial Intelligence (AAAI). AAAI, 2181–2187.

[22] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2016.
A review of relational machine learning for knowledge graphs. Proc. IEEE 104, 1
(2016), 11–33.

[23] Maximilian Nickel, Lorenzo Rosasco, Tomaso A Poggio, et al. 2016. Holographic
Embeddings of Knowledge Graphs.. In Proceedings of the 30th AAAI Conference
on Artificial Intelligence (AAAI). AAAI, 1955–1961.

[24] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A Three-Way
Model for Collective Learning on Multi-Relational Data.. In Proceedings of the
28th International Conference on Machine Learning (ICML), Vol. 11. 809–816.

[25] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2012. Factorizing yago:
scalable machine learning for linked data. In Proceedings of the 21st International
Conference on World Wide Web (WWW). ACM, 271–280.

[26] Nicholas Roy and Andrew McCallum. 2001. Toward Optimal Active Learning
Through Monte Carlo Estimation of Error Reduction. Proceedings of the 18th
International Conference on Machine Learning (ICML) (2001), 441–448.

[27] Burr Settles. 2010. Active Learning Literature Survey. University of Wisconsin,
Madison 52, 55-66 (2010), 11.

[28] Claude Elwood Shannon. 2001. A mathematical theory of communication. ACM
SIGMOBILE Mobile Computing and Communications Review 5, 1 (2001), 3–55.

[29] Yanyao Shen, Hyokun Yun, Zachary C Lipton, Yakov Kronrod, and Animashree
Anandkumar. 2017. Deep Active Learning for Named Entity Recognition. arXiv
preprint arXiv:1707.05928 (2017).

[30] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. 2013. Rea-
soning with neural tensor networks for knowledge base completion. In Advances
in Neural Information Processing Systems (NIPS). 926–934.

[31] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research (JMLR) 15, 1 (2014), 1929–1958.

[32] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choud-
hury, and Michael Gamon. 2015. Representing text for joint embedding of text
and knowledge bases. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP). 1499–1509.

[33] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In Proceedings
of the 33rd International Conference on Machine Learning (ICML). 2071–2080.

[34] Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and Liang Lin. 2016. Cost-
effective active learning for deep image classification. IEEE Transactions on
Circuits and Systems for Video Technology (2016).

[35] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph
embedding: A survey of approaches and applications. IEEE Transactions on
Knowledge and Data Engineering (TKDE) 29, 12 (2017), 2724–2743.

[36] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes.. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence (AAAI), Vol. 14. AAAI, 1112–1119.

[37] Max Welling and Yee W Teh. 2011. Bayesian Learning via Sochastic Gradient
Langevin Dynamics. In Proceedings of the 28th International Conference onMachine
Learning (ICML). 681–688.

[38] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Em-
bedding entities and relations for learning and inference in knowledge bases.
In Proceedings of the 3rd International Conference on Learning Representations
(ICLR).

[39] Jie Yang, Thomas Drake, Andreas Damianou, and Yoelle Maarek. 2018. Leveraging
crowdsourcing data for deep active learning - an application: Learning intents in
Alexa. In Proceedings of the 2018 edition of The Web Conference (WWW). ACM,
23–32.

[40] Ye Zhang, Matthew Lease, and Byron C Wallace. 2017. Active Discriminative
Text Representation Learning.. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence (AAAI). AAAI, 3386–3392.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Neural Link Prediction
	2.2 Deep Active Learning

	3 The ActiveLink Framework
	3.1 Uncertainty Sampling
	3.2 Structured Uncertainty Sampling
	3.3 Meta-Incremental Training

	4 Experiments and Results
	4.1 Experimental Settings
	4.2 Comparative Results on Data Sampling (Q1)
	4.3 Comparative Results on Incremental Training (Q2)
	4.4 ActiveLink vs. Non-active Learning (Q3)
	4.5 Parameter Sensitivity (Q4)

	5 Conclusion
	References

