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Abstract—Bridging unstructured data with knowledge bases is
an essential task in many problems related to natural language
understanding. Traditionally, this task is considered in one direc-
tion only: linking entity mentions in a text to their counterpart
in a knowledge base (also known as entity linking). In this
paper, we propose to tackle this problem from a different angle:
linking entities from a knowledge base to paragraphs describing
those entities. We argue that such a new perspective can be
beneficial to several applications, including information retrieval,
knowledge base population, and joint entity and word embedding.
We present a transformer-based model, ParaGraph, which, given
a Wikidata entity as input, retrieves its corresponding Wikipedia
section. To perform this task, ParaGraph first generates an entity
summary and compares it to sections to select an initial set
of candidates. The candidates are then ranked using additional
information from the entity’s textual description and contextual
information. Our experimental results show that ParaGraph
achieves 87% Hits@10 when ranking Wikipedia sections given
a Wikidata entity as input. The obtained results show that
ParaGraph can reduce the information gap between Wikipedia-
based entities and tail entities and demonstrate the effectiveness
of our proposed approach towards linking knowledge graph
entities to their text counterparts.

Index Terms—Linked Data, Knowledge Graphs, Entity Link-
ing

I. INTRODUCTION

Knowledge Graphs (KGs) provide a source of rich, struc-
tured, and machine-readable data for a variety of real-world
applications, from question answering and Information Re-
trieval (IR) to virtual assistants and recommender systems.
An essential task in any Natural Language Processing (NLP)
approach involving knowledge graphs is entity linking. The
goal of entity linking is to provide “semantic grounding” for
some text leveraging entities in a KG, by determining which
textual contents refer to which specific entities [1]. However,
this process is typically handled in one direction only.

In this paper, we introduce a “reverse” entity linking task,
which we refer to as entity mapping. Entity mapping can be
formally defined as follows:

Definition 1. Entity Mapping: Given a knowledge graph entity
and a collection of paragraphs, find the paragraph that best
describes the input entity.
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In this context, a “paragraph” refers to a self-contained unit
of text dedicated to a single concept or named entity.

Tackling the entity mapping task has a number of important

implications:

o Detecting paragraphs best describing a KG entity can
significantly improve the quality and the efficiency of
knowledge base augmentation approaches, which extract
new facts from the Web;

o For IR, detecting a specific paragraph that is most relevant
to a given query can help users navigate through search
results. This feature is incidentally partially implemented
in Google Search (Figure 1);

e Document structuring, which is a subtask of Natural
Language Generation, can also benefit from links between
entities and paragraphs: a text segment describing an
entity is a good candidate to become a separate section.
This application is particularly useful to Wikipedia page
editors: developing a consistent section structure for new
pages is not a straightforward task, and section recom-
mendation systems can alleviate this problem.

Although entity mapping can be viewed as a typical IR
task, we argue that it is different in regard to the content
of the target document: while in IR any relevant document
may match the query, in entity mapping we are aiming at
retrieving documents (paragraphs) representing the summary
of a given concept with its labels and relations. For example, in
entity mapping an entity fondue should not be mapped onto a
paragraph describing the preparation process of the dish, since
such a paragraph only covers one aspect of a given entity. On
the other hand, the same paragraph can be highly relevant to
a query fondue in the context of IR.

In this paper, we focus in particular on one entity mapping
task — mapping Wikidata entities onto Wikipedia paragraphs.
Wikidata! is a collaborative, multilingual knowledge graph
hosted by the Wikimedia Foundation. Wikidata has the ad-
vantage of being curated by humans and of being tightly
integrated with multiple Wikimedia projects (e.g., Wikipedia,
Wikimedia Commons, or Wiktionary). Every Wikipedia article
across all languages has a corresponding and unique language-
independent Wikidata entity. This mapping between Wikipedia

Uhttps://www.wikidata.org/
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Fig. 1. (a) The featured paragraph is a special box appearing on top of a
Google search results page, and contains an answer to the user’s query. (b)
After clicking on the link from the featured paragraph, the user is directed
to the relevant fragment of text on the source web page. This fragment is
additionally highlighted.

and Wikidata is beneficial for both projects. On the one
hand, it facilitates information extraction and standardization
of Wikipedia articles across languages, which can benefit from
the standard structure and values of their Wikidata counterpart,
e.g., for populating infoboxes. On the other hand, Wikipedia
articles are routinely updated, which in turn keeps Wikidata
fresh and useful for online applications.

However, the Wikipedia editorial guidelines require that an
entity be notable or worthy of notice to be added to the ency-
clopedia, which does not hold for all Wikidata entities. Hence,
only a fraction of Wikidata entities have a corresponding
Wikipedia article in some language?. We refer to the remaining
entities, which do not have an article in Wikipedia, as orphans.
In the absence of a textual counterpart, orphans often suffer
from incompleteness and lack of maintenance.

Our present effort stems from the observation that a sub-
stantial number of orphan entities are indeed represented in
Wikipedia, but not at the page level; orphan entities are
often described within existing Wikipedia articles in the form
of sections, subsections, and paragraphs of a more generic
concept or fact. For example, the English Wikipedia does not
have a dedicated page about “Tennis racket”, it is instead
embedded in the “Racket” page as a section®, whereas it
can be found as a standalone (orphan) entity on Wikidata
(“Q153362”).* Interestingly, even a short section describing an
orphan Wikidata entity can carry useful information that could
enrich the entity with additional facts and relationships. Such
pieces of information are unfortunately buried inside long ar-
ticles without direct relevance to the main subject. Instead, we
propose to establish a fine-grained mapping between Wikidata
orphan entities and Wikipedia (sub-) sections.

To address this new task, we introduce ParaGraph — a
novel approach for mapping KG entities onto paragraphs. The
ParaGraph framework works in two stages. First, it selects
candidate paragraphs by representing entities and paragraphs
in the same vector space and measuring the cosine similarity
between them for an initial candidate ranking. At this stage,

2For example, the English Wikipedia covers only 10% of Wikidata entities
3https://en.wikipedia.org/wiki/Racket_(sports_equipment)#Tennis
“https://www.wikidata.org/wiki/Q153362

we focus on generating an entity representation semantically
similar to the natural language description of this entity. To
achieve this, we propose a novel entity summarization model
called ENTSUMM. ENTSUMM is built on top of BERT’s
encoder by stacking several inter-fact transformer layers to
capture entity-level features for extracting facts. In a second
phase, ParaGraph re-ranks the selected candidates and returns
the top paragraphs as the most likely matches for a given
entity. The two-stage architecture of ParaGraph ensures its
scalability and efficiency even for large collections of text (for
instance, we extracted more than 18 million paragraphs from
the English Wikipedia alone).

To the best of our knowledge, we are the first to explore
the problems of entity mapping and entity summarization
using attention-based transformers. In summary, we make the
following key contributions:

o We introduce the new task of entity mapping, which has

a number of important applications and can advance the
state of the art of many NLP tasks;

« We explore the potential of attention-based transformers
for entity summarization in an unsupervised learning
scenario and propose a novel approach based on language
model encoders;

o« We propose a new framework, ParaGraph, which effi-
ciently maps Wikidata orphan entities onto Wikipedia
sections;

o We release’ an open dataset of links between Wikidata
and Wikipedia English sections, which can be used to
evaluate further entity mapping techniques.

The rest of the paper is organized as follows. In Section II
we review approaches that are related to our task, particularly
in the context of Entity Linking and entity-centric information
retrieval. We introduce our problem definition and our two-
stage architecture in Section III. Section IV describes the
datasets we collected to evaluate our method and baselines.
Finally, we conclude with a discussion on future work in
Section V.

II. RELATED WORK

Our work lies at the crossroads of three research topics: En-
tity Linking, Information Retrieval, and Entity Summarization.
In the following, we review the work done in these areas, and
we cover subjects and systems closely related to our task.

a) Entity Linking: is the task of linking named entities
mentioned in some text with their corresponding entities in a
knowledge base. This task was first tackled using classical IR
and NLP techniques [2] but recently benefited from advances
in deep learning and language models. A number of recent
works [3], [4] learn dedicated word embeddings for entities in
that context, or reuse existing language models (like BERT)
to guide the linking process [5]. A specific application of
entity linking in the context of Wikipedia is often referred
to as Wikification [6]-[8], i.e., cross-referencing documents
with Wikipedia.

Shttps://doi.org/10.5281/zenodo. 7360787



One interesting direction in entity linking is Entity Aspect
Linking which aims to link a named entity to a particular
aspect of this entity [9]-[11]. Given an entity mention in some
specific context, the goal is to link it to one from a set of
predefined aspects that captures the addressed topic. Nanni et
al. [9] suggest to derive a catalog of aspects from the top-level
sections of the entity’s Wikipedia article.

b) Entity Alignment: Our task is related to entity align-
ment, with the difference that we aim to map entities and
paragraphs from two knowledge bases. In such tasks, the
number of candidate matching pairs grows quadratically with
the size of the KBs, making the alignment task intractable
for datasets such as Wikidata. Entity alignment methods use
blocking techniques [12], human-computation with probabilis-
tic reasoning [13], [14], and entity embeddings [15]-[17].

c) Information Retrieval and Knowledge Graphs: Infor-
mation Retrieval traditionally focuses on finding documents
based on an information need formulated as a keyword query.
In the past few years, the interplay between IR methods and
KGs has received increasing attention [1], in particular by
leveraging KGs for improving information retrieval techniques
or by enriching KGs using IR techniques.

Entities taken from a KG can be leveraged within an IR
system in order to help improve the understanding of a user’s
intent, queries, and documents beyond what can be achieved
through word tokens on their own [1]. Dalton et al. [18]
leverage entity-oriented information for query expansion to
enrich the query with additional features from entities. Xiong
and Callan [19] propose EsdRank — a document retrieval
technique which treats entities from KGs as objects connecting
query and documents. Their feature vectors are derived from
the relationships between entities and documents, and another
feature vector, which represents the relationship between the
entity and the query. Xiong et al. [20] introduce Explicit
Semantic Ranking (ESR), a ranking technique that leverages
knowledge graph embeddings. ESR represents queries and
documents by embeddings entities in the knowledge graph.
The semantic relatedness between the representations of query
and documents is then computed in the embedding space.
Another approach incorporating KG embeddings is proposed
in [21]: the authors model query and documents as word-
based representations and entity-based representations simulta-
neously. They further consider four types of interaction derived
from words and entities in the query and documents, and
subsequently use them as features for ranking.

Typical KG-related tasks such as entity discovery, relation
extraction, link prediction, or document filtering can also
benefit from IR techniques. For instance, text classification and
trend detection techniques from IR can be useful for discover-
ing novel entities [22], [23]. Entity-centric document filtering
determines whether a document contains an important piece of
information about an entity. This task is of particular interest
in the context of our paper. [1] classifies approaches to entity-
centric document filtering into two types: entity-dependent and
entity-independent. Entity-dependent approaches learn a single
model for each entity and utilize text classification or language

modeling techniques [24], [25]. In contrast, entity-independent
methods do not learn the specifics of each entity directly and
use generic features extracted from the entity and document
pairs to perform the filtering [26].

d) Entity Summarization: is the task of computing an
optimal compact summary for an entity by selecting a size-
constrained subset of triples [27]. Existing methods are mainly
unsupervised and leverage statistical and ontological features
such as frequency, centrality, informativeness, or diversity to
identify the most salient triples [28]-[31]. In recent years, a
number of efforts have been made to use deep neural networks
for entity summarization [32], [33].

The entity summarization problem is related to document
summarization. These two tasks are fundamentally different:
entities are represented by structured triples, whereas sentences
in a document are unstructured text. However, some document
summarization techniques could be adapted to entity summa-
rization. In particular, the ENTSUMM model proposed in this
paper was inspired by a text summarization approach described
in [34].

e) Semantic Textual Similarity (STS): is an NLP task
to quantitatively assess the semantic similarity between two
text snippets. STS is one of the fundamental tasks in natural
language processing. Recently, deep learning models based on
transformer architectures [35], [36] have demonstrated state-
of-the-art performance on the STS benchmark dataset [37].

Sentence-BERT (SBERT) [38] is a modification of the
BERT network which is able to derive semantically mean-
ingful sentence embeddings. SBERT architecture ensures its
scalability and efficiency while achieving the state-of-the-art
performance on the STS task. In this paper, we use SBERT
in several scenarios, e.g., for finding most similar pairs of
Wikipedia sections (Section III-A) and for measuring the
semantic similarity between a Wikipedia section title and an
entity label (Section III-B).

III. THE PARAGRAPH MODEL

This section introduces our proposed approach for entity
mapping, which we refer to as ParaGraph. We start by formally
introducing our problem and by giving an overview of our end-
to-end pipeline, before introducing each of its components in
more detail.

Problem Statement. We consider a bipartite graph B whose
vertices consist of two disjoint subsets: £, representing Wiki-
data entities together with their relationships, and P, represent-
ing Wikipedia paragraphs®. Given an initial limited number
of edges between £ and P, our goal is to correctly match
vertices from £ to P. In other words, for a given Wikidata
entity, we aim to find relevant paragraphs in Wikipedia. The
Wikidata Knowledge Graph is given as a set S of triples
(h,r,t) consisting of head and tail entities h,t € & linked
by a relationship » € R. Each entity or relationship can have
a label and/or a description associated to it. A triple represents
a relationship between two entities e.g., (Belgium, Capital_of,

Sextracted from all English Wikipedia sections



Brussels). Here and throughout the paper, we use “triple” to
refer to the data format, and “fact” to describe natural language
form of the triple.

Paragraph Framework. To tackle this problem, we propose
a two-stage mapping algorithm. Figure 2 depicts the overall
architecture of our pipeline. The ParaGraph framework in-
cludes two modules: a Semantic Search Module and a Ranking
Module. The semantic search module is a scalable component
designed to retrieve relevant candidate paragraphs efficiently,
while the ranking module is designed to identify entity-to-
text relatedness using graph traversal. The framework takes
an entity and a set of paragraphs as input. First, the semantic
search model retrieves a candidate set for the given entity,
effectively pruning the search space and producing an initial
ranking. It works by embedding the paragraphs (regarded as
documents P) and the entities (£) into the same vector space,
measures the pairwise distance between the entity and the
paragraphs, and returns the top-k paragraphs that are most
similar to a given entity. Subsequently, the ranking model
re-ranks the candidate paragraphs by leveraging additional
information, i.e., entity labels, section titles, and relationships
between a candidate paragraph and the article it belongs to,
and finally outputs the paragraph that is deemed the most
relevant to the entity.

A. Semantic Search Module

The main challenge of the semantic search stage is to
retrieve paragraphs that are relevant to an input entity. In the
following, we detail the main building blocks of our semantic
search module. The semantic search module constructs an
entity-summary from the entity data, and embeds both the
entity-summary and all the sections in Wikipedia using a
transformer based language model for semantic matching.

1) Textual Form of Entities (Lexicalization): Our semantic
search task can be approached as a semantic textual similarity
problem. For example, one can represent the entity as some
text and use a unified language model for encoding both entity
descriptions and paragraphs in the same vector space. We
follow this approach by relying on the textual information
attached to an entity in the form of labels, descriptions,
properties, and related entities’ labels. This approach is viable
as we observe that 91% of Wikidata entities have at least
an English description and/or a label associated with them.
However, descriptions in Wikidata tend to be very succinct —
for example, the average length of English descriptions is 4.7
words. Luckily, entities have additional information attached
as facts representing relationships with other entities in the
knowledge graph.

Concretely, to convert an entity s into a textual form
strs, we create a string composed of the entity label and
description strs = “< s.label > is a < s.description >.”,
then concatenate it to all facts from triples (s, p,0) as strs +=
“< p.label > < o.label >.” (see Figure 2 for an example).

2) Textual Summarization of Entities: In the previous step,
we built a textual form of an entity without imposing any

order or importance to its facts. However, while facts provide
valuable information about an entity, not all of them are
equally useful with respect to our problem.

We aim to generate an entity vector representation that is
as close as possible to a description of this entity in natural
language in order to find the best paragraph matches. To
select the most informative and representative facts, we adopt
a text summarization approach inspired by recent advances
in language modeling using attention-based transformers. In
the following, we briefly introduce key notions from [34] that
proposes a document-level encoder based on BERT called
BERTSUMEXT, and describe it in the context of our entity
summarization procedure.

Figure 3 (upper left panel) shows the components of the
BERTSUMEXT architecture. An input fextual form of an entity
is first preprocessed by inserting two special tokens. [CLS] is
prepended to the beginning of each fact; this token collects fea-
tures for the fact it precedes. Token [SEP] is inserted after each
fact as an indicator of fact boundaries. Each fact is transformed
into a sequence of individual word tokens (for simplicity, we
represent each fact with a single token in the figure.) Next,
each token is assigned three kinds of embeddings: (i) Token
Embeddings indicate the meaning of each token using pre-
trained Word2Vec [39], (ii)) Segmentation Embeddings are
used to distinguish between two adjacent facts: embedding
E 4 or Ep is assigned to fact; depending on whether 7 is odd
or even, and (iii) Position Embeddings indicate the position
of each token within the text sequence.

These three embeddings are added and then fed to a pre-
trained BERT model. The output vectors T 1,5,, which corre-
spond to the i-th [CLS] token can be used as the representation
for fact;. Several inter-fact transformer layers are then stacked
on top of BERT outputs, to capture entity-level features for
extracting summaries. The final output layer is a sigmoid
classifier, which assigns a relevance weight to each fact.

3) Semantic Search: To perform the semantic search, we
propose ENTSUMM, a model that learns an entity summary
representation which is aligned with relevant paragraphs. The
learning objective of our model is to generate an entity
representation which is as close as possible in a vector space
to the representation of the paragraph referring to the same
entity.

Our semantic search module (fully illustrated in Figure 3)
proceeds in the following steps:

1) The Entity Summarization module takes the entity tex-
tual form and uses BERTSUMEXT to compute the rele-
vance score for each individual fact;. It also produces
a fixed-sized vector representation for each fact T g, ;

2) In parallel, the Paragraph Representation module feeds
a paragraph to a separate pre-trained BERT model and
the output vector, corresponding to the Ty s token, is
used as the representation for this paragraph;

3) The Entity Summary Representation module ENTSUMM
computes the weighted sum of all facts, multiplying their
vector representations by their corresponding scores
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computed above. The output vector Tty represents
the final entity embedding;

4) Finally, the cosine similarity between the paragraph
vector and its corresponding entity vector is calculated.
The learning objective of the model is to minimize the
distance between those two vectors.

Training. We train ENTSUMM on a dataset consisting of
pairs of Wikipedia abstracts’ and their corresponding Wikidata
entities. The intuition behind this choice is as follows. The
goal of the semantic search step is to encode an entity
representation and a corresponding paragraph so that their
vectors were as close as possible in the vector space. Train
such an encoder requires a dataset of (paragraph, entity) pairs,
where paragraph is a textual description of entity. A Wikipedia
abstract is an introduction to the article and a summary of its

7A Wikipedia abstract is an introduction to the article and a summary of
its most important contents.

most important contents® and hence abstracts can serve as a
benchmark for our task. As loss function, we adopt triplet loss,
which simultaneously pushes an input (entity representation)
E closer to a positive example P and further from a negative
example N (P, N are paragraph representations). The exact
loss is given by the following formula:

L(E, P,N) = max(||f(E)~ f(P)|*~||f (E)~ f(N)] >+, 0)
ey

where « is the margin between positive and negative pairs.
For efficiently training a model with triplet loss, negative
examples N should be sufficiently similar to positive examples
P, otherwise minimizing the loss function becomes trivial.
More formally, a useful negative example should satisfy the
following distance property: d(F,N) ~ d(F, P). To obtain
such negative examples for our task, we compute the pairwise
semantic similarity of all paragraphs in the dataset and for each
positive paragraph we randomly select a negative example
from the top-10 most similar paragraphs. We used a pre-trained

SBERT model [38] to compute those semantic similarities.

B. Ranking Module

To refine the results of the previous step, we subsequently
re-rank the candidate paragraphs selected by our semantic
search model. To achieve this, we devise the following set
of features.

1) Similarity Score: Once trained, the semantic search
module described above can efficiently compute a similarity
score between an input entity, and all paragraphs in P.
While this model can efficiently achieve a high recall, the
resulting candidate ranking at the top is sub-optimal. Upon
further inspection, we observed that even if a paragraph is
semantically similar to an entity, i.e. mentions all important
facts, it does not guarantee that the paragraph is a summary
of this entity. For example, the entity Q74950 (Objectivism)
is in our case mapped to the paragraph Objectivist movement
of article Ayn Rand. Although this paragraph contains all the
necessary facts, it does not describe objectivism itself but
rather Ayn Rand’s role in it.

8https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Lead_section



2) Path Relevance Score: To deal with the above issue, it
is essential to understand the relationships between an entity
and the article a candidate paragraph belongs to. In the above
example, entity Q74950 (Objectivism) is connected to entity
Q132524 (Ayn Rand) by the founded by relation. It might be
a strong signal that none of Ayn Rand paragraphs contains a
summary of objectivism. On the other hand, if an article and
an entity are connected by a has part relation, there is a good
chance that one of the article’s paragraphs can be mapped to
this entity. The intuition here is that the relationship chain
between the input entity and the main article’s entity carries
an important signal about the candidate paragraph.

To predict which articles most probably contain a relevant
paragraph, we train a simple Naive Bayes path classifier. Given
an input entity e and an article’s entity a, we first compute
the path in the Wikidata graph between them. Each edge in
the path is encoded as one hot vector of dimension |R| (the
size of the relations vocabulary). The sum of path edges is
then fed to the classifier, which outputs the probability that
one of a’s paragraphs contains the summary of entity e. To
consider both incoming and outgoing edges, we duplicate each
edge in the graph reversing its direction and assigning it label
(ry_reverse.

3) Section Title to Label Score: Our path classifier predicts
which articles contain relevant paragraph, but it does not help
when the semantic search model returns several paragraphs
belonging to the same article. In that case, we leverage the
semantic similarity between an entity label and a section title
as an additional feature. Effectively we compute the sentence
similarity between the input entity label and the candidate
paragraph’s section title using a pre-trained SBERT model.

Learning to Rank. To produce the final ranking score, we
use a popular Learning To Rank model, LambdaRank [40].
Given an input entity and a set of candidate paragraphs,
LambdaRank ranks paragraphs w.r.t. an entity based on the
features introduces earlier in this section, namely:

o SimScore: The semantic search score, which indicates

how well a candidate paragraph summarizes the entity;

o PathScore: The path classifier score, which indicates

the probability of a given article containing a relevant
paragraph;

o TitleScore: The semantic similarity score between a

section title and an input entity label.

IV. EXPERIMENTS AND RESULTS

In this section, we report on a set of experiments we have
conducted to evaluate the performance of ParaGraph. In the
following, we first introduce our dataset, and then describe our
experimental protocol for evaluating both components of our
framework, i.e. our semantic search model and our ranking
model.

A. Data Collection

Our efforts are specifically aimed at establishing a fine-
grained mapping between Wikidata entities and Wikipedia sec-
tions. Currently, Wikidata is integrated with Wikipedia at the
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Fig. 4. A list of Wikidata sitelinks on a English Wikipedia page about Survival
Analysis Functions. The cross-lingual French sitelink points to a subsection
in a more general article!® highlighting the difference in treatment of entities
across languages.

article level, i.e. every Wikipedia article has a corresponding
entity in Wikidata. At this point, Wikidata does not support
using anchors links as sitelinks, i.e. linking to a specific section
of a page. For that reason, generating a dataset containing
(Wikidata entity, Wikipedia section) pairs is a challenge of its
own. We collected training examples from 3 different sources:

1) Mappings between Wikidata entities and Wikipedia arti-
cles. In this case, we consider the abstract of an article (a
block of text between the title and the table of content)
as a paragraph describing an entity;

2) Interlingual Wikipedia. For example, the Wikidata entity
Q2915096 contains a sitelink to the English Wikipedia
page Survival_function, and all the other Wikidata
sitelinks are listed on this page in the left column
(Figure 4). A link to a section can be added to this list
and thus can be mapped to the source Wikidata entity,
as is the case for the French language;

3) Links between sections and full articles. When a section
is a summary of another article, a link to that article ap-
pears immediately under the section heading (Figure 5).
The article, in turn, is mapped to a Wikidata entity, thus
bridging this entity with the source section.

We used mappings between Wikidata entities and Wikipedia
abstracts (1) to train and evaluate the Semantic Search Model
(Section III-A). To evaluate the performance of the Semantic
Search Model on sections as well as the overall performance
of our framework, we collected mappings between Wikidata
entities and Wikipedia sections as described in (2) and (3).

Although the data collection methods described above
mostly bring true positive examples, the test set still contains
a considerable amount of false positive pairs. For example,
an article Ayn Rand contains a section Objectivist movement,
which links to the corresponding full article. However, this
section is not a summary of Objectivist movement but rather
describes Ayn Rand’s role in it and hence should not be
matched with Objectivism entity. These errors in the dataset
affects evaluation results, and we revisit this issue in Section
IV-D.
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remained virtually unchanged for the past 100 years, the majority of ma
must use balls that are approved by the International Tennis Federation

Fig. 5. Section “Balls” of a Wikipedia article “Tennis” with a link to an
article “Tennis ball”

B. Semantic Search Evaluation

In this subsection, we conduct a series of experiments to
evaluate the Semantic Search component of ParaGraph. For
this component of our architecture, we aim to answer the
following questions:

e QI1: How effective is our entity summarization when
compared to other entity representation methods?

e Q2: How effective is our method in mapping textual
entity representations onto Wikipedia abstracts?

e Q3: How effective is our method in mapping textual
entity representations onto Wikipedia sections?

e Q4: How effective is ENTSUMM for the entity summa-
rization task?

Evaluation Protocol. Our evaluation is performed on three
test subsets:

1) ENTITY2ABSTRACT: contains 100’000 (entity, abstract)
pairs and a paragraph pool of 1 million abstracts;

2) ENTITY2SECTION: contains 41°000 (entity, section)
pairs and a paragraph pool of 306’000 sections from
26’000 articles;

3) RICHENTITY2SECTION: contains 9’700 (entity, section)
pairs, where each entity is represented by at least 10
facts. The paragraph pool is the same as in the EN-
TITY2SECTION dataset;

At evaluation time, for each entity from the test set we
search the most similar paragraph from the paragraph pool.
The objective of the semantic search step is to select candidates
for further ranking, therefore our main metric at this stage
is Hits@K, i.e., the proportion of correct documents in the
top-K ranked documents. Higher Hits@K values indicate that
more relevant paragraphs get into the candidate subset. In
our experiments, we report values of Hits@1, Hits@10 and
Hits@50 metrics.

Experimental Design and Baselines. As a baseline for
our method, we approach the semantic search task as a a
Semantic Textual Similarity (STS) problem. We conduct a
series of experiments where an entity is represented as a
single chunk of text. In this case, our training process is
equivalent to fine-tuning a BERT model for our specific task,

10https://fr.wikipedia.org/wiki/Analys_de_survie#Fonction_de_survie

which is mapping textual descriptions of entities onto relevant
paragraphs. We note that the structure of two pieces of text
we compare is considerably different: on one hand, there is a
paragraph written in natural language, composed of relatively
long coherent sentences; on the other hand, the second textual
description of the entity is a bag of short, synthetic phrases
(facts) only vaguely similar to natural language text. With
this in mind, in our baseline approach we fine-tune two
independent BERT models to encode separately a paragraph
and a textual entity representation. Effectively, we replace
ENTSUMM with a BERT model (Q1). We experiment with
three entity lexicalization strategies:

1) BASELINELABEL: In this dataset, we use the label of
the entity only.

2) BASELINELABELDESCR: In this dataset, we uses a
combination of the label and description of the entity.

3) BASELINEFACTS: In this dataset, we use the full entity
textual form (composed by our lexicalization mechanism
introduced in section III-A1).

We further evaluate our baseline models and ENTSUMM on
two test sets: ENTITY2ZABSTRACT and ENTITY2SECTION
(Q2 and Q3).

Finally, to investigate how effective our entity summarization
method is compared to representing an entity with all available
facts (Q4), we evaluate the ENTSUMM and BASELINEFACTS
models on the RICHENTITY2SECTION test set. We evaluate
this aspect on a separate test set because ENTITY2SECTION
test set used in the previous series of experiments contains
insufficient data to demonstrate the difference between the two
models. More specifically, entities in ENTITY2SECTION are
on average associated with 10 facts only, while in RICHEN-
TITY2SECTION — with 20 facts. The performance of an entity
summarization model is more evident for bigger entities,
represented by a substantial number of facts.

Results. Table I gives the results of our semantic search
approach evaluated on the task of mapping entities onto
Wikipedia abstracts. These results demonstrate that our pro-
posed method to represent an entity with its textual (Wikidata
label and Wikidata description) and/or contextual (facts) in-
formation is effective for aligning entities and their textual
counterparts in the vector space. As expected, Wikidata labels
alone perform worse than other entity representation strategies.
However, a combination of label and description reaches over
98% precision at Hits@10, and adding further contextual
information does not improve this result significantly.

To evaluate our approach on the target task, i.e., mapping
entities onto Wikipedia sections, we run the same set of exper-
iments on the ENTITY2SECTION test set. Table II summarizes
the results. A considerable decrease in performance compared
to the previous results can be explained by several factors:

e The ENTITY2ABSTRACT dataset contains only
Wikipedia abstracts, where each abstract is a summary
of exactly one entity. Sections, on the other hands,
can cover different aspects of different entities, and



TABLE I
PERFORMANCE OF THE SEMANTIC SEARCH COMPONENT (ENTSUMM) ON
ENTITY2ABSTRACT DATASET

Hits@1l Hits@10 Hits@50

BASELINELABEL 85.17% 96.20% 97.95%

BASELINELABELDESCR  93.97% 98.38% 99.15%

BASELINEFACTS 94.54% 98.90% 99.43%

ENTSUMM 95.61% 99.14% 99.58 %
TABLE 11

PERFORMANCE OF THE SEMANTIC SEARCH COMPONENT (ENTSUMM) ON
ENTITY2SECTION DATASET

Hits@1l Hits@10 Hits@50
BASELINELABEL 39.73% 70.76% 82.16%
BASELINELABELDESCR 46.81% 76.42% 86.61%
BASELINEFACTS 47.40% 80.02% 90.28%
ENTSUMM 48.79% 80.02% 90.75%

thus the ENTITY2SECTION dataset is inherently more
ambiguous.

o As discussed in Section IV-A, the ENTITY2SECTION test
set is generated automatically and contains a substantial
amount of errors. We estimate the impact of this factor
below.

Nevertheless, BASELINEFACTS and ENTSUMM models
achieve 90% precision at Hits@50, which indicates that for
90% entities, correct paragraphs are ranked in the top-50
paragraphs. Since top paragraphs are further re-ranked at
the next stage of our pipeline, we consider these results as
satisfactory.

Consistent with previous results, the BASELINELABEL
model performs worse than other models. It falls in line
with our earlier hypothesis that labels alone do not con-
vey enough information to represent an entity for our task.
Moreover, Table II demonstrates that representing entity with
its facts (BASELINEFACTS and ENTSUMM) results in better
performance compared to label plus description representation
(BASELINELABELDESCR). The difference is more significant
at Hits@10 and Hits@50: it indicates that BASELINELA-
BELDESCR can handle the cases when a target paragraph
is clearly distinguishable from other paragraphs and can be
ranked with confidence at top-1, but fails when there are
several similar candidate paragraphs and the target paragraph
cannot be detected unambiguously.

From these results, we observe that the difference between
BASELINEFACTS and ENTSUMM is insignificant. Our as-
sumption is that for entities with few facts ENTSUMM cannot
select the most representative ones but rather outputs all
available facts, which is equivalent to BASELINEFACTS. To
investigate this, we created a test set which contained only
entities with at least 10 facts and re-evaluated both BASE-
LINEFACTS and ENTSUMM on it. Results in Table III confirm
our assumption: on rich entities, the advantage of ENTSUMM
over the baseline is more evident.

TABLE III
PERFORMANCE OF THE SEMANTIC SEARCH COMPONENT (ENTSUMM) ON
RICHENTITY2SECTION DATASET

Hits@1l Hits@10 Hits@50

BASELINEFACTS 51.57% 81.43% 90.82%

ENTSUMM 57.17% 83.75% 92.10%
TABLE IV

PERFORMANCE OF PARAGRAPH WITH DIFFERENT RANKING STRATEGIES
ON ENTITY2SECTION

Hits@1 Hits@10
SimScore 48.79%  80.02%
TitleScore 57.95%  80.06%
PathScore 31.08%  59.87%
SimScore + PathScore 50.72%  83.47%
SimScore + TitleScore + PathScore  70.27%  87.34%

C. Ranking Evaluation

In this subsection, we evaluate the Ranking component of
ParaGraph. For this component of our architecture, we focus
on the following questions:

e QI: Is the path in the KG between a given entity and
the entity corresponding to the main article of a section
a useful feature for ranking the candidates?

e Q2: How do the different components of our ranking
model affect the final performance of our pipeline?

Evaluation Protocol. Evaluation is performed on the EN-
TITY2SECTION test set described in Section IV-B. As ranking
is the final stage of our pipeline, we are primarily interested
in Hits@1 and Hits@10 metrics to evaluate the overall per-
formance of our approach.

Experimental Design. To answer questions Q1 and Q2, in
this series of experiments we conduct an ablation study of
different components of the ranking model. We proceed in the
following steps:

1) We apply our semantic search model ENTSUMM to
select a pool of candidate paragraphs. Based on the
evaluation results of the semantic search model, we set
the size of the candidate pool k£ = 50.

2) For each candidate from the pool we compute three
scores as discussed in Section III-B, i.e., semantic sim-
ilarity score (SimScore), path relatedness score (Path-
Score), and section title similarity score (TitleScore).

3) We re-rank the candidates according to different combi-
nations of these scores. For evaluation, we assume that
if a target paragraph does not get into a candidate pool,
the match for an entity is not found.

Results. The results of the ablation study are reported in
Table IV. The first line of the table corresponds to the results
of the semantic search stage, i.e., candidates are originally
ranked according to the semantic search score alone.
Surprisingly, re-ranking candidates by TitleScore score
alone and not considering SimScore score results in better



TABLE V
PERFORMANCE OF PARAGRAPH ON GOLDENENTITY2SECTION DATASET.

Hits@l Hits@10 Hits@50

Semantic Search 74.43% 94.83% 98.13%

Semantic Search + Ranking 81.66%  97.50% 98.13%
TABLE VI

COMPARISON OF PARAGRAPH AND IR BASELINES. (I): QUERY = LABEL.
(I1): QUERY = LABEL + DESCRIPTION

Hits@l Hits@10 Hits@50
BM25 (i) 46.94% 85.60% 92.36%
BM25 (ii) 43.10% 83.30% 91.75%
ColBERT (i) 41.95% 71.27% 90.46%
ColBERT (ii))  46.87% 80.12% 92.18%
ANCE (i) 39.25% 68.92% 82.11%
ANCE (ii) 41.61% 72.84% 85.78%
ParaGraph 70.27 % 87.34% 90.75%

Hits@1, while Hits@10 remains the same. The paragraph’s
section title is a clear and unambiguous feature when it
matches with the entity label, unfortunately, this information
is not always available.

On the other hands, re-ranking candidates considering
PathScore alone considerably degrades the performance
compared to the semantic search results. The reason is that
sections from the same article are mostly ranked next to each
other w.r.t. the query entity and the path score between the
entity and the article is unable to distinguish them. This ob-
servation also explains why adding PathScore to SimScore
only insignificantly affects the ranking performance.

The combination of all three scores results in the best
performance, particularly at Hits@1. This demonstrates the
effectiveness of using a learning-to-rank technique and proves
the usefulness of considering the relationships between a
candidate section and the main article.

D. Evaluation on Manually Labeled Data

As mentioned earlier, the automatically generated EN-
TITY2SECTION test set contains a substantial amount of
errors. To factor out the potential impact of dataset errors on
the evaluation results, we created GOLDENENTITY2SECTION,
a dataset that contains 750 (entity, section) pairs which we
labeled manually. We re-evaluate ENTSUMM and the overall
performance of ParaGraph on this dataset (Table V). As
expected, the performance of Paragraph on the manually
labeled data is consistent with our previous results — the
ranking complements the semantic search. More importantly,
the results indicate that some of the slightly lower results
achieved above can be partially attributed to the noise in the
dataset, but does not jeopardize our approach and training
process overall.

E. IR Baseline

As discussed in Section I, entity mapping can be viewed as a
specific IR task, defined by taking an entity as input query and
Wikipedia paragraphs as the document collection. However,
we argue that this specific task should be treated as a new
task in regard to the content of the target documents, which
substantially differs from standard IR tasks. To demonstrate
that the problem addressed in this paper does not have a
straightforward IR solution, we compare the performance of
ParaGraph to the performance of BM25 as well as two state-
of-the-art neural IR models: ColBERT [41] and ANCE [42].
We took advantage of the Anserini toolkit for reproducible
information retrieval research!! to obtain these models.

Our evaluation was performed on the ENTITY2SECTION
test set described in Section IV-B. We experimented with two
entity textual forms as query: the label of the entity only, and
a combination of the label and description of the entity. We
note that we tried augmenting the query with a bag of facts,
however, the results degraded significantly. The results of these
experiments are reported in Table VI.

Our proposed model, ParaGraph, consistently outperforms
BM25 and neural rankers on the task of entity mapping, which
highlights the high effectiveness of our solution for the task at
hand. The performance of the IR baselines is comparable to
the performance of ENTSUMM (the semantic search module of
ParaGraph). This emphasizes the importance of the re-ranking
step and shows that entity mapping is significantly different
from a standard information retrieval task: not all relevant
documents retrieved by an IR model are suitable to represent
the summary of an entity given as a query.

V. CONCLUSION AND FUTURE WORK

In this work, we introduced the task of entity mapping,
which consists in establishing fine-grained mappings between
entities and paragraphs describing them. We focus on a use-
case involving Wikipedia and the Wikidata knowledge base as
they are both prominent and tightly interrelated already. Our
proposed system, ParaGraph, operates in a two-stage manner.
First, we generate an entity summary and align it with para-
graphs to reduce the search space. The entity summarization
model trained in an unsupervised manner generates an entity
representation in textual form. Second, ParaGraph re-ranks the
selected candidates leveraging additional context information,
i.e., we extract semantic similarities and relationships between
the input entity and the parent article.

In our experiments, we show that ParaGraph is able to
map knowledge graph entities onto text paragraphs with high
accuracy, effectively achieving 86% Hits@10. In particular,
we show that our framework is well suited for mapping tail
entities with few properties which are not notable enough to
have a dedicated article but might have a full subsection in
a Wikipedia article. We also demonstrate that although entity
mapping can be viewed as an IR problem, a traditional IR
solution performs considerably worse on this task.

http://anserini.io



In future work, we plan on extending our experiments
in several directions. First, we want to explore the idea of
unsupervised entity summarization and generate a textual
summary in addition to the vector representation. The next
step for the entity mapping task could be to extend it beyond
the Wikidata-Wikipedia scenario and to develop a generalized
model for mapping an entity to any collection of paragraphs. It
would also be interesting to investigate how well the proposed
approach adapt to other KGs. Finally, our task’s definition
could be extended to fact mapping, whereby individual triples
could mapped to paragraphs or sentences.
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