
CXL and the Return of Scale-Up Database Engines
Alberto Lerner
eXascale Infolab

University of Fribourg, Switzerland
alberto.lerner@unifr.ch

Gustavo Alonso
Systems Group, Department of Computer Science

ETH Zurich, Switzerland
alonso@inf.ethz.ch

ABSTRACT
The trend toward specialized processing devices such as TPUs,
DPUs, GPUs, and FPGAs has exposed the weaknesses of PCIe in
interconnecting these devices and their hosts. Several attempts have
been proposed to improve, augment, or downright replace PCIe, and
more recently, these efforts have converged into a standard called
Compute Express Link (CXL). CXL is already on version 2.0 in terms
of commercial availability, but its potential to radically change the
conventional server architecture has only just started to surface.
For example, CXL can increase the bandwidth and quantity of
memory available to any single machine beyond what that machine
can originally provide, most importantly, in a manner that is fully
transparent to software applications.

We argue, however, that CXL can have a broader impact be-
yond memory expansion and deeply affect the architecture of data-
intensive systems. In a nutshell, while the cloud favored scale-out
approaches that grew in capacity by adding full servers to a rack,
CXL brings back scale-up architectures that can grow by fine-tuning
individual resources, all while transforming the rack into a large
shared-memory machine. In this paper, we describe why such ar-
chitectural transformations are now possible, how they benefit
emerging heterogeneous hardware platforms for data-intensive
systems, and the associated research challenges.

PVLDB Reference Format:
Alberto Lerner and Gustavo Alonso. CXL and the Return of Scale-Up
Database Engines. PVLDB, 17(10): 2568 - 2575, 2024.
doi:10.14778/3675034.3675047

1 INTRODUCTION
The availability of elastic hardware in the cloud has enabled new,
ever-demanding classes of applications to emerge. Many of these
applications benefit from the acceleration provided by heterogeneous
computing devices, such as Smart NICs, FPGAs, GPUs, TPUs, and
DPUs, to name the most common ones [54]. These devices are often
more powerful than the CPU for specific tasks [35, 62], but they
expose the fact that the most currently used system interconnect,
the PCIe system [43], is unsuitable for this purpose [32, 59]. The
bandwidth and latency incurred by moving data back and forth
between CPU and devices erodes the devices’ benefits and forces
applications to batch data transfers and restructure themselves to
hide the transfer latency. Not surprisingly, recent devices are packed
with memory to hold as much data as possible locally and avoid
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 10 ISSN 2150-8097.
doi:10.14778/3675034.3675047

data movements through the PCIe system. The situation reached
the point that in some computing devices, 75% of the power and
80% of their area is consumed by memory [14, 15].

In response, hardware vendors have proposed a different ap-
proach to device integration. Rather than copying data in and out
of a device, the approach interconnects different accelerators and
CPUs through distributed shared memory. This gives CPUs and
devices the ability to cache one another’s memory coherently [51].
Of course, the local memory size is still relevant, but with coher-
ence, the application need not control how data moves; it simply
accesses data as if it were local, and the added machinery efficiently
relocates data as necessary. Because coherency is mediated through
hardware, which is designed to manipulate small data units, coher-
ent transfers can achieve latency and bandwidth only moderately
worse than what a CPU can achieve. Several competing propos-
als ensued that allowed this type of memory-based integration to
become public standards, such as OpenCAPI [40], CCIX [13], and
Gen-Z [18]. These efforts have now converged into the Compute
Express Link standard (CXL) [49].

CXL is a strict superset of PCIe, which thereby fosters easier
adoption. It is, however, much more than just an interconnect pro-
tocol. It consists of three classes of interfaces. First, the I/O interface
increases the speed of PCIe without major changes to its semantics,
i.e., it can still copy memory regions from one device to another
in a non-coherent manner. Second, the memory interface allows a
host CPU to coherently access the memory or storage of periph-
eral devices. Lastly, the cache interface allows peripheral devices to
coherently access and cache data from the host’s memory.

The architectural change that the two latter interfaces represent
was almost unimaginable just a few years ago. Cache coherency
protocols have existed for as long as caches have, but CPU manu-
facturers treated their coherency protocols as trade secrets. For this
reason, coherency could only be established across a vendor’s CPU
and its memory controllers. With CXL, different CPUs can talk to
different controllers, including those based on computing devices,
because the protocol for doing so is now an open standard.

As big as this change is, it is not the only benefit CXL brings. In
its latest version, the standard goes beyond the traditional role of an
interconnect; it becomes an alternative to a rack-level networking
fabric that is both more performant than current Ethernet-based
systems as well as more expressive. It offers additional features such
as memory sharing and trusted memory enclaves, as opposed to
just exposing a packet sending and receiving interface as in TCP/IP,
or a remote memory access interface as in RDMA.

In this paper, we focus on these capabilities of CXL and argue
that they enable scale-up (i.e., vertically scaled) database engines
that significantly differ from the scale-out (i.e., horizontally scaled)
systems that have dominated the landscape in the last years due to
the constraints imposed by cloud architectures.

https://doi.org/10.14778/3675034.3675047
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3675034.3675047


In what follows, we first provide a brief introduction to CXL (Sec.
2) and then present in detail three new architectural possibilities
enabled by novel CXL features (Sec. 3), discussing the challenges
that each brings. We show that these architectures can further
benefit from Near-Data Processing capabilities (Sec. 4) and by Het-
erogeneous Processing ones (Sec. 5). Lastly, we also discuss related
efforts (Sec. 6) and close with our conclusions (Sec. 7).

2 BACKGROUND AND MOTIVATION
CXL is, in essence, a set of new protocols to connect hosts to pe-
ripheral devices. It helps to start our discussion by revisiting how
several cores in a given CPU are connected.

2.1 Multicores and Memory Coherency
A multicore server is a distributed system where CPU cores share
the server’s memory. Each core can cache data in small blocks,
called cache lines, occasionally duplicating that data. Data consis-
tency issues may arise because two cores may wish to modify the
same line simultaneously. Cache coherence avoids the issues by
maintaining two invariants: (1) writes to the same memory location
are serialized; and (2) every write is eventually made visible to all
cores [51]. Simply put, when a core intends to modify a cached line,
it triggers a process known as cache invalidation, ensuring that
only that copy of the line remains cached.

Cache coherence is handled by hardware components, usually
via cache and memory controllers, as Figure 1(a) depicts. Until
recently, the only entities that could cache lines were CPU cores,
and the memory from which they could cache was limited to a
server’s available DRAM. In this scenario, we say that the coherency
domain extends only to the CPU.

2.2 Coherent and Non-Coherent Data Transfers
Without CXL, data is copied between servers and devices through
PCIe exchanges called transactions. PCIe transactions are not coher-
ent because the device is outside the reach of the cache invalidation
messages. Data copies can quietly become stale.

CXL supports extended coherence domains by creating new
types of transactions between servers and devices. It does so in
a backward-compatible way. The PCIe transactions are wrapped
in a sub-protocol called cxl.io and two other sub-protocols are
added: cxl.mem and cxl.cache. The server uses the former to
communicate with the devices’s memory controller as if it resided
locally on its motherboard. The device uses the latter sub-protocol
to cache contents managed by the server’s directory controller.
Figure 1(b) depicts the two new protocols. Because of the coherent
sub-protocols, any device’s memory can be seamlessly incorporated
into the overall system, and the device can cache data that lives in
the system’s memory. Devices are able to use one or both of the new
sub-protocols. If they only use cxl.cache and do not contribute
memory to the system, they are called Type 1 devices. If they only
use cxl.mem and do not cache memory from the host, they are
called Type 3. Devices that use both are known as Type 2.

2.3 CXL Status and Availability
CXL is a public consortium led by Intel, and it has had four major
releases so far. The 1.1 version focuses on local memory expansion,

allowing a server to access more memory than is available in its
DIMM slots through locally attached CXL devices called memory
expanders. Release 2.0 introduced basic forms of interconnects (i.e.,
CXL switches). It allows memory expander devices to be installed in
remote chassis and be shared by different servers. As of this writing,
two generations of Intel CPUs support CXL 1.1 [22, 23], and a new
generation supporting 2.0 was just released [24]. There are man-
ufacturers offering Type 3 expanders, including some for CXL 2.0
(e.g., [36, 46, 47]). The first CXL switch silicons and adapters are also
becoming available [45, 58]. Most importantly, some established
database vendors are evaluating these technologies [9, 27].

CXL versions 3.0 and 3.1 support more sophisticated networking
and additional memory-sharing modes, including peer-to-peer ex-
changes among devices. These versions depend on improvements
in PCIe, which will be accomplished in the already ratified PCIe
Gen 6 and the Gen 7 [43]. We expect the next generation of Intel
and AMD CPUs to support PCIe 6 and the newest CXL versions.

2.4 CXL Performance Characterization
It is easy to look into CXL memory performance by comparing it
to NUMA memory access. Current conventional NUMA servers
typically comprise two sockets, each containing a CPU and half
of the system’s DRAM. When a CXL memory expander is used, it
effectively attaches more DRAM DIMMs to the system by creating
an additional NUMA node, albeit one without any cores. We note,
however, that simply modeling CXL memory as NUMA can be
inaccurate. The number of memory controllers in an expander and,
thus, available bandwidth varies from product to product. Moreover,
the type of memory used in the expander need not be the same as
the one in the hosts.

Preliminary benchmarks by Microsoft, Meta, and Intel about
CXL memory performance are already available (resp., [31, 34, 52]).
The perceived latency for CXL memory access is slightly higher
than that for remote NUMA access, roughly in the 200–400 nanosec-
onds range. As noted above, the bandwidth highly depends on the
expander’s characteristics. It can be lower or higher than that of a
memory controller found within a host NUMA node. As just men-
tioned, nothing prevents an expander from using HBM instead of
DDR memory. We summarize the performance results of the three
papers we mention next.

The micro-benchmarks from Intel investigate both latency and
bandwidth [52]. Regarding latency, executing a load instruction
against a given type of CXL-attached memory can take just 35%
longer than the equivalent NUMA memory access. Executing a
store under the same conditions can present slightly lower but
equivalent overheads. Regarding bandwidth, transfers from NUMA
nodes can be 70% efficient when considering only loads, compared
to 46% efficiency through a CXL interconnect.

Meta published results on the end-to-end impact of using CXL
in applications [34]. In that work, CXL memory stored cold pages,
with the operating system swapping pages back and forth between
the host DRAM and the CXL memory. In essence, CXL memory
was used as an additional memory tier between the DRAM and
storage. The results suggest that the bandwidth available from CXL
memory is around 64 GB/s with latency only slightly larger than
that of NUMA memory.



Server

PCIe

Device

memory
controller

cache
controllers

directory
controller

memory
controller

Server

CXL

Device

memory
controller

cache
controllers

directory
controller

memory
controller

cache
controller

cxl.memcxl.cache

CPU-exlusive 
coherency 

domain

extended 
coherency

domain
data

copies
$$$ $$$$$$

$$$

Notation

CPU

caches

DRAM

(a) (b)

Figure 1: (a) Peripherals connected using PCIe cards are outside the coherency domain, even if they contain memory. (b) CXL is
a set of protocols that allow components on the peripheral to join the CPU coherency domain.

Microsoft also performed an end-to-end study on the impact of
CXL memory for their cloud environment [31]. While the results
differ from workload to workload, the study found that under the
expected latency increases, some 26% of the 158 workloads studied
showed less than 1% performance penalty, and an additional 17%
showed less than 5%. For database workloads, specifically TPC-
H, the overheads were highly query-dependent but were mostly
below 20%. This analysis already considers CXL switches and shared
memory among a large number of machines in a rack.

2.5 CXL as Networking
Other studies suggest that CXL interconnects, the fabric carrying
coherency traffic between servers and devices, can be significantly
more efficient than RDMA-enabled networks [19, 25, 49]. As seen
above, the latency of CXL communications averages in the low
hundreds of nanoseconds, while the fastest RDMA exchanges take
a fewmicroseconds—a difference of at least 2.5×. The advantages go
beyond latency. These studies also hint at bandwidth differences and
partly attribute them to the fact that traditional network interface
cards (NICs) underutilize the PCIe lanes they occupy. For instance,
a 400 Gbps NIC (50 GB/s) uses 16 PCIe Gen5 lanes that, in the
aggregate, can offer 64 GB/s [37]. This discrepancy means that over
20% of the available PCIe bandwidth does not translate into network
bandwidth. CXL adapters utilize the full bandwidth.

From the application point of view, replacing RDMA with CXL
turns an application that is networking API-based into a many-core,
shared-memory application. This application can scale by launching
additional threads and can access remote memory without incor-
porating networking APIs, such as Infiniband Verbs. Moreover,
much of the memory access coordination is managed in hardware,
through coherence, instead of by software. That is because CXL
memory is accessed using the same familiar load and store instruc-
tions that applications use to access local memory. The hardware
makes the remote access look transparent to the software, including
maintaining coherence.

Ultimately, CXL’s advantages go beyond software simplicity and
performance. There are many functional aspects that RDMA simply
cannot handle. RDMA does not provide a path from the CPU to
accelerators (computing devices) for instance; CXL does. RDMA
does not provide a path between different server components, for
instance, from a NIC to an SSD; CXL does. RDMA only enables
access to disaggregated memory; CXL allows disaggregation of an
entire rack without requiring that the devices support anything
other than PCIe at the physical level.

2.6 CXL Scalability and Fault Tolerance
CXL imposes a limit on the number of devices that contribute
and/or cache memory from each other. Currently, a CXL coherence
domain can support a diameter of up to 4096 devices. Arguably, this
number of devices is amply sufficient to cover one rack—or even a
small number of racks— especially because not all the devices need
to be coherent. We note that such interconnection size limitations
are not uncommon. For instance, RDMA requires the underlying
Ethernet network to be lossless, something that it is also difficult
to do at a large scale [20]. We expect that the CXL limitations will
diminish as it evolves, as is typical with emerging technologies.

Failures can, of course, occur on a disaggregated rack, whether
using RDMA or CXL. CXL does not add failure modes to those that
are normally expected in a distributed system. However, memory
expansion through CXL brings at least two advantages in excep-
tional scenarios. First, failure detection and propagation are built
into the protocol through a set of mechanisms known as RAS (reli-
ability, availability, and serviceability) [4]. Because the hardware is
conceived to identify and address failures, the reaction times in a
CXL platform are likely faster than in a traditional distributed sys-
tem. Second, using CXL disaggregated memory instead of a remote
machine’s memory is a better scenario for failure probability due
to the lower number of components and lower potential for load
interference issues.

3 SHARED-MEMORY ARCHITECTURES
In this section, we will explore how CXL can expand a system’s
available memory in at least three ways. Figure 2 illustrates the
resulting architectures. We will introduce each, discussing their
implications, potential innovative applications, and the necessary
research work to support them.

3.1 Memory Expansion
Database systems maintain a memory pool that all threads use to
process queries or transactions called Buffer Cache or Buffer Pool.
In disk-based systems, the pool is an intermediate stage and cache
between persistent storage and each thread’s private space [21]. In
main-memory systems, the pool holds data in its entirety while still
providing memory for query processing [17]. The most straight-
forward way to expand a database system’s memory is to have the
pool also manage CXL memory, as Figure 2(a) shows. After adding
an expansion card to a system, the pool can access CXL memory
using the same instructions it uses for conventional memory, no
API needed, while the hardware takes care of coherency.



Buffer 
Pool

Server

CXL
con-
troller Expander

Buffer 
Pool

Server

CXL
adapter Remote Pool

Buffer 
Mgr

Buffer 
Mgr

C
XL

 F
ab

ric

(a) (b) (c)

CXL
adapter

CXL
switch

storage

memory

compute

Disaggregated Rack

Figure 2: CXL allows different memory expansion architectures: (a) local expansion and (b) far-memory pooling, and (c)
full-rack disaggregation. The latter two are achieved through specialized CXL switches.

However, a database system now has to match the different data
placement options to the requirements for data access. This map-
ping should be flexible enough to accommodate different types
of memory expanders and dynamic enough to reflect a system’s
instantaneous workload. Historically, this mapping was solved by a
memory tiering approach. Hot pages are placed in fast-tier memory,
and cold pages are in less-performing tiers. A system such as an
OS paging mechanism would track pages’ temperatures and make
data placement decisions accordingly. Some, like Meta mentioned
above [34], advocate a similar approach for CXL memory. Since it
is long established that a database engine can better calculate the
utility of keeping a page in a given memory tier than the OS [11],
we posit that existing I/O optimization and buffer management tech-
niques that have been successful in other deep memory hierarchy
scenarios can play a new role here [33, 50].

A “killer app” for this architecture may lie in the very memory di-
versity it supports. In other words, thememory tiers can be carefully
designed. CXL memory expanders not only break the notorious
memory wall [33] but also rid the system of inter-dependencies.
The expansion memory type need not match the memory type
the current CPU/motherboard supports. The expansion can con-
tain regions with slower/cheaper or faster/more expensive memory
than the CPU at the system architect’s discretion, even enabling
the recycling of DRAM from older generations, an aspect with the
potential to result in significant cost savings and a reduction of the
environmental footprint of computers. From a database perspective,
an interesting configuration would place the transactional work-
load on the local DRAM and use CXL memory for the analytic part.
The data structures in the CXL memory could be specialized ones,
such as data cubes, materialized tables, and denormalized tables,
to cite a few. Thanks to the data placement, the OLTP and OLAP
data structures would not interfere with each other. Exercising this
flexibility allows fine-tuning the memory characteristics (and cost)
on which a given database system thrives.

Efficiently expanding single-machine database systemswith CXL
memory raises several other important research questions:
• Are memory expanders fast enough for OLTP or will they be

suitable mainly for OLAP? Can they be used to perform both on
the same machine and what are the implications?

• Are the data structures kept in CXLmemory the same as the ones
that are successfully used in conventional memory? If not, are
there data structures suitable for the increased non-uniformity
in memory accesses that CXL memory creates?

• Should data structures span conventional and CXL memory?
Could and should these structures be adaptable and offer dynamic
data placement according to the access patterns?

• Alternatively, should we forego designing data structures and
use memory expanders as paging block devices for integration
simplicity, or would specialized allocating techniques benefit
from byte-addressable memory?

3.2 Memory Pooling
Unfortunately, increasing individual servers’ memory with expand-
ers in a cloud setting can create a phenomenon called stranded
memory. The memory physically present in one server may be
underutilized by the systems running on it. Hyperscalers have
reported that, as memory is one of the most expensive components
in data centers, stranding is a major source of inefficiencies [31].

Recently, researchers have explored ways to reassign such stran-
ded memory [2, 26, 57, 61]. The ideas have led to the notions of far
memory, remote memory, and disaggregated memory. Far memory
is a term typically used to refer to any generic configuration where
the additional DRAM is not local. Remote memory is also far but
generally refers to utilizing unused memory of other machines. Dis-
aggregated memory is not allocated to any machine but is available
for any servers to use. In most cases, the connection between server
and memory is made through RDMA and the remote memory is
treated as a block device with a paging mechanism to move data
back and forth between the host and the far memory.

With CXL, a new architecture is possible that uses large, in-
dependent memory pools that can be carved into smaller pieces.
Each server can access one or more of these pieces through CXL
switches, and a single such memory pool can serve multiple servers
simultaneously this way. Figure 2(b) depicts such a scenario. As dis-
cussed above, one of CXL’s main innovations is its ability to assign
a portion of a pool to a server without requiring its applications to
access it through a non-coherent networking API. Direct, coherent
memory access is far more efficient than what can be achieved in
a distributed system that requires an external memory access API
and leaves coherency to the application. Moreover, by cascading
multiple CXL switches, CPUs on different machines can access a
central memory expander containing a pool of memory available
to all machines in a rack, very much like disaggregated storage is
available in the cloud.

We posit that this architecture’s killer app is making database
systems better cloud denizens. Traditional databases assume that
large amounts of data are loaded into a VM memory because the
database performance depends on limiting I/O. The resulting VM
is not elastic because databases do not cope well with dynamically
varying the size of their buffer pools. For the same reason, database
systems also miss the benefits of serverless technologies. The cost
of quickly loading and unloading the state is too high.



Disaggregated memory implemented through CXL allows for
placing the buffer pool on the disaggregated memory and using
the local DRAM for query processing. If more query processing
capacity is needed, new engines can be spawned and connected to
the disaggregated memory so that these engines are immediately
ready to run queries, as there is no need to warm up the database.

The additional latency of CXL memory plays only a minor role
in databases [31] and is a good trade-off for far more elasticity than
is feasible with engines where the data resides in local memory.
Similarly, a database engine can be easily migrated when the buffer
pool is in disaggregated memory. If the data structures and state
of the engine itself are maintained in disaggregated memory, then
migrating the entire engine to another machine becomes a far
simpler operation.

From a research perspective, more interesting questions arise:
• Implementing cloud-friendly features requires rethinking the

internal database architecture to remove the assumption that
everything is in local memory. Extensive experimentation of
what needs to be local and what can be placed in disaggregated
memory will be required to determine which part of the engine
can tolerate the additional latency of CXL memory. We discussed
some of these architectural changes elsewhere [29].

• Assuming database systems become more elastic using the above
techniques, should the granularity to consider be at the entire
engine level, or can the elasticity be pushed down to the level of
threads running queries?

• Threads running queries could be moved from machine to ma-
chine by keeping their state and working space in disaggregated
memory. Alternatively, they can be created as the workload dic-
tates. How would an engine operate under such a dynamically
changing multiprogramming level?

3.3 Memory Sharing
We have seen how CXL can increase the memory availability and
flexibility of single-server database systems. The next question to
arise is whether CXL can also benefit larger database systems.

Traditionally, these systems scale by adopting distributed data-
base techniques [1, 41, 56]. Simply applying the known scalability
techniques into a CXL environment is unlikely to succeed for nu-
merous reasons: to cite only a few, cache invalidation now crosses
machines; updates implymore-onerous distributed, locks; andmem-
ory is wasted as the same data is copied into the local buffer cache
of several machines. Some of these issues were attenuated in the
past through a mix of replication and sharding, often using RDMA
to reduce the network overhead [6, 7, 53, 60]. However, these tech-
niques invariably impose a notoriously fragile balance between
consistency, symmetry in the system (e.g., with read-only copies),
and data placement to minimize data movement, thereby limiting
architectural freedom (e.g., [55]).

In contrast, CXL can integrate multiple servers and closely-
placed large resource pooling modules without any of the above
restrictions. The pooling modules can contain homogeneous DRAM
devices but also devices with different mixes of volatile and non-
volatile memory (e.g., [48]), creating storage pooling modules. Ad-
vanced CXL features such as Global Integrated Memory (GIM) and
Global Fabric-Attached Memory Devide (GFAM), allow servers to

share resources in the pooling modules collectively [8]. Simply
put, the entire rack becomes a single shared-memory machine. Fig-
ure 2(c) depicts this scenario within one rack, but we believe the
same features could also support spanning a small number of racks.

A killer app for this architecture is a larger database system in a
truly scaled-up manner. Each thread in this database could run on a
separate compute module but share the same memory and storage
map with threads running in another computer module.

A fully disaggregated system like the one CXL enables raises yet
unexplored scalability questions, such as:
• Hashing and sorting are at the core of most relational data pro-

cessing, but it is not obvious how they would work at a rack-level
scale. It is possible that accepted wisdom regarding when to use
each one will change in a scale-out architecture.

• Given that each core can now access one to two orders of mag-
nitude more memory than before, are the data structures we use
to organize and index the data still effective at these new scales?
Since the invalidation messages can now dominate access time,
how is the coherency traffic generated by a typical data structure?

• Assuming we now have the freedom to engage a tremendous
amount of resources to solve individual query operators, how do
we schedule the machine resources across competing queries?

Rack-level integration is arguably the most impactful change en-
abled by CXL. It moves the memory unification effort to the hard-
ware and thereby liberates the database system from managing
coherence across servers. Moreover, CXL can attain bandwidth
levels larger than those attained by today’s networks and with
far lower latency. We expect these possibilities alone to radically
change the design of scalable databases and data processing en-
gines, but there are two other profound possibilities. We describe
the first in the next section and the second in the subsequent one.

4 NEAR-DATA PROCESSING
CXL enables another important feature that applies to all the ar-
chitectures we just described. To understand this feature, it helps
to examine how a CXL device is built. A component in the device
called coherency controller implements the CXL protocol. In a mem-
ory expander, this controller wraps existing DRAM DIMMs and
intercepts all the requests to memory. Similarly, in a device that
caches CXL memory, the controller maintains the cache state and
responds to invalidation traffic. Put differently, the CXL controller
is an independent entity from the memory it manages.

This independence opens a tremendous opportunity: The con-
troller can be co-opted to perform computations over the data it
transports. This ability is known as near-data processing (NDP). Fig-
ure 3(a) shows a controller capable of performing query processing
on the device’s side of the setup.

One may argue that NDP is hardly new. There are examples
where a small processor is placed near memory [16] or in disag-
gregated memory [26] to accelerate query processing in research
prototypes. Some products, such as the Oracle’s retired SPARC
S7, featured Data Analytics Accelerators (DAX) to support the of-
floading of basic relational operators [42]. However, in traditional
NDP, query processing work is divided between the CPU and the
accelerator because the accelerators do not support coherence. If
one side changes the data, the other will not see it.



Server Accelerator

Query 
Exec

Lock Table
Query Data

Server Accelerator w/ AMRs

Query 
Exec

Query 
Accel

Lock Table
Query data

CXL
con-
troller

Query 
Exec

CXL
con-
troller

(a)

(b)

Figure 3: Near-data processing under CXL: (a) A processor or
FPGA managing the expanded memory can be co-opted to
execute a portion of a query. (b) A unique opportunity for
acceleration exists through active memory regions (AMR).

In contrast, CXL-supported NDP allows both devices to work
in parallel, not only because both can access data but also because
the database system lock table can be shared, allowing each side to
coordinate with the other. Being able to parallelize work that has
been offloaded allows us to design a new generation of near-data
accelerators that are more flexible and, most likely, faster.

A killer app for CXL-supported NDP is a new take on virtualiz-
ing memory. Since the controller intercepts all CXL traffic, it can
implement an active memory region that is not backed by DRAM.
Instead, the region corresponds to a computation that is executed
when its memory addresses are accessed. If the computation is a
streaming one, the results need not be materialized and could be
fed to the application as it reads memory. Figure 3(b) illustrates
such a use case. In databases, this can be used for on-the-fly imple-
mentations of view materialization and data transpositions [26] or
better integration databases and smart storage systems [28].

CXL acceleration is not without challenges, some of which we
list below:
• What portions of query processing should be done near the

data? Some examples, such as compression and decompression,
encryption and decryption, selection, projection, and filtering
with LIKE predicates, have brought substantial advantages in
practice [5, 10, 16, 26]. We believe other opportunities still exist.

• It is not inconceivable that CXL can support improving other
fundamental mechanisms that are central to OLTP, such as col-
lective communication, locking, timestamps, and dynamic data
relocation across the system, among others.

• Many near-data processing accelerators have memory hierar-
chies as well. Should we treat them as local memory or use them
as CXL memory, and in which proportion?

5 HETEROGENEOUS ARCHITECTURES
We have depicted in Figure 2(c) how to use CXL to connect pools
of different resources, such as memory or storage. The same tech-
niques allow other types of resources, such as FPGAs, GPUs, TPUs,
and DPUs, to be similarly pooled and integrated into a rack-scale
computer. For instance, as we just discussed, an accelerated CXL
controller may offer services based on those resources through an
active memory range.

This composability possibility opens a research field of its own:

• What should a heterogeneous machine look like now that dif-
ferent processing devices can be independently pooled? How
should we select devices and balance resources across them?

• Can we and should we build machines tailored to specific work-
loads? For instance, machine learning (ML) is taxing database
engines because the data often has to be taken out of the data-
base to run it through ML tools. A heterogeneous architecture
that seamlessly integrates CPUs and GPUs makes it possible to
implement ML operators directly on the database engine.

6 RELATED EFFORTS
CXL is the result of consolidating several projects that came before
it, most notably CCIX [13], GenZ [18], and OpenCAPI [40]. An
overwhelming number of institutions and companies are working
together to advance the protocol [12]. The consolidation, however,
has not been complete. Some proprietary memory coherency inter-
connects still exist, mainly involving GPGPU vendors. AMD sup-
ports an interconnect called Infinity Architecture [3], and NVidia
has NVLink [39] and NVlink-C2C [38].

The argument for developing specialized interconnects for GPUs
is that they can provide higher bandwidths than what is currently
available with PCIe. While these arguments may have been valid
with older versions of PCIe, the latter standard has been upgraded
at an unprecedented pace. PCIe Gen 7, expected to be available in
2025, will support 128MT/s per lane or 242GB/s in a ×16 card [44].
Even if proprietary interconnects were to keep improving their
bandwidth, they remain proprietary. The reach of CXL reach is
much wider than that of GPUs and, for that, it is a much more
capable integration technology.

As with any new technology, some works have pointed to per-
ceived CXL disadvantages, such as additional equipment cost or
potential increase in software complexity [30]. For database sys-
tems, however, CXL can eliminate the memory bottleneck that
has plagued them for a while—something that can be done with
minimal software changes—and create possibilities for innovative
architectures that were not feasible before. Any equipment cost
that this might entail would be more than offset by the improving
memory utilization, let alone other parallelism and acceleration
opportunities that these new architectures can bring.

7 CONCLUSION
In this paper, we argued that CXL will reverse at least two decades
of investments in scale-out database systems. Through seamless
integration of devices’ and hosts’ memory, CXL allows database
systems to grow via scaling up rather than scaling out, turning
what is now complex distributed system development into cen-
tralized system development while simplifying the development
of heterogeneous systems in the process. Given the magnitude of
these possibilities, we expect CXL to catalyze the creation of a
new generation of database systems with unprecedented scalability,
efficiency, and ease of programming.

ACKNOWLEDGEMENTS
This work has received funding from the Swiss State Secretariat for
Education (SERI) in the context of the SmartEdge EU project (grant
agreement No. 101092908).



REFERENCES
[1] Josep Aguilar-Saborit et al. 2020. POLARIS: The Distributed SQL Engine in

Azure Synapse. Proceedings of the VLDB Endowment 13, 12 (2020), 3204–3216.
https://doi.org/10.14778/3415478.3415545

[2] Marcos K. Aguilera, Emmanuel Amaro, Nadav Amit, Erika Hunhoff, Anil Yelam,
and Gerd Zellweger. 2023. Memory disaggregation: why now and what are the
challenges. ACM SIGOPS Oper. Syst. Rev. 57, 1 (2023). https://doi.org/10.1145/
3606557.3606563

[3] AMD. 2019. Infinity Architecture: The Foundation of the Modern
Datacenter. https://www.amd.com/system/files/documents/LE-70001-SB-
InfinityArchitecture.pdf.

[4] AsteraLabs. 2023. Industry’s First CXL 2.0 RAS Capabilities Demo.
https://computeexpresslink.org/resource/industrys-first-cxl-2-0-ras-
capabilities-demo-with-leo-memory-connectivity-platform/.

[5] Jeff Barr. 2021. AQUA (Advanced Query Accelerator) – A Speed Boost for Your Ama-
zon Redshift Queries. https://aws.amazon.com/blogs/aws/new-aqua-advanced-
query-accelerator-for-amazon-redshift/

[6] Claude Barthels, Ingo Müller, Konstantin Taranov, Gustavo Alonso, and Torsten
Hoefler. 2019. Strong consistency is not hard to get: Two-Phase Locking and
Two-Phase Commit on Thousands of Cores. Proceedings of the VLDB Endowment
12, 13 (2019). https://doi.org/10.14778/3358701.3358702

[7] Carsten Binnig, AndrewCrotty, Alex Galakatos, TimKraska, and Erfan Zamanian.
2016. The End of Slow Networks: It’s Time for a Redesign. Proceedings of the
VLDB Endowment 9, 7 (2016). https://doi.org/10.14778/2904483.2904485

[8] Rob Blankenship and Mahesh Wagh. 2024. Introducing the CXL 3.1 Specifi-
cation. https://computeexpresslink.org/wp-content/uploads/2024/03/CXL_3.1-
Webinar-Presentation_Feb_2024.pdf.

[9] Andrew Chang, Jaemin Jung, Minseon Ahn, DongHun Lee, Vincent Pham, Shuyu
Lyu, Jungmin Kim, and Oliver Rebholz. 2023. Expanding System Memory Bound-
aries Through CXL-Enabled Device-A Case Study. https://samsungmsl.com/wp-
content/uploads/2023/03/MemCon2023.pdf.

[10] Monica Chiosa, Fabio Maschi, Ingo Müller, Gustavo Alonso, and Norman May.
2022. Hardware Acceleration of Compression and Encryption in SAP HANA.
Proceedings of the VLDB Endowment 15, 12 (2022). https://doi.org/10.14778/
3554821.3554822

[11] Hong-Tai Chou and David J. DeWitt. 1985. An Evaluation of Buffer Manage-
ment Strategies for Relational Database Systems. In Proceedings of 11th Interna-
tional Conference on Very Large Data Bases (VLDB’85). https://doi.org/10.1007/
BF01840450

[12] CXL Consortium. [n.d.]. Consortium Member List. https://www.
computeexpresslink.org/members.

[13] CCIX Consortium. 2019. An Introduction to CCIX. https://www.ccixconsortium.
com/wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf.

[14] Bill Dally. 2011. Power, programmability, and granularity: The challenges of
exascale computing. In 2011 IEEE International Test Conference (ITC’11). IEEE
Computer Society, 12–12. https://doi.org/10.1109/IPDPS.2011.420

[15] William J Dally, Yatish Turakhia, and Song Han. 2020. Domain-specific hardware
accelerators. Commun. ACM 63, 7 (2020), 48–57. https://doi.org/10.1145/3361682

[16] Yuanwei Fang, Chen Zou, and Andrew A. Chien. 2019. Accelerating Raw Data
Analysis with the ACCORDA Software and Hardware Architecture. Proceedings
of the VLDB Endowment 12, 11 (2019). https://doi.org/10.14778/3342263.3342634

[17] Hector Garcia-Molina and Kenneth Salem. 1992. Main memory database systems:
An overview. IEEE Transactions on knowledge and data engineering 4, 6 (1992),
509–516. https://doi.org/10.1109/69.180602

[18] Gen-Z. 2024. Gen-Z Archive. https://computeexpresslink.org/resource/gen-z-
specification-archive/.

[19] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. 2022.
Direct Access, High-Performance Memory Disaggregation with DirectCXL. In
2022 USENIX Annual Technical Conference (USENIX ATC’22). https://www.usenix.
org/system/files/atc22-gouk.pdf

[20] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In
Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM’16). https://doi.
org/10.1145/2934872.2934908

[21] Joseph M Hellerstein, Michael Stonebraker, James Hamilton, et al. 2007. Archi-
tecture of a database system. Foundations and Trends® in Databases 1, 2 (2007),
141–259. https://doi.org/10.1561/1900000002

[22] Intel. 2022. Technical Overview Of The 4th Gen Intel® Xeon® Scalable processor
family. https://www.intel.com/content/www/us/en/developer/articles/technical/
fourth-generation-xeon-scalable-family-overview.html.

[23] Intel. 2023. 5th Gen Intel® Xeon® Processors. https://www.intel.com/content/
www/us/en/products/docs/processors/xeon/5th-gen-xeon-product-brief.html.

[24] Intel. 2024. The Intel® Xeon® 6 Processor Family. https://www.intel.
com/content/www/us/en/products/details/processors/xeon/xeon6-product-
brief.html.

[25] CAMEL KAIST. 2022. CAMEL’s CXL Solution: A Technology Brief. https:
//camel.kaist.ac.kr/public/camel-cxl-memory-pooling.pdf.

[26] Dario Korolija, Dimitrios Koutsoukos, Kimberly Keeton, Konstantin Taranov,
Dejan S. Milojicic, and Gustavo Alonso. 2022. Farview: Disaggregated Memory
with Operator Off-loading for Database Engines. In 12th Conference on Innovative
Data Systems Research (CIDR’22). https://www.cidrdb.org/cidr2022/papers/p11-
korolija.pdf

[27] Donghun Lee, Thomas Willhalm, Minseon Ahn, Suprasad Mutalik Desai, Daniel
Booss, Navneet Singh, Daniel Ritter, Jungmin Kim, and Oliver Rebholz. 2023.
Elastic Use of Far Memory for In-Memory Database Management Systems. In
Proceedings of the 19th International Workshop on Data Management on New
Hardware (DaMoN’23). https://doi.org/10.1145/3592980.3595311

[28] Sangjin Lee, Alberto Lerner, Philippe Bonnet, and Philippe Cudré-Mauroux. 2024.
Database Kernels: Seamless Integration of Database Systems and Fast Storage
via CXL. In 14th Conference on Innovative Data Systems Research (CIDR’24).
https://www.cidrdb.org/cidr2024/papers/p43-lee.pdf

[29] Alberto Lerner and Gustavo Alonso. 2024. Data Flow Architectures for Data
Processing on Modern Hardware. In 40th IEEE International Conference on Data
Engineering (ICDE’24). https://exascale.info/assets/pdf/lerner2024icde.pdf

[30] Philip Levis, Kun Lin, and Amy Tai. 2023. A Case Against CXL Memory Pooling.
In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks (HotNets’23).
https://doi.org/10.1145/3626111.3628195

[31] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-Based Memory
Pooling Systems for Cloud Platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’23). https://doi.org/10.1145/3575693.3578835

[32] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump Up the Volume: Processing Large Data on GPUs with Fast Inter-
connects. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD’20). https://doi.org/10.1145/3318464.3389705

[33] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. 2000. Optimizing
Database Architecture for the New Bottleneck: Memory Access. The VLDB
Journal 9, 3 (dec 2000). https://doi.org/10.1007/s007780000031

[34] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agar-
wal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanau-
jia, and Prakash Chauhan. 2023. TPP: Transparent Page Placement for CXL-
Enabled Tiered-Memory. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’23). https://doi.org/10.1145/3582016.3582063

[35] Fabio Maschi and Gustavo Alonso. 2023. The Difficult Balance Between Mod-
ern Hardware and Conventional CPUs. In Proceedings of the 19th Interna-
tional Workshop on Data Management on New Hardware (DaMoN’23). https:
//doi.org/10.1145/3592980.3595314

[36] Micron. 2023. Flexible memory capacity expansion for data intensive workloads.
https://www.micron.com/solutions/server/cxl.

[37] NVIDIA. 2021. NVIDIA ConnectX-7 400G Ethernet. https://www.nvidia.
com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-
datasheet-Final.pdf.

[38] NVIDIA. 2022. NVIDIA Opens NVLink for Custom Silicon Integra-
tion. https://nvidianews.nvidia.com/news/nvidia-opens-nvlink-for-custom-
silicon-integration.

[39] NVIDIA. 2024. NVLink and NVSwitch: The building blocks of advanced multi-
GPU communication—within and between servers. https://www.nvidia.com/en-
us/data-center/nvlink/.

[40] OpenCAPI. 2024. OpenCAPI Specification Archive. https://computeexpresslink.
org/resource/opencapi-specification-archive/.

[41] Oracle. [n.d.]. Why Oracle Exadata platforms are the best for Oracle Database.
https://www.oracle.com/engineered-systems/exadata/.

[42] Oracle. 2015. SPARC S7 Processor. https://www.oracle.com/a/ocom/docs/servers/
sparc/sparc-s7-processor-ds-3042417.pdf.

[43] PCI-SIG. [n.d.]. Peripheral Component Interconnect Express (PCIe) Specifica-
tions. https://pcisig.com/specifications.

[44] PCI-SIG. 2022. Announcing the PCIe 7.0 Specification. https:
//pcisig.com/blog/announcing-pcie%C2%AE-70-specification-doubling-
data-rate-128-gts-next-generation-computing.

[45] Photowave. 2024. Optical Communications Hardware for CXL Connectivity.
https://www.lightelligence.ai/index.php/product/photowave.html.

[46] Samsung. 2022. Samsung Electronics Introduces Industry’s First 512GB
CXL Memory Module. https://news.samsung.com/global/samsung-electronics-
introduces-industrys-first-512gb-cxl-memory-module.

[47] Samsung. 2024. CXL Memory Module - Box (CMM-B). https://semiconductor.
samsung.com/news-events/tech-blog/cxl-memory-module-box-cmm-b/.

[48] Samsung. 2024. Samsung CXL Solutions – CMM-H. https://semiconductor.
samsung.com/news-events/tech-blog/samsung-cxl-solutions-cmm-h/.

[49] Debendra Das Sharma, Robert Blankenship, and Daniel S Berger. 2023. An
Introduction to the Compute Express Link (CXL) Interconnect. arXiv preprint
arXiv:2306.11227 (2023). https://doi.org/10.48550/arXiv.2306.11227

https://doi.org/10.14778/3415478.3415545
https://doi.org/10.1145/3606557.3606563
https://doi.org/10.1145/3606557.3606563
https://www.amd.com/system/files/documents/LE-70001-SB-InfinityArchitecture.pdf
https://www.amd.com/system/files/documents/LE-70001-SB-InfinityArchitecture.pdf
https://computeexpresslink.org/resource/industrys-first-cxl-2-0-ras-capabilities-demo-with-leo-memory-connectivity-platform/
https://computeexpresslink.org/resource/industrys-first-cxl-2-0-ras-capabilities-demo-with-leo-memory-connectivity-platform/
https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/
https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/
https://doi.org/10.14778/3358701.3358702
https://doi.org/10.14778/2904483.2904485
https://computeexpresslink.org/wp-content/uploads/2024/03/CXL_3.1-Webinar-Presentation_Feb_2024.pdf
https://computeexpresslink.org/wp-content/uploads/2024/03/CXL_3.1-Webinar-Presentation_Feb_2024.pdf
https://samsungmsl.com/wp-content/uploads/2023/03/MemCon2023.pdf
https://samsungmsl.com/wp-content/uploads/2023/03/MemCon2023.pdf
https://doi.org/10.14778/3554821.3554822
https://doi.org/10.14778/3554821.3554822
https://doi.org/10.1007/BF01840450
https://doi.org/10.1007/BF01840450
https://www.computeexpresslink.org/members
https://www.computeexpresslink.org/members
https://www.ccixconsortium.com/wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf
https://www.ccixconsortium.com/wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf
https://doi.org/10.1109/IPDPS.2011.420
https://doi.org/10.1145/3361682
https://doi.org/10.14778/3342263.3342634
https://doi.org/10.1109/69.180602
https://computeexpresslink.org/resource/gen-z-specification-archive/
https://computeexpresslink.org/resource/gen-z-specification-archive/
https://www.usenix.org/system/files/atc22-gouk.pdf
https://www.usenix.org/system/files/atc22-gouk.pdf
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1561/1900000002
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/5th-gen-xeon-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/5th-gen-xeon-product-brief.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/xeon6-product-brief.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/xeon6-product-brief.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/xeon6-product-brief.html
https://camel.kaist.ac.kr/public/camel-cxl-memory-pooling.pdf
https://camel.kaist.ac.kr/public/camel-cxl-memory-pooling.pdf
https://www.cidrdb.org/cidr2022/papers/p11-korolija.pdf
https://www.cidrdb.org/cidr2022/papers/p11-korolija.pdf
https://doi.org/10.1145/3592980.3595311
https://www.cidrdb.org/cidr2024/papers/p43-lee.pdf
https://exascale.info/assets/pdf/lerner2024icde.pdf
https://doi.org/10.1145/3626111.3628195
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1145/3318464.3389705
https://doi.org/10.1007/s007780000031
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1145/3592980.3595314
https://doi.org/10.1145/3592980.3595314
https://www.micron.com/solutions/server/cxl
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://nvidianews.nvidia.com/news/nvidia-opens-nvlink-for-custom-silicon-integration
https://nvidianews.nvidia.com/news/nvidia-opens-nvlink-for-custom-silicon-integration
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://computeexpresslink.org/resource/opencapi-specification-archive/
https://computeexpresslink.org/resource/opencapi-specification-archive/
https://www.oracle.com/engineered-systems/exadata/
https://www.oracle.com/a/ocom/docs/servers/sparc/sparc-s7-processor-ds-3042417.pdf
https://www.oracle.com/a/ocom/docs/servers/sparc/sparc-s7-processor-ds-3042417.pdf
https://pcisig.com/specifications
https://pcisig.com/blog/announcing-pcie%C2%AE-70-specification-doubling-data-rate-128-gts-next-generation-computing
https://pcisig.com/blog/announcing-pcie%C2%AE-70-specification-doubling-data-rate-128-gts-next-generation-computing
https://pcisig.com/blog/announcing-pcie%C2%AE-70-specification-doubling-data-rate-128-gts-next-generation-computing
https://www.lightelligence.ai/index.php/product/photowave.html
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://semiconductor.samsung.com/news-events/tech-blog/cxl-memory-module-box-cmm-b/
https://semiconductor.samsung.com/news-events/tech-blog/cxl-memory-module-box-cmm-b/
https://semiconductor.samsung.com/news-events/tech-blog/samsung-cxl-solutions-cmm-h/
https://semiconductor.samsung.com/news-events/tech-blog/samsung-cxl-solutions-cmm-h/
https://doi.org/10.48550/arXiv.2306.11227


[50] Utku Sirin, Pinar Tözün, Danica Porobic, and Anastasia Ailamaki. 2016. Micro-
Architectural Analysis of In-Memory OLTP. In Proceedings of the 2016 Interna-
tional Conference on Management of Data (SIGMOD’16). https://doi.org/10.1145/
2882903.2882916

[51] Daniel J Sorin, Mark D Hill, and David A Wood. 2011. A Primer on Memory
Consistency and Cache Coherence. Morgan & Claypool Publishers. https://doi.
org/10.1007/978-3-031-01764-3

[52] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang,
Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, Ren Wang, Jung Ho
Ahn, Tianyin Xu, and Nam Sung Kim. 2023. Demystifying CXL Memory with
Genuine CXL-Ready Systems and Devices. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’23). https:
//doi.org/10.1145/3613424.3614256

[53] Yacine Taleb, Ryan Stutsman, Gabriel Antoniu, and Toni Cortes. 2018. Tailwind:
Fast and Atomic RDMA-Based Replication. In 2018 USENIX Annual Technical
Conference (USENIX ATC’18). https://www.usenix.org/system/files/conference/
atc18/atc18-taleb.pdf

[54] Neil C. Thompson and Svenja Spanuth. 2021. The Decline of Computers as a
General Purpose Technology. Commun. ACM 64, 3 (2021). https://doi.org/10.
1145/3430936

[55] Alexandre Verbitski et al. 2018. Amazon Aurora: On Avoiding Distributed
Consensus for I/Os, Commits, and Membership Changes. In Proceedings of the
2018 International Conference on Management of Data (SIGMOD’18). https:
//doi.org/10.1145/3183713.3196937

[56] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Ka-
mal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz

Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considera-
tions for High Throughput Cloud-Native Relational Databases. In Proceedings
of the 2017 ACM International Conference on Management of Data (SIGMOD’17).
https://doi.org/10.1145/3035918.3056101

[57] Ruihong Wang, Jianguo Wang, Stratos Idreos, M. Tamer Özsu, and Walid G.
Aref. 2022. The Case for Distributed Shared-Memory Databases with RDMA-
Enabled Memory Disaggregation. Proceedings of the VLDB Endowment 16, 1
(2022). https://doi.org/10.14778/3561261.3561263

[58] XConn. 2024. World’s first CXL 2.0 and PCIe Gen5 Switch IC. https://www.xconn-
tech.com/product.

[59] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin and Yang of Pro-
cessing Data Warehousing Queries on GPU Devices. Proceedings of the VLDB
Endowment 6, 10 (2013), 817–828. https://doi.org/10.14778/2536206.2536210

[60] Erfan Zamanian, Xiangyao Yu, Michael Stonebraker, and Tim Kraska. 2019.
Rethinking Database High Availability with RDMA Networks. Proceedings of
the VLDB Endowment 12, 11 (2019). https://doi.org/10.14778/3342263.3342639

[61] Qizhen Zhang, Philip A. Bernstein, Daniel S. Berger, and Badrish Chandramouli.
2021. Redy: Remote Dynamic Memory Cache. Proceedings of the VLDB Endow-
ment 15, 4 (2021). https://doi.org/10.14778/3503585.3503587

[62] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan, Mustafa
Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, Sundaram
Narayanan, Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-Jean Wu,
Christos Kozyrakis, and Parik Pol. 2022. Understanding data storage and inges-
tion for large-scale deep recommendation model training: industrial product. In
Proceedings of the 49th Annual International Symposium on Computer Architecture
(ISCA’22). https://doi.org/10.1145/3470496.3533044

https://doi.org/10.1145/2882903.2882916
https://doi.org/10.1145/2882903.2882916
https://doi.org/10.1007/978-3-031-01764-3
https://doi.org/10.1007/978-3-031-01764-3
https://doi.org/10.1145/3613424.3614256
https://doi.org/10.1145/3613424.3614256
https://www.usenix.org/system/files/conference/atc18/atc18-taleb.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-taleb.pdf
https://doi.org/10.1145/3430936
https://doi.org/10.1145/3430936
https://doi.org/10.1145/3183713.3196937
https://doi.org/10.1145/3183713.3196937
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.14778/3561261.3561263
https://www.xconn-tech.com/product
https://www.xconn-tech.com/product
https://doi.org/10.14778/2536206.2536210
https://doi.org/10.14778/3342263.3342639
https://doi.org/10.14778/3503585.3503587
https://doi.org/10.1145/3470496.3533044

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Multicores and Memory Coherency
	2.2 Coherent and Non-Coherent Data Transfers
	2.3 CXL Status and Availability
	2.4 CXL Performance Characterization
	2.5 CXL as Networking
	2.6 CXL Scalability and Fault Tolerance

	3 Shared-Memory Architectures
	3.1 Memory Expansion
	3.2 Memory Pooling
	3.3 Memory Sharing

	4 Near-Data Processing
	5 Heterogeneous Architectures
	6 Related Efforts
	7 Conclusion
	References

