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I. BACKGROUND

A. Centroid Decomposition (CD)
Example 1 (Centroid Decomposition): To illustrate the ap-

plication of the CD algorithm, consider the input matrix, X,
that contains two time series of five elements each:

X =


5 1
10 5
9 4
4 6
2 4


Among all sign vectors, the sign vector that maximizes

‖XT ·Z‖ is Z1 = { 1, 1, 1, 1, 1}T . Z1 is used to compute
the first column of R (and L) during iteration 1 as follows:

R∗1=
XT ·Z1

‖XT ·Z1‖
=
[
0.98
0.19

]
; L∗1 = X·R∗1 =


4.7

10.78
9.6
2.74
2.74


Similarly, the second column of R (and L) are respectively

computed using Z2 which is derived from X−L∗1·RT
∗1. The

resulting decomposition produced by CD is (only two decimals
are shown):

X =


5 1

10 5
9 4
4 6
2 4

 =


4.7 1.96

10.78 2.94
9.6 2.15
2.74 6.66
2.74 3.53


︸ ︷︷ ︸

L

·
[
0.98 0.19
0.19 0.98

]
︸ ︷︷ ︸

RT

II. ANTICIPATORY SIGN VECTOR

Lemma 1 (Weight vectors are incremental): Let Z(k) be Z
at iteration k, P the set of positions of the elements flipped
in Z(k) and let vi be the i-th weight value in V . For any two
consecutive iterations of sign vectors, the weight vectors are
linearly dependent, i.e.,

v
(k+1)
i = v

(k)
i − 2×

∑
p∈P\{i}

(Xi∗ ·XT
p∗)

Proof: By definition of the weight vector, we have:

V (k) = diag 0(X·XT ) · Z(k)

V (k+1) = diag 0(X·XT ) · Z(k+1) (1)

Let U be a vector with the same length as Z(k) where for
each p ∈ P , Up = 1 and all other elements are 0. Using U
we compute Z(k+1) as follows

Z(k+1) = Z(k) − 2× U (2)

Putting (2) into (1) we get

V (k+1) = diag 0(X·XT ) · (Z(k) − 2× U)

= diag 0(X·XT ) · Z(k) −
2× diag 0(X·XT ) · U

= V (k) − 2× diag 0(X·XT ) · U (3)

Let col(X, p) be an auxiliary function that returns the p-th
column of X. Then, from (3) we get

V (k+1) = V (k) − 2×
∑
p∈P

col(diag 0(X·XT ), p)

= V (k) − 2×
∑
p∈P


X1∗ ·XT

p∗
X2∗ ·XT

p∗
...

Xn∗ ·XT
p∗


Thus, ∀i ∈ [1, n] we have

v
(k+1)
i = v

(k)
i − 2×

∑
p∈P\{i}

(Xi∗ ·XT
p∗) (4)

In the particular case where only one sign is flipped, ∀i ∈
[1, n] \ {p}, Lemma 1 can be rewritten as follows:

v
(k+1)
i = v

(k)
i − 2× (Xi∗ ·XT

p∗) (5)

with v
(k+1)
p = v

(k)
p

Example 2: To illustrate the incremental computation of
the weight vectors, consider the input matrix of our running
example, i.e.,

X =


5 1
10 5
9 4
4 6
2 4

 .

For the sake of simplicity, we illustrate the case where only
one sign flip is performed. First, Z is initialized with 1s, i.e.,
Z(1) = {1, 1, 1, 1, 1}T and the initial weight vector is com-
puted iteratively to get V (1) = { 54, 15, 23, 12, 84}T . Three
elements of Z(1) have a different sign from the corresponding
elements in V (1) and among them the element in the 5th
position has the highest absolute value. Using p = 5, the next



weight vector is incrementally computed (using (5)) as follows

v1 = 54− 2× (
[
5 1

]
×
[

2
4

]
) = 66

v2 =15− 2× (
[

10 5
]
×
[

2
4

]
) = 95

v3 =23− 2× (
[

9 4
]
×
[

2
4

]
) = 91

v4 = 12− 2× (
[
4 6

]
×
[

2
4

]
) = 20

v5 = 84

i.e.,

Z(2) =


1
1
1
1
1

 and V (2) =


66
95
91
20
84

 .

III. INCREMENTAL CENTROID DECOMPOSITION (INCD)

Lemma 2 (Matrix Similarity): Let X̃ be the matrix result-
ing from incrementing an n×m matrix X with an r×m matrix
∆X and let Ai∗ be the i-th row of ∆X. Let also Z ∈ { 1, 1}n
and Z̃ ∈ { 1, 1}n+1 be two sign vectors. Then, the following
holds:

max‖X̃T ·Z̃‖= max‖XT ·Z‖+
r∑

i=1

‖Ai∗‖

Proof: We assume that XT ·Z and the added rows are
linearly dependent. However, in practice, the similarity holds
for arbitrary row updates (see the correctness experiment in
Table I).

Let 0 be a matrix of zeros, Y be an (n + r) ×m matrix
consisting of X appended with 0r×m and let M be an (n +
r) × m matrix consisting of 0n×m incremented with ∆X.
Then, we have the following:

X̃ =

[
X

∆X

]
=

[
X

0r×m

]
+

[
0n×m
∆X

]

=


X
01∗

...
0r∗

+


0n×m
A1∗

...
Ar∗


= Y + M (6)

By transposing both sides of (6), multiplying each side by
Z̃ and normalizing, we get

‖X̃T ·Z̃‖ = ‖(Y + M)T ·Z̃‖
= ‖YT ·Z̃ + MT ·Z̃‖ (7)

The computation of the right hand side of (7) gives

YT ·Z̃ =
[
XT 0T1∗ · · · 0Tr∗

]
·


Z

z̃n+1

...
z̃n+r


= XT ·Z + z̃n+1×0T1∗ + · · ·+ z̃n+r×0Tr∗

= XT ·Z (8)

and

MT ·Z̃ =


0n×m
A1∗

...
Ar∗


T

·

 z̃1
...

z̃n+r


=

n∑
i=1

z̃i × 0i∗ + z̃n+1×AT
1∗ + · · ·+ z̃n+r×AT

r∗

= z̃n+1×AT
1∗ + · · ·+ z̃n+r×AT

r∗ . (9)

Putting (8) and (9) into (7) gives

‖X̃T ·Z̃‖= ‖XT ·Z + z̃n+1×AT
i∗ + · · ·+ z̃n+r×AT

r∗‖ (10)

Equation (10) is valid for all Z̃ and Z including the
maximizing one, i.e., Zmax. It follows:

‖X̃T ·Z̃max‖ = ‖XT ·Zmax + z̃n+1×AT
i∗ + · · ·+ z̃n+r×AT

r∗‖
(11)

Since XT ·Z and Ai∗, ∀i ∈ {1, · · · , r}, are linearly depen-
dent, it follows:

‖X̃T ·Z̃max‖= ‖XT ·Zmax‖+
r∑

i=1

‖z̃n+i×AT
i∗‖ (12)

Since Z̃max is the maximizing vector of ‖X̃T ·Z̃‖, and Zmax

is the maximizing sign vector of ‖XT ·Z‖, then we get

max‖X̃T ·Z̃‖ = max‖XT ·Z‖+
r∑

i=1

‖z̃n+i×AT
i∗‖

We have zn+i = ±1, hence ∀i ∈ {1, · · · , r}, ‖z̃n+i×AT
i∗‖=

‖AT
i∗‖ and ‖AT

i∗‖= ‖Ai∗‖. Therefore, we have

max‖X̃T ·Z̃‖= max‖XT ·Z‖+
r∑

i=1

‖Ai∗‖

which concludes the proof.
Theorem 1 (Correctness): Let X̃ be the resulting matrix of

incrementing an input matrix X with ∆X. Then, InCD returns
the sign vector, Z̃, that maximizes ‖X̃T ·Z̃‖.

Proof: Using Z(1) as Z at the first iteration of the
algorithm, we introduce the two following vectors. Let Z̃ be
the resulting sign vector obtained by batch CD (i.e., Z̃(1) =
[1, . . . , 1]) and let Z̃c be the resulting sign vector obtained by
InCD with (i.e., Z̃(1)

c = [Zc, 1, . . . , 1]; Zc is the cached sign
vector). Proving the correctness of InCD boils down to proving
that arg max

Z̃c∈{ 1,1}(n+r)

‖X̃T ·Z̃c‖≡ arg max
Z̃∈{ 1,1}(n+r)

‖X̃T ·Z̃‖.



Let I be an identity matrix, D be a diagonal matrix
containing Z̃

(1)
c , i.e., D = diag(Z̃

(1)
c ), and let X̃D be an

(n + r) × m matrix s.t. X̃T
D = X̃T ·D. Let also Z̃D be an

(n + r) sign vector s.t Z̃D = D·Z̃c.
First, we prove the following:

arg max
Z̃c∈{ 1,1}(n+r)

‖X̃T ·Z̃c‖ ≡ arg max
Z̃D∈{ 1,1}(n+r)

‖X̃T
D·Z̃D‖

Since D is a signature matrix where the diagonal elements
are +1 or 1, then D·D = I. It follows:

arg max
Z̃c∈{ 1,1}(n+r)

‖X̃T ·Z̃c‖ ≡ arg max
Z̃c∈{ 1,1}(n+r)

‖X̃T ·D·D·Z̃c‖

(13)

By definition of D, we have dii × z
(1)
i = 1, ∀i ∈

{1, · · · , (n + r)} where z
(1)
i ∈ Z̃

(1)
c which yields D·Z̃(1)

c =

[1, . . . , 1]. Since Z̃
(1)
D = D·Z̃(1)

c , we replace the argument Z̃c

by Z̃D and get

arg max
Z̃c∈{ 1,1}(n+r)

‖X̃T ·D·D·Z̃c‖ ≡ arg max
Z̃D∈{ 1,1}(n+r)

‖(X̃T ·D)·Z̃D‖

≡ arg max
Z̃D∈{ 1,1}(n+r)

‖X̃T
D·Z̃D‖

(14)

Putting (13) into (14), we get

arg max
Z̃c∈{ 1,1}(n+r)

‖X̃T ·Z̃c‖ ≡ arg max
Z̃D∈{ 1,1}(n+r)

‖X̃T
D·Z̃D‖ (15)

Next, we prove the following

arg max
Z̃∈{ 1,1}(n+r)

‖X̃T ·Z̃‖ ≡ arg max
Z̃D∈{ 1,1}(n+r)

‖X̃T
D·Z̃D‖

By definition of X̃D we have

X̃T
D = X̃T ·D

=

[
X

∆X

]T
·
[
diag(Zc) 0n×r
0r×n Ir×r

]
=
[
(XT ·diag(Zc)) ∆XT

]
(16)

From (16), we can see that X̃D is diag(Zc)
T ·X incre-

mented with ∆X. By applying Lemma 2 on X̃D we get

max‖X̃T
D·Z̃D‖ = max‖XT ·diag(Zc)·Z‖+

r∑
i=1

‖Ai∗‖

= max‖XT ·Z‖+
r∑

i=1

‖Ai∗‖ (17)

Using (17) and Lemma 2, we get

max‖X̃T ·Z̃‖ = max‖X̃T
D·Z̃D‖ (18)

Since the two equations in (18) use the same initial max-
imizing sign vector that contains only 1s. Thus, (18) can be
rewritten as follows:

arg max
Z̃∈{ 1,1}n

‖X̃T ·Z̃‖= arg max
Z̃D∈{ 1,1}n

‖X̃T
D·Z̃D‖ (19)

By transitivity of (15) and (19), we get

arg max
Z̃c∈{ 1,1}n

‖X̃T ·Z̃c‖≡ arg max
Z̃∈{ 1,1}n

‖X̃T ·Z̃‖

Therefore, InCD computes the same maximizing sign vector
as the batch CD, which concludes the proof.

IV. EXPERIMENTAL EVALUATION

1) Correctness: In Table. I, we evaluate the correctness of
InCD by comparing the centroid value, ‖XT ·Z‖, computed
by InCD against the one computed by the batch SSV tech-
nique. We randomly append r rows to a matrix containing
the maximum number of time series (columns) per dataset
each of 1k values, and compute the two centroid values for
different r values. The results show that for all datasets InCD
computes the same centroid value as SSV and thus, the correct
maximizing sign vector. The result of this experiment confirms
the correctness proof of Theorem 1.

TABLE I
CENTROID VALUES OF INCD VS. BATCH CD.

dataset
‖XT ·Z‖ r = 10 r = 20 r = 30

InCD SSV InCD SSV InCD SSV
BAFU 2520 2520 2539 2539 2558 2558
MeteoSwiss 1562 1562 1566 1566 1563 1563
Gas 2508 2508 2529 2529 2547 2547
Temperature 1144 1144 1158 1158 1172 1172


