
Revisiting Text and Knowledge Graph Joint
Embeddings: The Amount of Shared Information

Matters!
Paolo Rosso

eXascale Infolab
University of Fribourg
Fribourg, Switzerland
paolo.rosso@unifr.ch

Dingqi Yang*
eXascale Infolab

University of Fribourg
Fribourg, Switzerland
dingqi.yang@unifr.ch

Philippe Cudré-Mauroux
eXascale Infolab

University of Fribourg
Fribourg, Switzerland

pcm@unifr.ch

Abstract—Jointly learning embeddings from text and a Knowl-
edge Graph benefits both word and entity/relation embeddings
by taking advantage of both large-scale unstructured content
(text) and high-quality structured data (the Knowledge Graph).
Current techniques leverage anchors to associate entities in the
Knowledge Graph to corresponding words in the text corpus;
these anchors are then used to generate additional learning sam-
ples during the embedding learning process. However, we show
in this paper that such techniques yield suboptimal results, as
they fail to control the amount of shared information between the
two data sources during the joint learning process. Moreover, the
additional learning samples often incur significant computational
overhead. Aiming at releasing the power of such joint embed-
dings, we propose JOINER, a new joint text and Knowledge
Graph embedding method using regularization. JOINER not
only preserves co-occurrence between words in a text corpus
and relations between entities in a Knowledge Graph, it also
provides the flexibility to control the amount of information
shared between the two data sources via regularization. Our
method does not generate additional learning samples, which
makes it computationally efficient. Our extensive empirical eval-
uation on real datasets shows the superiority of JOINER across
different evaluation tasks, including analogical reasoning, link
prediction, and relation extraction. Compared to state-of-the-
art techniques generating additional learning samples from a
set of anchors, our method yields better results (with up to
4.3% absolute improvement) and significantly less computational
overhead (76% less learning time overhead).

Index Terms—Word embeddings, Knowledge Graph embed-
dings, regularization

I. INTRODUCTION

Jointly learning embeddings from both text and Knowledge
Graphs (KGs) has been shown to combine the advantages
from both large-scale unstructured data (text) and high-quality
structured data (KGs). On one hand, word embeddings tech-
niques, represent words in unstructured text as real-valued
vectors, which can be efficiently used as features by various
downstream applications such as document classification [1],
named entity recognition [2], or sentiment analysis [3]. Skip-
Gram [4], [5], for instance, is a well-known word embedding

*Corresponding author

technique that can efficiently learn word embeddings by pre-
serving the co-occurrence between words in a context window
in a large text corpus, hence implicitly capturing semantic
relations between words (e.g., USA − dollar ≈ Japan − yen).
Although word embedding techniques can efficiently capture
the semantics of words from large-scale unstructured text, they
typically cannot model the nature of the relation between pairs
of words, e.g., they cannot infer the currency relation between
Japan and yen.

Knowledge Graphs (KGs), on the other hand, contain high-
quality structured data where entities are connected via re-
lations. More specifically, a typical KG, such as Freebase
[6], Google’s Knowledge Graph [7] or Wikidata [8], can be
represented as a set of facts; each fact is a triplet head, relation,
tail or (h, r, t) for short, such as Japan (head) hasCurrency
(relation) yen (tail). To efficiently exploit KGs in practice, KG
embeddings [9] have been proposed to represent entities as
vectors, and relations as operations, while still preserving the
relations between entities. A typical KG embedding technique
is TransE [10]. It models a relation as a vector-plus operation
and hence preserves the relations between entities as h+r ≈ t.
By doing so, it preserves the reasoning ability of a KG,
i.e., a new fact can be asserted by evaluating ||h + r − t||.
Although the high-quality and structured data present in KGs
have been widely used to power various applications, ranging
from question answering [11] to query expansion [12], they
are known to suffer from incompleteness (i.e., they are missing
many/most entities and facts) [10], [13]. For example, 93.8%
of persons from Freebase have no place of birth, while 78.5%
have no nationality [14].

In the current literature, the most popular scheme to jointly
learn embeddings from text and KGs [13], [15]–[17] is to
define one or several types of anchors that link entities in a
KG and words in a text corpus, such as entity names (labels)
appearing in text or entities associated to Wikipedia pages.
Subsequently, these anchors are used to generate additional
learning samples during the embedding learning process. For
example, when an entity’s name (label) appears in text, beyond

the co-occurrence between words, a joint embedding model
additionally learns from the co-occurrence of the entity and its
surrounding words [13]. Although such a joint learning scheme
has shown the advantage of combining text and KGs, we
still raise the following question: Does this scheme optimally
combine the advantages from the two data sources?

To answer this question, we started by reviewing the
aforementioned joint learning process. More precisely, the
heuristically-defined anchors used by this scheme uniquely
determine the additionally-generated learning samples, and
thus implicitly control the extend to which the word and
KG embeddings are jointly learnt from the two data sources.
Subsequently, it fails to provide the flexibility to control how
much information is actually shared between the two data
sources in the embedding learning process, which in many
cases leads to suboptimal results (as we show below in our ex-
periments). Even though one can combine different heuristics
to generate different sets of anchors, it still gives very limited
flexibility to control the joint learning process (see the baseline
JointAS in our experiments for more details). Moreover, this
joint learning scheme also suffers from an inefficiency issue,
as the additionally generated learning samples require extra
computation and learning time.

Aiming at releasing the power of joint text and KG em-
beddings, we propose JOINER, a novel Joint text and KG
Embedding learning method via Regularization. JOINER not
only preserves the co-occurrence between words in a text
corpus and the relation between entities in a KG, but also
provides the flexibility to smoothly control the amount of
information shared between the two data sources in the joint
embedding learning process using regularization. Specifically,
we insert a regularization term in both the text and the
KG embedding models to minimize the distance between
a word (from a text corpus) and an entity (from a KG)
when the two are linked by an anchor (e.g., entity names
appearing in text). Subsequently, we are able to smoothly
control via a regularization parameter the extent to which
the word and the KG embeddings are jointly learnt from
the two sources. Moreover, without additionally generated
learning samples, JOINER incurs significantly less computa-
tion overhead compared to classical joint embedding learning
methods. We conduct a thorough evaluation of JOINER on
three evaluation tasks (analogical reasoning, link prediction
and relation extraction) using Freebase, Wikipedia and New
York Times corpora. Our results show the superiority of
JOINER. In particular, compared to the state-of-the-art tech-
nique generating additional learning samples from a set of
anchors [13], our method yields better performance (with a
1.4%-4.3% improvement on different evaluation tasks), and
76% less computational overhead. Moreover, our results also
show that the amount of shared information matters across
different evaluation tasks.

II. RELATED WORK

Word embedding techniques learn vector representations of
words from a text corpus by preserving the semantic similarity
between words [4], [18]–[20]. For example, the SkipGram
model [4] learns word embeddings by maximizing the co-
occurrence probability of words in a text corpus. The resulting
embeddings are able to capture semantic and syntactic rela-
tions between words. By incorporating a negative sampling
technique and using asychronized stochastic gradient descent
to speedup the embedding learning process [5], the SkipGram
model has been shown to be able to scale up to a large corpus
in practice. Although word embedding models are able to
efficiently capture semantic and syntactic relations between
words from a large-scale corpus, they cannot extract explicit
relations between pairs of words.

Knowledge Graph embedding techniques learn vector
representations of entities and relations in a KG by preserv-
ing the relations between entities and thus maintaining the
reasoning ability of the KG [9], [21]. The existing KG em-
bedding techniques can be classified into two categories, i.e.,
translational distance models and semantic matching models.
Translational distance models exploit distance-based scoring
functions to create the embeddings. One representative model
is TransE [10], which creates embeddings from triplet (h, r, t)
such that the relation between the head and tail entities are
preserved as h+ r ≈ t. Several works further improve TransE
to capture complex KG structures, such as multi-mapping
relations (one-to-many, many-to-one, or many-to-many), using
more sophisticated scoring function involving relation-specific
hyperplanes [22] or spaces [23], [24], for example. Ebisu et.
al. [25] employ the same principle applied in TransE to a
Lie group, which is a compact space representation. Semantic
matching models, on the other hand, exploit similarity-based
scoring functions. One typical model is RESCAL [26]. It
represents each entity as a vector and each relation as a
matrix, and uses a bilinear function to model the relation
between two entities. Several works also extend RESCAL by
putting a specific focus on reducing the model complexity
[27], by capturing asymmetric relations [28], or by modeling
non-linear relations using neural networks [29]–[33]. Despite
achieving good performance, these non-linear models are com-
putationally expensive, non-transparent and poorly understood,
as opposed to translational distance and semantic matching
models. Although KG embeddings are able to capture specific
relations between entities, they suffer from incompleteness,
i.e., many triplets are missing from the KG.

Joint text and Knowledge Graph embeddings learn
embeddings by combining the two data sources. The most
common scheme to jointly learn text and KG embeddings is
to define one or several types of anchors that link entities in a
KG and words in a text corpus, which are then used to generate
additional learning samples in the embedding learning process.
One representative method is proposed by [13]. Specifically,
based on a SkipGram-like text model and a TransE-like KG
model, it jointly learns word and entity/relation embeddings.

It defines two types of anchors connecting words in a text
corpus and entities in a KG: 1) entity names (labels) appearing
in text and 2) entity-associated Wikipedia pages, and then
generates additional learning sample from these anchors. For
entity names appearing in text, additional learning samples
are generated for the KG model by replacing the entity from
each head-relation-tail triplet by the corresponding word (e.g.,
word-relation-tail if the head is an anchor from text). For
entity-associated Wikipedia pages, additional learning samples
are generated for the text model by replacing the word
from each word pairs by the associated entity (e.g., word-
entity). [15] extends this model by using another type of
anchors, i.e., words appearing in the entity description from
the KG. Following this joint learning scheme, many task-
specific joint embedding methods have also been proposed.
For example, [16] combines all the aforementioned types of
anchors to jointly learn embeddings specifically for the entity
disambiguation problem. [17] addresses the same problem
considering not only entity names appearing in text as anchors,
but also the relatedness between entities. [34] learns joint
text and KG embeddings using entity name appearing in text
as anchors, and also by inferring relations from text using
distant supervision. However, all these methods do not provide
the flexibility to control how much information is actually
shared between the two data sources in the embedding learning
process, and thus fail to optimally take advantage of both data
sources. Moreover, the additional samples generated from the
anchors create some significant overhead in terms of compu-
tations and learning time, in particular when a large number
of additional samples being fed to a stochastic optimization
process [35]. To address these issues, we propose JOINER
to jointly learn text and KG embeddings via regularization.
JOINER can flexibly control the amount of information shared
between the two data sources in the embedding learning
process with significantly less computational overhead.

In addition, there are some other embedding methods com-
bining text and KGs focusing on improving one using the
other, but they do not tackle the same problem as ours.
On the one hand, KG embeddings can be improved using
textual relations (i.e., full lexicalized dependency paths) [36]
or sentence/paragraph embeddings [37]. On the other hand,
word embeddings can be enhanced by considering explicit
relations from semantic knowledge [38] or word concepts
from KGs [39]. However, these methods output either word
embeddings or entity/relation embeddings.

Finally, regularization techniques are widely used for joint
learning from multiple data sources [40], [41]. To the best of
our knowledge, for joint learning from text and KGs, only
one recent work KADE [42] adopts regularization techniques
to align entities with documents using heuristically defined
relatedness between entities and documents, which differs
from our goal (aligning entities with words). Meanwhile, it
outputs document embeddings rather than word embeddings,
and thus fails to support the analogy reasoning task.

III. JOINER

A. Model

Our proposed joint model is built on top of a text model
for learning word embeddings and a KG model for learning
entity/relation embeddings. In this paper, we adopt the same
individual text and KG models as in [13], which is a repre-
sentative joint text and KG embedding method generating ad-
ditional learning samples from a set of anchors. Subsequently,
by comparing with [13] in the experiments, the superiority of
using regularization when jointly learning the embeddings can
be clearly verified, as we discount the effect of the individual
text and KG models. However, we also note that our joint
embedding learning method using regularization is not limited
to any specific text and KG model; it can incorporate more
sophisticated text or KG models (more discussion on this point
later). In the following, we start by describing the individual
text and KG models, followed by our joint model.
Text model. Our text model learns word embeddings by
capturing the co-occurrence of words observed in a text corpus
D. We adopt the same text model as in [13]. Specifically,
let V denote the word vocabulary of the text corpus1. The
conditional probability of a target word w appearing close to
a context word v (within a context window of a certain length)
is defined as follows:

p(w|v) =
exp{s(w, v)}∑

v′∈V exp{s(w, v′)} (1)

where s(w, v) is a scoring function evaluating the co-
occurrence of two words w and v based on their embeddings.
It is defined as s(w, v) = b− 1

2 ||w−v||2, where b is a constant
margin used for better numerical stability in the learning
process. Subsequently, the objective of the text model is to
maximize the likelihood of the co-occurrence of pairs of words
in the whole text corpus:

LT =
∑

(w,v)∈C

#(w, v) log p(w|v) (2)

where C is the set of unique word pairs co-occurring in a
context window of a certain length, and #(w, v) is the number
of times (w, v) appears in the corpus D.
Knowledge Graph model. Our KG model learns en-
tity/relation embeddings by preserving the relations between
entities. Specifically, a KG ∆ consists of a set of triplets
(h, r, t), h, t ∈ E and r ∈ R, where E and R refer to the
entity and relation vocabularies, respectively. Similar to the
text model, we define the conditional probability of observing
h given (r, t) in the KG as follows:

p(h|r, t) =
exp{s(h, r, t)}∑

h′∈E exp{s(h′, r, t)} (3)

where s(h, r, t) is a scoring function evaluating the correctness
of the triplet (h, r, t) based on their embeddings. It is defined

1We pre-process the text corpus in order to detect common phrases (e.g.,
new york) such that the vocabulary V also contains these phrases. For the
sake of simplicity, we use the term “word(s)” to refer these words/phrases in
V , if not specified otherwise.

as s(h, r, t) = b − 1
2 · ||h + r − t||2. In addition, p(r|h, t)

and p(t|h, r) are defined in the same way as p(h|r, t) with
the corresponding normalization terms, respectively. Subse-
quently, the KG model maximizes the likelihood of observing
all triplets from the KG:

LKG =
∑

(h,r,t)∈∆

[log p(h|r, t) + log p(r|h, t) + log p(t|h, r)]

(4)
Joint Text and KG model using regularization. Our joint
model combines the above text and KG models via regulariza-
tion. Specifically, let A denote a set of anchors, where each
anchor connects a word from the text corpus and an entity
from the KG. In this paper, we adopt two common types
of anchors, 1) entity names appeared in text and 2) entity-
associated Wikipedia pages, which are widely used in the
current literature [13], [16]. First, entity names naturally link
entities to words in the text corpus. For each entity e ∈ E ,
if its name (label) we also appears in our word vocabulary,
i.e., we ∈ V , we consider (e, we) as an anchor. Second,
entity-associated Wikipedia pages also link entities to words.
A Wikipedia (English) page is often associated with a unique
entity in a KG (e.g., Freebase). Subsequently, a Wikipedia
anchor (i.e., a word w with a hyperlink to the Wikipedia page)
in the text actually links to the page’s associated entity ew;
we also considers (ew, w) as an anchor. Finally, both types of
anchors are included in our set of anchors A, and we do not
distinguish them in A. Note that we do not consider entity
descriptions as anchors [15], as it suffers from a low coverage
issue (entity descriptions are not always available in a KG).

Based on the set of anchors A, we are then able to jointly
learn the text and KG models not only by capturing the co-
occurrence between words in a text corpus and the relation
between entities in a KG, but also by minimizing the distance
between a word and an entity when the two are linked
by an anchor via regularization. To achieve this goal, we
insert regularization terms in both the text and KG models to
connect them by minimizing the Euclidean distance between
a word and an entity if they are connected by an anchor in
A. Specifically, for the text model, we redefine the scoring
function as follows:

s(w, v) = b− 1

2
(||w− v||2 + 1(v,ev)∈A · β · ||v− ev||2) (5)

where 1(v,ev)∈A is an indicator function which is equal to
1 when (v, ev) is an anchor in A and to 0 otherwise. β is
a regularization parameter which defines the weight of the
regularization term ||v− ev||2 (more on β below). Using this
scoring function for our text model, we are able to not only
capture the word co-occurrence (i.e., ||w − v||2), but also to
preserve the similarity between a word and its anchor entity
(if any) via the regularization term. Subsequently, we redefine
the scoring function for the KG model in a similar way:

s(h, r, t) = b− 1

2
(||h + r− t||2 + 1(h,wh)∈A · β · ||h− wh||2

+ 1(t,wt)∈A · β · ||t− wt||2)
(6)

where we insert two regularization terms for head and tail
entities, respectively. This scoring function is able to not only
capture the relations between entities (i.e., ||h + r− t||2), but
also preserves the similarity between an entity and its word
anchor via the two regularization terms. We use the same
regularization parameter β for the KG model as for the text
model, as our regularization terms share the same formulation
in both the text and KG models.

In our joint learning model, the regularization parameter β
plays a key role to provide the flexibility to control the amount
of information shared between the two data sources. More
precisely, β actually defines the weight of the regularization
term in the whole scoring function. A smaller value of β
implies a lower importance of the regularization term in the
scoring function; the learning process will learn less from
the set of anchors, meaning that less information is actually
shared between the two models in the learning process. In the
extreme case where we set β = 0, our joint learning model
degrades to two independent text and KG models. In practice,
β needs to be appropriately set to obtain high-quality word
and entity/relation embeddings. On one hand, a small value
of β may lead to insufficient information sharing between the
models in the learning process. On the other hand, too big a
value may lead to putting too much emphasis on the set of
anchors while insufficiently learning from the two data sources
(text and KGs). We investigate the impact of β across different
evaluation tasks in our experiments. Below, we present our
joint learning process.

B. Joint Embedding Learning Process

Learning with negative sampling. In practice, the consid-
erable size of the vocabularies V and E makes it difficult to
compute the normalizer in p(w|v) (Eq. 1) and p(h|r, t) (Eq.
3) (also for p(r|h, t) and p(t|h, r)). To overcome this issue,
negative sampling techniques [5] can be adopted to simplify
the objective functions LT and LKG. Specifically, for a pair
of words (w, v), we not only maximize the probability of
their co-occurrence, i.e., p((w, v) ∈ D|w, v) = σ(s(w, v)), but
also maximize the probability of the word w and a randomly
sampled negative word vN not appearing in the corpus D, i.e.,
p((w, vN) 6∈ D|w, vN) = σ(−s(w, vN)), where σ(·) is the
sigmoid function. In summary, for each pair of words (w, v),
we maximize the following objective function:

Θw = log σ(s(w, v)) + γEvN [log σ(−s(w, vN))] (7)

where γ ∈ Z+ is the number of negative samples. By applying
the same negative sampling technique to the KG model,
instead of maximizing p(h|r, t), we maximize the following
objective function:

Θh = log σ(s(h, r, t)) + γEhN
[log σ(−s(hN , r, t))] (8)

where hN is a randomly sampled negative head entity. We
also convert p(r|h, t) and p(t|h, r) in the same way:

Θr = log σ(s(h, r, t)) + γErN [log σ(−s(h, rN , t))] (9)

Algorithm 1 JOINER
Require: A text corpus D, a KG ∆, and the corresponding

vocabulary of words, entities and relations (V , E and R,
respectively)

1: Initialize word, entity and relation embedding vectors w
(w ∈ V), e (e ∈ E) and r (r ∈ R)

2: repeat
3: Sample a batch of word pairs Dbatch from D
4: for (w, v) ∈ Dbatch do
5: Update w, v with the gradients of Θw (Eq.7)
6: end for
7: Sample a batch of triples from ∆batch from ∆
8: for (h, r, t) ∈ ∆batch do
9: Update h, r, t,hN with the gradients of Θh(Eq.8)

10: Update h, r, t, rN with the gradients of Θr(Eq.9)
11: Update h, r, t, tN with the gradients of Θt(Eq.10)
12: end for
13: until Convergence

Θt = log σ(s(h, r, t)) + γEtN [log σ(−s(h, r, tN))] (10)

Alternating joint learning process. Based on the above ob-
jective functions, our joint learning process alternates between
the two data sources. As shown in Algorithm 1, after initializ-
ing word/entity/relation embeddings (line 1), we alternatively
learn from a batch of word pairs sampled by scanning the text
corpus (Line 3-6), and a batch of triplets randomly sampled
from the KG (Line 7-12). The batch size is empirically set to
500; in practice, when setting it to a small value (much smaller
than the size of the corpora), it has negligible impact on the
results. Our learning process is performed using asynchronous
stochastic gradient descent (ASGD) until convergence. In
practice, we iterate both datasets multiple times to ensure the
convergence (see experiment settings for more details).

C. Extensibility of JOINER

In this paper, our JOINER model combines a text model
and a KG model, whose scoring functions are both defined
using the Euclidean distance. Our regularization term is also
defined using the Euclidean distance. Our model is not limited
to these two text and KG models, however. It can be modified
to incorporate other text and KG models, under the condition
that the scoring functions of the two models are defined using
the same distance metric (e.g., cosine distance), with which our
regularization term should also be defined. In this study, we
instantiate JOINER using the Euclidean distance to distinctly
demonstrate its advantages over [13] which uses the same
text and KG model as ours but generates additional learning
samples for the joint learning process.

IV. EXPERIMENTAL EVALUATION

We evaluate JOINER on three different tasks: analogical
reasoning, link prediction in KGs, and relation extraction.
Subsequently, we investigate the impact of the regularization
parameter β, followed by a runtime evaluation. We start below
by presenting our experiment settings.

A. Experiment Setting

Dataset. Similar to [13], we use the following public text
corpora and KGs.
• Text. We use the English Wikipedia dump collected in

July 2017. We filter out noisy pages (e.g., pages for
disambiguation), and perform named entity recognition
to detect common phrases, which are included in the vo-
cabulary V1. After removing rare words, our text corpus
D contains 1,110,804,425 words in total, with 489,861
unique words.

• Knowledge Graph. We adopt Freebase in our experi-
ments, which has been widely used by previous work
[10], [13], [22], [24]. We extract facts (triplets) from the
Freebase dump2, and for each entity we take its label
in English as its entity name for anchor extraction. We
consider the top 200K frequent entities and retain all
related facts. In the end, our KG contains 199,355 unique
entities, 3,442 unique relations and 2,459,553 triplets. For
the link prediction task, we randomly sample 20% of the
triplets as test data, and the rest as training data. We
choose this KG rather than the commonly used FB15k or
WN18, because its large scale ensures sufficient anchors
linking entities to words.

Based on the above datasets, we extract the set of anchors
A, which sum up to 98,812 unique anchors. This represents
20.17% of the unique words in V and 49.57% of the unique
entities in E . Moreover, we find that these anchors actually
involve 2,301,519 triplets (93.57% of all triplets) in the KG,
and 398,551,199 words (35.88% of all words) in our text
corpus. These statistics imply that anchors tend to connect
frequent words and entities rather than infrequent ones.
Baselines. We compare our method against a sizable collection
of nine state-of-the-art techniques from three categories.
• Word embedding techniques:

– SkipGram [4] is a popular word embedding model that
maximizes the co-occurrence probability of a word and
its context in a text corpus, where the scoring function
is defined using the dot product, i.e., s(w, v) = w · v.
Our text model is equivalent to the SkipGram model
when constraining the embedding norm to be ||w|| =
||v|| = 1, as w · v = 1− 0.5 · ‖w− v‖2. Note that we
adopt the Euclidean distance in the scoring function of
our text model (rather than using the SkipGram model),
in order to be consistent with our KG model (whose
scoring function is also defined using the Euclidean
distance).

– GloVe [20] is another word embedding techniques that
learns directly from aggregated global word-word co-
occurrence statistics from a text corpus. The scoring
function is defined using the dot product, i.e., s(w, v) =
w> · v + bw + bv , where bw and bv are scalar biases
for a word and its context.

• Knowledge graph embedding techniques:

2https://developers.google.com/freebase/

– TransE [10] is a popular KG embedding model that
preserves the relation between two entities as h+r ≈ t.
We also use it as our KG model. However, its objective
function is different from ours. Specifically, TransE
minimizes a margin-based ranking objective function,
i.e., [d(h + r, t) + b − d(hN + r, tN)]+, where d(·, ·)
can either be the L1 or L2-norm. In our experiments,
we test different margins b with both L1 and L2-norm,
the optimal setting being b = 1 with the L1-norm for
TransE.

– TransH [22] is a KG embedding technique that fur-
ther extend TransE to better capture multi-mapping
relations in a KG. Specifically, TransH introduces the
idea of relation-specific hyperplanes, in which, for a
given triplet (h, r, t), the embeddings of the entities h
and t are projected into a relation hyperplane wr, and
their projections are denoted as h⊥ = h−w>r hwr and
t⊥ = t−w>r twr, respectively. Thus, h⊥ and t⊥, can be
connected by a translation vector vr on the hyperplane.
Similar to TransE, the relation between two entities is
preserved as h⊥+ vr ≈ t⊥, and the objective function
is defined as [d(h⊥+vr, t⊥)+b−d(h⊥N +vr, t⊥N)]+,
where d(·, ·) can either be the L1 or L2-norm. In our
experiments, we also test different margins b with both
L1 and L2-norm, the optimal setting being b = 0.25
with the L1-norm for TransH.

– TransD [24] is a KG embedding technique that de-
composes the projection matrix into a product of two
vectors. Specifically, additionally mapping vectors wh,
wt ∈ Rd and wr ∈ Rk are introduced along with
the entity and relation representations h, t ∈ Rd and
r ∈ Rk. The two projection matrices are defined as
M1

r = wrw>h + I, and M2
r = wrw>t + I. These two

projection matrices are then used to project the head
and tail entities with h⊥ = M1

rh and t⊥ = M2
rt. With

the projected entities, the objective function is defined
in the same way as in TransR. In our experiments, we
also test different margins b with both L1 and L2-norm,
the optimal setting being b = 1 with the L1-norm for
TransD.

– DistMult [27] is an efficient semantic matching model
using a bilinear scoring function that maps each en-
tity to k-dimensional vector and each relation r to a
diagonal matrix Rk×k

r . For a given triplet, the score
is computed as s(h, r, t) = h>Rrt. DistMult also
minimizes a margin-based ranking objective function,
i.e., max{s(hN , r, tN) − s(h, r, t) + b, 0}. In our ex-
periments, we also test different margins b, the optimal
setting being b = 0.1 for DistMult.

• Knowledge graph embedding techniques:
– JointAS [13] is a representative joint text and KG

embedding model using Additional learning Samples
generated from two types of anchors. It uses the same
text and KG models as ours. It defines two types of
anchors that link words and entities and then gener-

ate additional learning samples from these anchors.
First, for entity names appeared in text, additional
learning samples are generated for the KG model by
replacing the entity from each triplet (h, r, t) by the
corresponding word, e.g., (wh, r, t) if (h,wh) is an
anchor in A. This type of anchors is called “AN”. For
entity-associated Wikipedia pages, additional learning
samples are generated for the text model by replacing
the word from each word pairs (w, v) by the associated
entity, e.g., (w, ev) if (ev, v) is an anchor in A. This
type of anchors is called “AA”. Its joint learning
process alternates between the text, the KG and the
two types of additionally generated learning samples.
As suggested by the authors, we set the margin to its
optimal value b = 7. Note that according to the selected
types of anchors, JointAS can be configured in three
settings, i.e., (AN), (AA) and (AN+AA).

We exclude task-specific joint embedding methods such as
[16], [17] from our baselines, as they involve task-specific
heuristics, and cannot support different evaluation tasks. We
also exclude KADE [42], because it aligns entities with
documents and thus outputs document embeddings rather than
word embeddings, failing to support the analogy reasoning
task.

For our JOINER, we search the optimal regularization
parameter β from 0.0001 to 0.1 on a log scale, and set the
margin b = 8. For all the methods, we set the embedding size
to 100, the number of negative samples to 10, and the context
window size for text models to 5. For all models involving
the text corpus, we train embeddings with three epochs on the
text corpus (for the joint models, the KG is simultaneously
traversed multiple times using the alternating joint learning
process). For a fair comparison, we also train TransE, TransH,
TransD and DistMult by traversing the KG the same number
of times as for the joint models. We train and test five models
for each method and report the average results. The code for
our model and datasets are made publicly available3.

B. Task 1: Analogical Reasoning

The analogical reasoning task is widely used to evaluate
word embeddings. It consists of a set of analogies, such as
USA→dollar: Japan→? that require to predict the missing
word (yen in this example). We use a popular analogy dataset
provided by [5], which contains 19,544 word and 3,218 phrase
analogies. To predict the missing word for each analogy
(denoted as A→B:C→?), we compute the Euclidean distance
between C+(B−A) and all the word embeddings, and pick the
word with the minimum Euclidean distance as the predicted
word. We report the accuracy over the whole analogy dataset.

Table I shows the results. First, we observe that JOINER
outperforms all baselines by achieving the highest accuracy
(with a 2.8% improvement over the best performing baseline
SkipGram). Here we also report the corresponding optimal
regularization parameter β = 0.001 (we will later show

3https://github.com/eXascaleInfolab/JOINER code/

TABLE I
ANALOGICAL REASONING PERFORMANCE

Method Accuracy (%)
SkipGram 56.3
GloVe 47.2
JointAS (AN) 38.9
JointAS (AA) 50.7
JointAS (AN+AA) 40.5
JOINER (β=0.001) 57.9

that the optimal β varies across different tasks). Second,
the best-performing word embedding technique, SkipGram,
surprisingly beats JointAS on all configurations, which is the
opposite of the results from [13]. This is probably due to the
fact that our text and KG datasets are more tightly connected
by anchors than the dataset used in [13], in particular for the
text corpus. More precisely, 35.88% of all words in our text
corpus and 93.57% of all triplets in our KG are connected
by anchors, while these two percentages are 2.76% and 40%
in the dataset used by [13], respectively. Subsequently, on
our dataset, JointAS generates too many additional learning
samples which dominate the learning process, leading to
degraded results. In contrast, our JOINER approach allows to
control the extent to which the embeddings are jointly learnt
from the two data sources, and can hence avoid learning too
much from the anchors by setting the regularization parameter
β accordingly. Finally, we observe that JointAS results are
sensitive to the anchor configuration; AA is the best anchor
type for the analogical reasoning task, while AN actually
pollutes the results. Similar findings are also reported in [13].
However, choosing appropriate anchors is not straightforward
for JointAS; we will see later that different types of anchors
may have varying impact on different tasks.

C. Task 2: Link Prediction

The link prediction task is widely used for KG completion
[10]. It suggests new triplet (h, r, t) with h or t missing. In
other words, it predicts t given (h, r) or predicts h given (r, t).
To implement this task, we follow the same evaluation protocol
as in TransE [10]. More precisely, when predicting t given
(h, r), we compute the scores for ||h + r − e||, where e ∈
E ; by ranking the scores in ascending order, we generate a
predicted ranking list of entities. We then report Hits@10,
which measures the percentage of the predictions whose top-
10 entities contain the ground truth entity t, over all triplets
in the test dataset. We call this setting “raw”. Moreover, when
predicting t given (h, r), other tail entities may co-exist in
the KG, i.e., T ′ = {t′|t′ 6= t, (h, r, t′) ∈ ∆}. In this case,
ranking t′ in front of t should not be counted as an error.
To avoid this case, [10] suggests filtering out these entities
(T ′) before generating the ranked list of entities. We call this
setting “filtered”. The above evaluation protocol also applies
to predict h given (r, t).

Table II shows the results. First, we observe that JOINER
achieves the best performance in most cases (except when
predicting tail with the “raw” setting, JointAS (AN) is slightly

TABLE II
LINK PREDICTION PERFORMANCE

Method
Hits@10
Raw (%)

Hits@10
Filtered (%)

Head Tail Head Tail
TransE 37.1 44.6 41.7 49.2
TransH 38.7 45.4 46.1 52.6
TransD 38.9 43.1 48.6 52.7
DistMult 35.7 36.8 44.5 45.4
JoinAS (AN) 41.4 49.1 53.9 60.8
JoinAS (AA) 40.1 46.3 52.4 58.0
JoinAS (AN+AA) 40.9 48.7 52.5 59.7
JOINER (β=0.001) 42.2 48.9 56.2 62.1

better). In the “filtered” setting (which is more reasonable for
this task), JOINER outperforms the best-performing baseline
JointAS (AN) with 2.1% and 4.3% improvement in predicting
tail and head, respectively. Second, we find that JointAS
with all configurations achieves better results than TransE,
TransH, TransD and DistMult, showing the effectiveness of
joint embeddings for this task. Moreover, for JointAS, we find
that the anchor configuration AN yields higher performance
than AA on this task, while we observe the opposite (i.e.,
AA shows better results than AN) on the analogical reasoning
task. This implies that JointAS is less robust to different
tasks, as the selection of anchors has a strong impact on the
results. In contrast, our JOINER is less sensitive to anchor
selection, as optimal performance can be achieved by tuning
the regularization parameter.

D. Task 3: Relation Extraction

Relation extraction finds relations between two entities from
text [43]. Given two detected entities in a sequence of text,
it assigns a specific relation (if any) to the pair of entities
based on their contexts (features) in text. We adopt the same
evaluation protocol as used by JointAS [13]. Specifically, we
first use a basic relation extractor [44] to generate a set of
candidate relations ri for each pair of entities (h, t) with their
estimated probability Prmintz(ri) (according to text features).
Then, we compute the Euclidean norms for the corresponding
candidate triplets based on the embeddings, and convert the
Euclidean norms into probabilities using a softmax function,
i.e., PrJOINER(ri) = 1 − softmax(||h + ri − e||). Finally,
for each candidate relation, we linearly combine the two
probabilities as α ·Prmintz(ri)+(1−α) ·PrJOINER(ri) and
pick the relation with the largest probability. Similar to [13],
the optimal α is searched from 0 to 1 with a step of 0.025. In
this task, we use a relation-labeled dataset NYT+FB [45], and
randomly split it into 50% training and 50% test sets. The basic
extractor is trained on the training data, while entity/relation
embeddings are trained using our own Wikipedia+Freebase
datasets. We report the average accuracy over the test dataset.

Figure 1 shows the results. First, we observe that compared
to the basic extractor Mintz, using embeddings can signifi-
cantly improve the relation extraction performance; a similar
observation has also been reported by [43]. Second, compared
to the KG embedding techniques TransE, TransH, TransD

Fig. 1. Relation extraction performance

(a) Analogical reasoning (b) Relation extraction

Fig. 2. Impact of regularization parameter β

and DistMult, JointAS achieves the same performance, while
JOINER further outperforms JointAS by 1.4%. Note that all
KG embeddings baselines and JointAS show the same results
on this task, as we report the optimal accuracy by tuning the
weights for the weighted sum process, which indeed weakens
the impact of individual techniques.

E. Impact of Regularization Parameter

The regularization parameter β controls to what extent we
jointly learn embeddings from the text and KG. A smaller
value of β implies that we learn less from the set of anchors
that link the two data sources. In this experiment, by varying
β on a log scale, we report the performance for the analogical
reasoning and relation extraction tasks in Figure 2. First, we
observe that neither a too small nor a too big value of β results
in optimal performance. On one hand, a too small value of
β leads to insufficient information sharing between the two
data sources in the learning process, resulting in suboptimal
performance. On the other hand, too big a value over-considers
the anchors which dominate the learning process, thus leading
to degraded performance. Our method JOINER provides hence
the flexibility to achieve the best performance by tuning β.
Second, we find the optimal β varies across different tasks,
i.e., 0.001 for analogical reasoning and 0.005 for relation
extraction, which can serve as a guideline for future work
on joint text and KG embeddings.

F. Runtime Performance

We evaluate the efficiency of JOINER by comparing the
learning time of different embedding methods. For a fair
comparison, we focus on JointAS (AN+AA) and JOINER,
as they share the same text and KG models, and also the
same set of anchors. To give a reference, we also report
the total learning time of the text+KG models (without joint

TABLE III
RUNTIME PERFORMANCE

Method Learning time (in hours)
Text+KG (without joint learning) 14.3
JointAS (AN+AA) 37.6
JOINER (ours) 26.8

learning). We report the embedding learning time4 in Table III.
Unsurprisingly, compared to Text+KG (without joint learning),
both the joint embedding methods create some overhead, i.e.,
163% and 87% additional learning time for JointAS and
JOINER, respectively. More importantly, compared to JointAS
which creates additional learning samples for joint learning,
JOINER using regularization yields significantly less overhead
(76% less learning time overhead).

V. CONCLUSIONS

This paper revisited text and KG joint embeddings and
introduced JOINER, a novel joint text and KG embedding
method providing the flexibility to control the amount of
information shared between the two data sources during the
joint learning process via regularization. Without additionally
generated learning samples, it is also computationally efficient.
Extensive experiments showed that compared to JointAS, a
state-of-the-art joint text and KG embedding method gen-
erating additional learning samples from a set of anchors,
JOINER yields better results (with 1.4%-4.3% improvement
on various evaluation tasks) while significantly improving
runtime performance (76% less overhead).

VI. ACKNOWLEDGEMENT

This work was supported by the Swiss National Science
Foundation under grant number 407540 167320.

REFERENCES

[1] F. Sebastiani, “Machine learning in automated text categorization,”
ACM Comput. Surv., vol. 34, no. 1, pp. 1–47, Mar. 2002. [Online].
Available: http://doi.acm.org/10.1145/505282.505283

[2] J. Turian, L. Ratinov, and Y. Bengio, “Word representations: a simple
and general method for semi-supervised learning,” in ACL. ACL, 2010,
pp. 384–394.

[3] Z. Su, H. Xu, D. Zhang, and Y. Xu, “Chinese sentiment classification
using a neural network toolword2vec,” in MFI. IEEE, 2014, pp. 1–6.

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” ICLR Workshop, 2013.

[5] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, pp. 3111–3119.

[6] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase:
a collaboratively created graph database for structuring human knowl-
edge,” in ACM SIGMOD/PODS. ACM, 2008, pp. 1247–1250.

[7] Google, https://www.google.com/intl/bn/insidesearch/features/search/
knowledge.html, 2014.

[8] Wikidata, http://wikidata.org/, 2012.
[9] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embedding:

A survey of approaches and applications,” TKDE, vol. 29, no. 12, pp.
2724–2743, 2017.

4Measured on a server with two CPUs (Intel Xeon E5-
2620V4@2.10GHz) and 128G RAM using 30 threads.

[10] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in NIPS,
2013, pp. 2787–2795.

[11] S. W.-t. Yih, M.-W. Chang, X. He, and J. Gao, “Semantic parsing
via staged query graph generation: Question answering with knowledge
base,” in ACL and IJCNLP, 2015, pp. 1321–1331.

[12] J. Graupmann, R. Schenkel, and G. Weikum, “The spheresearch engine
for unified ranked retrieval of heterogeneous xml and web documents,”
in VLDB. VLDB Endowment, 2005, pp. 529–540.

[13] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph and text
jointly embedding,” in EMNLP, 2014, pp. 1591–1601.

[14] B. Min, R. Grishman, L. Wan, C. Wang, and D. Gondek, “Distant
supervision for relation extraction with an incomplete knowledge base,”
in NAACL HLT, 2013, pp. 777–782.

[15] H. Zhong, J. Zhang, Z. Wang, H. Wan, and Z. Chen, “Aligning
knowledge and text embeddings by entity descriptions,” in EMNLP,
2015, pp. 267–272.

[16] W. Fang, J. Zhang, D. Wang, Z. Chen, and M. Li, “Entity disambiguation
by knowledge and text jointly embedding,” in CoNLL, 2016, pp. 260–
269.

[17] I. Yamada, H. Shindo, H. Takeda, and Y. Takefuji, “Joint learning of
the embedding of words and entities for named entity disambiguation,”
in CoNLL, 2016, pp. 250–259.

[18] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” JMLR, vol. 3, no. Feb, pp. 1137–1155, 2003.

[19] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” JMLR,
vol. 12, no. Aug, pp. 2493–2537, 2011.

[20] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in EMNLP, 2014, pp. 1532–1543.

[21] P. Rosso, D. Yang, and P. Cudré-Mauroux, “Knowledge graph embed-
dings,” in Encyclopedia of Big Data Technologies., 2019.

[22] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes.” in AAAI, vol. 14, 2014, pp. 1112–1119.

[23] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation
embeddings for knowledge graph completion.” in AAAI, vol. 15, 2015,
pp. 2181–2187.

[24] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding
via dynamic mapping matrix,” in ACL and IJCNLP, vol. 1, 2015, pp.
687–696.

[25] T. Ebisu and R. Ichise, “Toruse: Knowledge graph embedding on a lie
group,” in AAAI, 2018.

[26] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for collective
learning on multi-relational data.” in ICML, vol. 11, 2011, pp. 809–816.

[27] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities
and relations for learning and inference in knowledge bases,” in ICLR,
2015.

[28] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard,
“Complex embeddings for simple link prediction,” in ICML, 2016, pp.
2071–2080.

[29] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with neural
tensor networks for knowledge base completion,” in NIPS, 2013, pp.
926–934.

[30] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional
2d knowledge graph embeddings,” in AAAI, 2017, pp. 1811–1818.

[31] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in European Semantic Web Conference. Springer, 2018, pp.
593–607.

[32] I. Balazevic, C. Allen, and T. M. Hospedales, “Hypernetwork knowledge
graph embeddings,” arXiv preprint arXiv:1808.07018, 2018.

[33] D. Q. Nguyen, T. Vu, T. D. Nguyen, D. Q. Nguyen, and D. Phung,
“A capsule network-based embedding model for knowledge graph com-
pletion and search personalization,” arXiv preprint arXiv:1808.04122,
2018.

[34] X. Han, Z. Liu, and M. Sun, “Neural knowledge acquisition via mutual
attention between knowledge graph and text,” in AAAI, 2018.

[35] D. Yang, P. Rosso, B. Li, and P. Cudre-Mauroux, “Nodesketch: Highly-
efficient graph embeddings via recursive sketching,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, ser. KDD ’19, 2019, pp. 1162–1172.

[36] K. Toutanova, D. Chen, P. Pantel, H. Poon, P. Choudhury, and M. Ga-
mon, “Representing text for joint embedding of text and knowledge
bases,” in EMNLP, 2015, pp. 1499–1509.

[37] I. Yamada, H. Shindo, H. Takeda, and Y. Takefuji, “Learning
distributed representations of texts and entities from knowledge
base,” TACL, vol. 5, pp. 397–411, 2017. [Online]. Available:
https://www.transacl.org/ojs/index.php/tacl/article/view/1065

[38] M. Yu and M. Dredze, “Improving lexical embeddings with semantic
knowledge,” in ACL, vol. 2, 2014, pp. 545–550.

[39] J. Cheng, Z. Wang, J.-R. Wen, J. Yan, and Z. Chen, “Contextual text
understanding in distributional semantic space,” in CIKM. ACM, 2015,
pp. 133–142.

[40] D. Yang, D. Zhang, Z. Yu, and Z. Wang, “A sentiment-enhanced
personalized location recommendation system,” in Proceedings of the
24th ACM conference on hypertext and social media. ACM, 2013, pp.
119–128.

[41] L. Chen, J. Jakubowicz, D. Yang, D. Zhang, and G. Pan, “Fine-grained
urban event detection and characterization based on tensor cofactoriza-
tion,” IEEE Transactions on Human-Machine Systems, vol. 47, no. 3,
pp. 380–391, 2016.

[42] M. Baumgartner, W. Zhang, B. Paudel, D. DellAglio, H. Chen, and
A. Bernstein, “Aligning knowledge base and document embedding
models using regularized multi-task learning,” in International Semantic
Web Conference. Springer, 2018, pp. 21–37.

[43] J. Weston, A. Bordes, O. Yakhnenko, and N. Usunier, “Connecting
language and knowledge bases with embedding models for relation
extraction,” in EMNLP, 2013, pp. 1366–1371.

[44] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision for
relation extraction without labeled data,” in ACL and AFNLP. ACL,
2009, pp. 1003–1011.

[45] S. Riedel, L. Yao, and A. McCallum, “Modeling relations and their
mentions without labeled text,” in ECML PKDD. Springer, 2010, pp.
148–163.

