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ABSTRACT
This paper presents Scalpel-CD, a first-of-its-kind system that
leverages both human and machine intelligence to debug noisy
labels from the training data of machine learning systems. Our
system identifies potentially wrong labels using a deep probabilistic
model, which is able to infer the latent class of a high-dimensional
data instance by exploiting data distributions in the underlying
latent feature space. To minimize crowd efforts, it employs a data
sampler which selects data instances that would benefit the most
from being inspected by the crowd. The manually verified labels are
then propagated to similar data instances in the original training
data by exploiting the underlying data structure, thus scaling out
the contribution from the crowd. Scalpel-CD is designed with a
set of algorithmic solutions to automatically search for the optimal
configurations for different types of training data, in terms of the
underlying data structure, noise ratio, and noise types (random
vs. structural). In a real deployment on multiple machine learning
tasks, we demonstrate that Scalpel-CD is able to improve label
quality by 12.9% with only 2.8% instances inspected by the crowd.

CCS CONCEPTS
• Information systems → Crowdsourcing; • Computing
methodologies→ Neural networks; Latent variable models.
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1 INTRODUCTION
The success of machine learning techniques — deep learning in
particular — heavily relies on the quality and quantity of labeled
training data [49]. While a growing body of research has addressed
the data quantity issue [2, 9, 15, 31, 47], relatively little work has
been focused on the data quality issue. Due to the lack of trans-
parency and accountability of deep learning models [11, 19, 25],
incorrect labels in the training data are generally difficult to iden-
tify when the prediction goes wrong; consequently, label noise has
become a main obstacle for developing, deploying, and improv-
ing deep learning models. The significance of the problem is more
obvious in critical domains such as health or justice [34]. For in-
stance, in a medical context, models trained on drug instances that
are wrongly labeled as successfully treating a certain condition
would likely produce erroneous and damaging effects. We therefore
argue that debugging noisy labels is of key importance for deep
learning-based systems, both in terms of performance and security.

The main existing approach in that context leverages data dis-
tributions for debugging noisy labels (see Section 5 for more dis-
cussion on that point). The basic assumption is that data points
distributed close to each other are more likely to have the same
label. Existing methods [1, 35, 39], however, suffer from two major
limitations. First, they only model data distributions in the low-level
feature space with oversimplified structures (e.g., bag-of-words).
As for most language and vision problems, the low-level distribu-
tions learned by these methods are limited compared to the true
distributions that present complex dependencies among features.
The second limitation, perhaps the most important one, is that all
existing methods are automatic methods that rely on machine in-
telligence. As a result, the performance of such methods is limited
by two factors: 1) the learning capability of the method, and 2) the
predictive power of data distributions for true labels, a limiting
factor of any data-driven method that relies on data distributions
for debugging noisy labels.

Compared to machines, humans are more reliable in justifying
decisions and verifying issues [3, 27]. We, therefore, advocate a
human-in-the-loop approach to leverage both human and machine
intelligence when debugging noisy labels. In such an approach,
automatic methods can be used to identify data instances with
potentially wrong labels in large training data and infer their la-
tent classes, while crowd workers can be engaged to inspect data
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instances for which the automatic method are insufficient. This
approach can, therefore, exploit the complementary strength of
humans and machines for debugging noisy labels. Despite its obvi-
ous potential, developing such an approach is however challenging.
The first challenge is to develop a machine learning model that can
learn high-quality data structures to capture data distributions with
higher fidelity for identifying potentially wrong labels. Second, it is
important to reduce crowd efforts in debugging large training data
due to the difficulty of scaling out the crowd. This requires to select
not only data points for which the inference is unreliable, but also
those most representative data points, such that the labels verified
or fixed by the crowd can be propagated to similar data instances.

This paper introduces Scalpel-CD, a new human-in-the-loop
system that takes advantage of deep and probabilistic models for in-
ferring the latent classes and human computation for improving the
model’s inference. Unlike existing probabilistic methods, our deep
probabilistic model adopts deep neural networks to parameterize
data distributions, thus is able to model complex feature relation-
ships in the data and learn high-quality latent features. The model
therefore benefits both from the flexibility of neural networks in
learning the underlying data structure and from the expressiveness
of probabilistic modeling in capturing data distributions. An addi-
tional advantage, which is of key importance when involving the
crowd, is that the learned data structure and the reliability of model
inference can be used to select the most representative data in-
stances that need to be inspected by humans. To do so, Scalpel-CD
employs a data sampler that considers both data representativeness
and model reliability for data selection. To involve crowd workers,
Scalpel-CD dynamically creates micro label inspection tasks and
publishes them on a popular crowdsourcing platform. The collected
results are distilled through aggregation algorithms and the cor-
rected labels are propagated to similar data instances in the training
data in order to scale out the contribution from the crowd.

A key design principle of Scalpel-CD is that each of its com-
ponents seeks an optimal tradeoff between different factors that
influence system performance on different types of machine learn-
ing datasets, in terms of the underlying data structure, noise ratio,
and noise types (e.g., random vs. structural). These factors include
1) the level of trust to put in the data distribution and the existing
noisy labels; 2) the importance between the representativeness of
the data instances and the reliability of model inference in data sam-
pling; and 3) the efficiency and the accuracy of label propagation.
We model the tradeoffs between these important system factors as
system parameters that are easy to understand; furthermore, we
introduce a set of algorithmic solutions that allow to easily search
for the optimal system configurations on different datasets. Our
system is therefore, generic in the sense that it applies to a wide
range of machine learning tasks.

In summary, we make the following key contributions:

� We introduce the notion of debugging noisy training data for
learning tasks via a human-in-the-loop approach;
� We present a new system architecture that orchestrates both
human and machine intelligence in debugging training data;
� We propose a deep probabilistic model that identifies potentially
wrong labels and a set of algorithms for scaling out the contribu-
tion of the crowd while determining optimal system parameters.

To the best of our knowledge, we are the first to combine human
and machine intelligence for debugging noisy labels. Extensive
evaluation on multiple real-world datasets shows that our system is
able to improve label quality by 12.9% (accuracy) and 15.8% (AUC)
while requiring only 2.8% data to be inspected by the crowd.

2 ARCHITECTURE
In this section, we first give an overview of Scalpel-CD, and then
describe in more detail some of its components.

2.1 System Overview
Figure 1 presents a simplified architecture of Scalpel-CD. It takes
as input a noisy dataset, e.g., a corpus of documents each associated
with a noisy label that represents the polarity (sentiment) of the
text. The dataset is first passed to a deep probabilistic model, which
infers the latent class for each data instance and a high-level latent
feature representation of it. Both outputs are used as input for
the data sampler, which calculates the reliability of the model’s
inference and the representativeness of the data instance. The data
sampler then selects representative data instances whose labels
need to be inspected the most. The selected data instances, together
with the noisy labels, are passed to the micro-task manager, which
dynamically creates human computation tasks and publishes them
on a crowdsourcing platform.

The noisy label for each selected data instance is then examined
by multiple human workers. Once workers complete their inspec-
tion, the results are passed to a label aggregator. The label aggregator
aggregates multiple workers’ annotations to obtain the true class
for each inspected data instance. The data instances, together with
their verified/fixed labels are then fed into a label propagator, which
propagates the labels to similar data instances identified through
their latent features (inferred by the deep probabilistic model). The
data sampler and label aggregator can be seen as down-sampling
and up-sampling methods to reduce crowd annotation efforts and
amplify crowd contributions, respectively. Together, they help to
scale out human contributions, which is of critical importance in a
human-in-the-loop approach where human workers are often the
bottleneck in terms of scalability or computational efficiency.

2.2 Components
C1: Deep Probabilistic Model. The deep probabilistic model re-
ceives a noisy dataset and simultaneously infers two types of latent
variables, i.e., the latent class and the latent features. The latent
class represents what the model believes is the true label for the
data instance. The latent features, represented as low-dimensional
vectors, essentially capture the underlying data structure. They are
useful in identifying representative data instances for data sam-
pling and in identifying similar data instances for label propagation.
The inference relies on both the existing noisy label and the latent
features. The basic idea is that data instances distributed close to
each other in the latent feature space are likely to belong to the
same class. Consider for example a data instance whose surround-
ing neighbors are all positively labeled; it is likely to be positive
also, even when its existing noisy label is actually negative. In most
cases, the surrounding neighbors are partially labeled as positive
and partially as negative. The deep probabilistic model is able to



Figure 1: The architecture of Scalpel-CD: our system takes as input a noisy training dataset and identi�es data instances with
potentially wrong labels; it samples from the data representative instances and involves crowd workers to verify and �x wrong
labels; the �xed labels are then propagated to similar data instances in order to scale out the contributions of the crowd.

strike a balance between the latent features and the noisy label to
obtain a reasonable estimate of the latent class. This component is
described in detail in Section 3.1 and 3.2.

C2: Data Sampler. The data sampler is critical in reducing the
annotation e�ort of the crowd workers as it helps to select repre-
sentative data instances for which the deep probabilistic model's
inference is unreliable. The model reliability is approximated by
the (inverse) uncertainty of the inference model. The representa-
tiveness of a data instance is estimated based on the underlying
data structure. Speci�cally, the data sampler makes use of the latent
features inferred by the deep probabilistic model to cluster the data
instances. Within each cluster, data instances are supposed to be
similar to each other. The data sampler then uses an algorithm to
weight the importance of model reliability and data representative-
ness when selecting data. More details on the sampling algorithm
are presented in Section 3.3.

C3: Micro-Task Manager. The micro-task manager is responsi-
ble for dynamically creating human computation tasks that are
then published on a crowdsourcing platform. It takes as input data
instances (together with their original noisy labels) selected by
the data sampler, and builds a Web page to be published on the
crowdsourcing platform using a templating engine. Once published,
the micro-tasks can be selected by workers on the crowdsourcing
platform, who are then asked to verify the noisy labels and �x them
if deemed incorrect. The results are sent back to the micro-task
manager, which in turns inserts them into the label aggregator.

C4: Label Aggregator. Label aggregation is a central problem in
crowdsourcing. Given multiple human workers contributing to
individual data instances, the label aggregator is designed to infer
the true label through a probabilistic latent variable model. A large
body of work can be found on this topic, e.g., the classic Dawid-
Skene model [8] or the GLAD model [42] (see Section 5). Our work
focuses more on addressing the scalability issue of the crowd rather
than on quality issues. However, our system supports arbitrary
label aggregation methods through a generic interface.

C5: Label Propagator. The label propagator transfers manually
examined labels to similar data instances. This is achieved by ex-
ploiting the underlying data structure: the noisy labels of data

instances identi�ed by the deep probabilistic model are matched
to the veri�ed labels of the data instances in a cluster. For data
instances with di�erent veri�ed labels in the same cluster, label
matching is performed using a nearest neighbor search. Coupled
with the data sampler, the label propagator serves as an ampli�er
for maximizing the utility of the crowd. The label propagator is de-
signed to optimize two criteria: it propagates labels to as many data
instances as possible while ensuring that the labels are propagated
to the right instances. A detailed introduction to the propagation
algorithm is given in Section 3.4.

3 DEEP PROBABILISTIC MODELING AND
CROWDSOURCING TRADEOFFS

Scalpel-CD orchestrates human and machine intelligence via a set
of components described in the previous section. These components
intrinsically seek a tradeo� between di�erent key factors of our
system. In this section, we characterize the tradeo� space into three
parts, relevant to the deep probabilistic model, the data sampler,
and the label propagator, respectively; for each part, we introduce
an algorithmic solution that simpli�es the search for the optimal
tradeo� as the search for a single system parameter. Note that the
label aggregator is also concerned with a tradeo�: the number of
crowd contributors involved and the accuracy of result aggregation.
However, this has been extensively studied (see [2, 23]). In the
following, we �rst brie�y describe our deep probabilistic model,
then introduce the algorithmic solutions to the three components.

3.1 Deep Probabilistic Model
To infer the latent class of a data instance, the basic intuition of
our deep probabilistic model is that data instances similar to each
other are more likely to belong to the same class. We consider a
generative model to fully capture the data distribution of a large
training dataset. Given a noisy datasetD = f¹ xi ;ŷi ºgN

i =1, wherexi
is a data instance and̂y is its corresponding noisy label (we will
omit the indexi whenever it is clear that we are referring to a
single data instance), the deep probabilistic model encompasses the
generative modeling of both data and labels, described as follows.

� For each data instance¹xi , ŷi º 2 D ,
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Figure 2: Graphical model of our deep probabilistic model.
The data instance x and the noisy label ŷ are both generated
from distributions conditioned on the latent feature vector
z and the latent class y. � and  are the parameters of the
likelihood function for generating the data and noisy labels,
respectively (priors of z and y are omitted).

� Draw a latent feature vectorzi � P¹zº where P¹zº =
N¹0; Iº is a standard Gaussian distribution;

� Draw a latent classyi � P¹yº whereP¹yº = Cat¹y j� º is a
Multinoulli distribution, where� = f 1•K; : : : ;1•Kg| (K
is the number of classes);

� Draw a data instancexi � P� ¹xjz;yº;
� Draw a noisy label̂y � P ¹ŷ jz;yº.

Our overall model is depicted in Figure 2. The data instance and
the noisy label are both dependent on the latent feature vectorz
and the latent classy, which captures the class speci�cation.z can
contain both class and non-class related features. For example, for a
sentencex, the latent feature vectorzcan represent topics related to
a certain class, and additionally, it can capture the author's writing
style that are not class-related. The non-class related features, when
mistaken as class-related, are likely to lead to wrong labels during
the labeling process.z andy are conditionally dependent given the
observed data instancex and the noisy label̂y.

Formally, the deep probabilistic model is expressed by the fol-
lowing factorization:

P¹x;ŷ; z;y j� ; º = P� ¹xjz;yºP ¹ŷ jz;yºP¹zºP¹yº: (1)

The likelihood functionsP� ¹xjz;yº andP ¹ŷ jz;yº are parameterized
by deep neural networks to accurately capture the distributions of
the data and the noisy labels. Depending on the speci�c form of
the data, di�erent likelihood functions are to be used forP� ¹xjz;yº:
Gaussian likelihood is suitable for image data, while Multinomial
likelihood is more suitable for textual data (see [18, 29]). P ¹ŷ jz;yº
is represented by a Multinoulli likelihood.

Inference and Learning. The inference for the latent feature vec-
tor z and the latent classy is closely related to the learning of the
deep probabilistic model parameters. The parameters are learned
by maximizing the log likelihood of the observed data instances
and the associated noisy labels:

logP¹x;ŷ j� ; º = log
º

P¹x;ŷ; z;y j� ; º dzdy: (2)

Due to the intractability of the integral, we approximate the true pos-
teriors ofz andy with variational ones, denoted byQ� ¹zjx;yº and
Q ¹y jxº, respectively. We use a Gaussian distribution forQ� ¹zjx;yº

and a Multinoulli distribution forQ ¹y jxº. Given the complex de-
pendencies among the low-level features of data instances and their
relationships with the latent variables, these distributions are again
parameterized by deep neural networks. The parameters, including
those of the generation networks� and and those of the inference
networks and� , are then learned by maximizing the evidence
lower bound (ELBO) [4] of the objective as follows:

EQ� ; ¹z;y jxº»logP� ; ¹x;ŷ jz;yº¼ �DKL»Q� ; ¹z;y jxºkP¹z;yº¼; (3)

whereE¹�º is expectation andDKL»�k�¼is the KL-divergence be-
tween two distributions.

3.2 Inferring the Latent Class
From a neural network perspective, the �rst part of the ELBO (Equa-
tion 3) can be interpreted as the sum of the (negative) reconstruction
errors of the observed featurex and noisy label̂y, while the second
part is the (negative) regularization term preventing over�tting.
Hence, we rely both on the data distribution and the existing noisy
labels when inferring latent classes.

The original ELBO weights both types of reconstruction errors
as equally important. While this can result in a powerful generative
model for data and label generation, our goal is di�erent: we are
interested in inferring the latent classes, for which the data dis-
tribution and the existing noisy labels are likely to be di�erently
important. Furthermore, their importance can vary across di�erent
datasets: for datasets whose data distributions are highly indicative
of the true class and the noise ratio of the existing labels is high, the
data distribution should be more trusted in the inference; otherwise,
the existing label should be more trusted.

It is, therefore, natural to extend the ELBO by introducing a
parameter� to weight the importance of the two types of recon-
struction errors:

EQ� ; ¹z;y jxº»logP� ; ¹x;ŷ jz;yº¼=

EQ� ; ¹z;y jxº»logP ¹ŷ jz;yº¼+ � � EQ� ; ¹z;y jxº»logP� ¹xjz;yº¼:
(4)

In case� , 1, we are no longer optimizing the ELBO on the log
marginal likelihood (Equation 2). If� < 1, we would trust more
the existing labels than the data distribution; consequently, the
model is less able to determine label noise by resorting to the data
distribution. Otherwise, if� > 1, we are weakening our trust on
the existing noisy labels while putting more trust on the data dis-
tribution in determining label noise. While this allows for more
�exibility, it could also bring additional noise to the labels due to
the non-class related features in the data distribution. Finding a
proper value of� is important to achieve a good performance in
inferring latent classes.

The resulting optimization algorithm is given in Algorithm 1. It
iteratively goes over two steps, i.e., the forward and the backward
step. In each iteration, the forward step (row 5) computes the latent
variables given the current parameters; the backward step (row 6-8)
then updates the parameters by backpropagating the gradients of
the errors. In the calculation of the gradients (row 6), we use an
adapted version of the ELBO (Equation 4).

3.3 Data Sampling
The data sampler selects representative data instances for which
our deep probabilistic model's inference is most unreliable. The



Algorithm 1: Learning the Deep Probabilistic Model

Input: the set ofN i.i.d. data instancesD = f xi ; ŷ i gN
i =1, ELBO

adapter� , and the maximum number of iterationsI ter
1 Initialize � ;  ; � ;  ;
2 for t = 1;t � I ter ; t + + do
3 Sample a batch of data instances;
4 forall xi 2 the batchdo
5 Computey i andzi ;
6 Compute the noisy gradient� � ; ; � ;  L ;

7 Average noisy gradients from batch;
8 Update� ;  ; � ;  with gradient descent;
9 if ELBO has convergedthen

10 break;

model reliability is approximated by the inverse of the model's
uncertainty, measured by Shannon entropy [13, 37]:

H»yjx¼= �
KÕ

C=1

p¹y = Cjxº logp¹y = Cjxº (5)

whereC is the class andK is the number of classes. We hypothesize
that uncertainty sampling is e�ective for datasets with random
noise: for data instances far away from the true decision boundary,
the deep probabilistic model can take advantage of the majority
label of data instances and provide correct inference; however for
data instances close to the decision boundary, the deep probabilistic
model will have a high uncertainty due to the mix of data instances
from di�erent classes and will likely result in some wrong inference.

However, for a dataset with structural noise, since there can
exist certain regions of the data distribution where the majority
of the labels are incorrect, the inference of the deep probabilistic
model can be totally o� while being highly probable according to
the model. Therefore, we also consider random sampling, which is
independent of the deep probabilistic model. The e�ectiveness of
the two sampling methods can be evaluated using a set of validation
instances with ground truth labels: a better sampling method is the
one from which the sampled data instances covers more validation
instances where the deep probabilistic model's inference is wrong.

An additional criterion for data sampling is the representative-
ness of the data instances, which is important for label propagation.
We apply a clustering method to the data instances in the latent
feature space as uncovered by the deep probabilistic model, i.e.,
zi ¹1 � i � Nº. Data instances falling into the same clusters are
supposed to be more similar with each other.

We now describe our data sampling algorithm (see Algorithm 2).
It starts by clustering data instances based on their latent features
(row 1), then chooses a sampling strategy between uncertainty and
random sampling based on the coverage of validation instances for
which model inference is wrong (row 3). Then, given a budgetB,
i.e., the prede�ned number of data instances to be inspected by the
crowd, the data sampler �rst ranks the data instances in each cluster
according to the sampling strategy (row 5). It then selects from each
cluster the top-ranking data instances (row 7). The number of data
instances selected in each cluster is proportional to the size of the
cluster (row 6). Note that for random sampling, selecting data from
clusters proportionally is equivalent to strati�ed random sampling.

Algorithm 2: Data Sampling
Input: Data instances represented by latent features and inferred

classesD = f zi ; P¹y i ºgN
i =1, budgetB, #clustersc, validation

instances with ground truth labelsV
Output: Data instances sampledS � D , clustersC = fCj gc

j =1

1 C  Cluster data instancesD based on latent features;
2 S  ; ;
3 Decide the sampling strategy usingV ;
4 foreach Cj 2 C do
5 Rank data instances inCj according to the sampling strategy;

6 n j  
j

jCj j
N � B

k
;

7 Sj  Pickn j top-ranking data instances;
8 S  S [ S j ;

A key parameter of the algorithm is the number of clusters, de-
noted byc � B. By setting this parameter to di�erent values, the
data sampler weights the importance of data representativeness
and model reliability di�erently. Consider the extreme case when
c = 1, i.e., no data partitioning, the data sampler fully relies on
uncertainty or random sampling for selecting data instances; when
c = B, i.e., a single data instance is selected from each cluster, the
data sampler relies more on data representativeness for selecting
data instances. Our algorithm is not restricted to any speci�c clus-
tering methods. The only requirement is the �exibility for users
to specify the number of clustersc. As an example, we consider
the widely used K-means method for clustering. Comparison of
di�erent clustering methods is left for future work.

3.4 Label Propagation
The label propagator ampli�es the crowd contributions by prop-
agating corrected labels to similar data instances. The similarity
between data instances is calculated as the Euclidean distance be-
tween the latent feature vectors of the instances. A key parameter
of the label propagating algorithm is the number of data instances
to propagate the label to. Given that the size of the clusters are dif-
ferent and that data instances within each cluster are similar, we use
a relative number for the parameter to represent the fraction of the
data instances for label propagation in each cluster. We denote this
parameter asp. A small value ofp will a�ect fewer data instances,
thus being less e�cient in scaling out human contributions; on the
contrary, a big value ofp, while being e�cient, might increase the
noise ratio of the dataset as labels can get wrongly propagated. A
proper setting ofp is, therefore, of key importance for scaling out
human contributions in a reliable way.

Our label propagation algorithm is presented in Algorithm 3. It
performs label propagation in each cluster identi�ed by the data
sampler. For each inspected data instance in the cluster (row 1-2),
the label propagator �rst ranks the data instances that have not
been inspected by crowd workers according to their distance to the
inspected instances (row 3-5). It then picks the top ranking instances
with shortest distances (row 6). Finally, for each of the selected data
instances in the cluster, the label of the nearest inspected data
instance is propagated (row 7-8).



Algorithm 3: Label Propagation

Input: Data instances represented by latent featuresD = f zi ; ŷ i gN
i =1,

data instances with �xed labelsS = f zh ; yh gH
h =1, clusters

C = fCj gc
j =1, propagation fractionp

Output: Fixed labelsD = fy i gN
i =1

1 foreach Cj 2 C do
2 foreach h 2 S ^ h 2 Cj do
3 foreach i 2 Cj ^ i < S do
4 di ;h  distance betweenzh andzi ;

5 Rank data instancei ¹i 2 Cj ^ i < Sº by di ;h ;
6 Ph  p � jC j j top ranking instances with smallestdi ;h ;

7 foreach i 2
Ð H

h =1 Ph do
8 y i  yh � whereh � = arg mindi ;h ¹i 2 Ph º;

4 EXPERIMENTS AND RESULTS
This section presents experimental results for evaluating the per-
formance ofScalpel-CD. We start by presenting an evaluation of
each of its components by answering the following questions:

� Q1:How well does the deep probabilistic model perform when
inferring the latent class from noisy data?

� Q2:How well do the uncertainty and random sampling perform
on datasets of di�erent noise types?

� Q3:How e�ective is label propagation (together with data sam-
pling) in scaling out the contributions of crowd workers?

From a human computation perspective, while we mainly consider
improving the scalability of the crowdsourcing process, we also in-
vestigate the quality of the work performed by the crowd, which we
report when addressing Q3. Subsequently, we evaluate the system
as a whole by considering the following issue:

� Q4:Does our proposedScalpel-CD system outperform the state-
of-the-art methods for debugging noisy labels?

In addition, we also investigate how muchScalpel-CD helps in
improving the performance of a machine learning system. In the
following, we start by introducing our experimental setup, before
answering each of the above questions in a separate subsection.

4.1 Experimental Setup
Datasets.We experiment with three datasets created with di�er-
ent noise types, namely MovieReview (random noise), PoliDying
(structural noise), and NYT (structural noise). These datasets are
representative for sentiment analysis, event detection, and relation
extraction, respectively. The MovieReview dataset [30] is a subjec-
tivity classi�cation dataset of movie reviews from Rotten Tomatoes.
This dataset contains ground truth labels for all data instances;
we, therefore, simulate wrong labels by randomly selecting a cer-
tain fraction (10% to 50%) of the data instances and �ipping the
ground truth labels. The PoliDying dataset is a tweet relevance clas-
si�cation dataset for detecting politician-dying events. Following
previous studies [20, 36], the positive tweets were retrieved with
detailed information on 11 seed events, including event name and
date, while negative tweets were retrieved with �politician�- and
�death�-related keywords. A set of 500 tweets were manually anno-
tated for evaluation. The NYT dataset [33] is a relation extraction
dataset for extracting relations from New York Times articles. We

Table 1: Statistics of the datasets in our experiments.

Dataset MovieReview PoliDying NYT

#Data instances 10,000 17,030 125,267
#Test instances 2,000 500 395

focus on the relation �location-contains�. The dataset is labeled by
distant supervision using Freebase as the labeling source. In this
dataset, there are 395 manually annotated data instances.

For each of the three datasets, the data sampler selects a num-
ber (i.e., the budgetB) of data instances for crowdsourcing. We
experiment with the budget varying in {50, 100, 200, 500, 1000}. Key
statistics from these datasets are presented in Table 1.

Comparison Methods. Due to the lack of existing human-in-the-
loop approaches in debugging training data, we compare the fol-
lowing automatic methods and our proposed system. 1)Ratio [5]:
a ratio-based method that �nds the most predictive features and
identi�es data instances with the most uncertain labels as those
containing such features yet labeled di�erently from the label indi-
cated by the features. The predictive power of a feature is calculated
as the ratio between the number of data instances of a certain class
containing such a feature and the overall number of data instances.
2)Pattern [39]: a generative model designed to capture the label-
ing process as a generative process from the latent classes. The
model facilitates the inference of the posterior of the latent class
given the observed features. However, unlike our deep probabilistic
model that infers the latent class by exploiting the data distribu-
tion in the latent feature space, Pattern is a probabilistic model
that directly models the generative process of low-level features.
3)HierTopic [1]: a hierarchical topic model that assumes a latent
topic-word hierarchy for the data generation process. Unlike our
probabilistic model which learns complex hidden data structures,
HierTopic is only capable of learning a hierarchical structure. For
our proposed system, we compare an automated variant and the
full system involving human workers: 4)DPM, our proposed deep
probabilistic model, which is used in isolation to automatically cor-
rect wrong labels. 5)Scalpel-CD, our proposed human-in-the-loop
system which makes use of both the deep probabilistic model and
crowd workers.

To demonstrate the e�ectiveness of our system on machine learn-
ing tasks, we compare the following training data con�gurations:
1) the original noisy training data; 2) training data denoised by
the deep probabilistic model; and 3) training data denoised by
Scalpel-CD. We apply and evaluate state-of-the-art machine learn-
ing models on these di�erent data con�gurations: we use Convolu-
tional Neural Network [16] for MovieReview and PoliDying and
Piecewise Convolutional Neural Network (PCNN) [48] for NYT.

Parameter Settings and Model Training. We empirically set
optimal parameters based on a held-out validation set that contains
10% of the test data. These include the hyperparameters of the deep
probabilistic model and the parameters of the trade-o� algorithms,
i.e.,� , c, andp. For the deep probabilistic model, we use a shared
embedding layer as the �rst layer of the inference networks, i.e.,
Q� andQ , to encode the textual features. We apply a grid search
in {32, 64, 128, 256, 512} for the dimension of the embeddings and
that of the hidden layers, and we explore multi-layer perceptron



networks with 0, 1, and 2 hidden layers for both the generation
and inference models, subject to the constraint thatP� andQ�
have a symmetric architecture (similar to an auto-encoder). We
use Adam [17] for model training with mini-batches of 128 data
samples for all datasets. The deep probabilistic model is trained for
200 epochs on each dataset and the one with the best performance
on the validation set is kept for evaluation.

Evaluation Protocols. We separately evaluate the performance
of Scalpel-CD on debugging noisy labels and its e�ect on the �nal
machine learning tasks using di�erent protocols. For the former
task, we take the entire dataset as input. This includes the data
instances in the test set together with their noisy labels. The system
debugs labels in the whole dataset. The denoised labels of data
instances in the test set are then compared against the ground truth.
For the �nal machine learning tasks, our system debugs labels in
the training set only. A state-of-the-art deep learning model is then
trained on the denoised training set and evaluated on the test set.
Two metrics are used to measure the performance of our proposed
system in debugging noisy labels and its e�ect on the �nal machine
learning tasks: accuracy and Area Under the ROC Curve (AUC).
Higher accuracy and AUC values indicate better performance.

4.2 Inferring the Latent Class (Q1)
To understand the e�ectiveness of our deep probabilistic model
in inferring the latent class, we analyze the relationship between
capturing the data distribution and inferring the latent class. The
analysis is carried out by comparing the performance of the deep
probabilistic model with di�erent settings of� , which controls the
importance of the reconstruction errors of data instances and the
noisy labels in the objective function. We analyze the dynamics
of our deep probabilistic model on the validation set during the
training process, with� selected fromf 0:0001;0:001;0:01;0:1;1g.
Results on the MovieReview dataset with a noise ratioNR= 20%
are shown in Figure 3. We discuss below the in�uence of di�erent
datasets and noise ratios on the performance of the model.

From Figures 3(a-b), we observe a general pattern across dif-
ferent settings of� : when the training proceeds, the performance
of the deep probabilistic model �rst increases then decreases. The
di�erence between the performance across� settings indicates that
the optimal performance is hit at di�erent performance levels and
epochs during the training process: from� = 0:0001to 0.1, the
optimal performance grows and is reached later in the training
process for larger values of� ; then from� = 0:1 to 1, the optimal
performance decreases and is reached earlier. Given such results, we
speculate that� = 0:1best infers the latent classes as it strikes a bal-
ance between minimizing the reconstruction errors of the data and
the noisy labels. In addition, we further hypothesize that there is a
consistent relationship between the level of optimal performance
and the time at which it is reached in the training process.

These hypotheses are con�rmed by Figures 3(c-d). For small val-
ues of� (0:0001� 0:01), the deep probabilistic model quickly reaches
the minimum reconstruction error of noisy labels. As a result, the in-
ferred latent classes are biased towards existing noisy labels, which
is evidenced by the optimal accuracy of� = f 0:0001;0:001g be-
ing only slightly higher than 0.8 (Figure 3(a); the performance of
� = 0:01 is slightly higher yet still not optimal). For� = 1, the

(a) Validation Accuracy (b) Validation AUC

(c) Loss on Label Reconstruction (d) Loss on Data Reconstruction

Figure 3: Comparison of performance against loss in data
and label reconstruction with di�erent settings of � on the
MovieReview dataset. Upper �gures are the dynamics of ac-
curacy (a) and AUC (b) on the validation set during the train-
ing process; lower �gures are the reconstruction loss (nega-
tive log-likelihood) of noisy labels (c) and data instances (d).

reconstruction error of the data is signi�cantly reduced (more than
for other settings, see Figure 3(d)); the reconstruction error of noisy
labels is however not reduced as much as in the other settings (Fig-
ure 3(c)). The inferred latent classes therefore cannot bene�t from
those existing correct labels. To infer the latent class in an unbiased
manner, su�cient model training has to be performed to reduce
both types of reconstruction errors. This implies that the optimal
setting of � is most likely the one that takes most of the time to
reach the optimal performance during the training process.

Impact of Datasets and Noise Ratios. We observe similar results
with the other datasets. The optimal settings of� are 1 and 0.01
for PoliDying and NYT, respectively. The variation across datasets
implies di�erent utility of the data distribution in inferring the
latent class, which highlights the importance of searching for the
optimal � separately for di�erent datasets. Actual performance
using these� values will be reported in Section 4.5. We note that
our model is robust with respect to di�erent noise ratios. It achieves
accuracy scores> 0:9 even when the noise ratio of MovieReview
goes up to 40%. Compared with noise ratios, model performance is
more a�ected by the predictive power of the data distribution. We
remark, however, that the model can always bene�t from the data
distribution and achieve better performance than1 � NR.

4.3 Uncertainty and Random Sampling (Q2)
The data sampling component ofScalpel-CD allows for two sam-
pling strategies, i.e., uncertainty sampling and random sampling,
which are model-dependent and model-independent, respectively.
We therefore hypothesize that random sampling is more e�ective
than uncertainty sampling for datasets with structural noise. To
verify our hypothesis, we conduct a comparative analysis between
the MovieReviews dataset and the PoliDying and NYT datasets,
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