
Master Thesis:
Implemetation of Centroid

Decomposition Algorithm on Big Data
Platforms—Apache Spark vs. Apache

Flink

Qian Liu
Master of Science of Computer Science and Applied Mathematics

University of Bern
qian.liu@students.unibe.ch

Supervisors:
Dr. Mourad Khayati, Prof. Dr. Philippe Cudré-Mauroux

eXascale Infolab, Department of Informatics,
University of Fribourg

February 21, 2016

Abstract

The Centroid Decomposition (CD) algorithm is the approximation of the
Singular Value Decomposition (SVD) algorithm, which is one of the most
used matrix decomposition techniques to deal with real world data analysis
tasks. CD algorithm is based on a greedy algorithm, termed the Scalable
Sign Vector (SSV), that efficiently determines vectors that are consisted of
1s and -1s as elements, called sign vectors. CD algorithm is generally applied
for data analysis tasks that involve long time series, i.e. where the number of
rows (observations) is much larger than the number of columns (time series).

The goal of this thesis is to implement the CD algorithm on two Big Data
platforms, i.e., Apache Spark and Apache Flink. The proposed implemen-
tation compares two different data structures for both platforms. The first
data structure is the per-element data structure, which distributively trans-
forms the matrix based on every single element. The second data structure,
the per-vector data structure, executes every transformation on the basis of
each row or column vector.

We empirically evaluate the efficiency of the non-streamed Spark and
Flink CD implementations respectively. To simulate the streams of time
series, we use Apache Kafka to periodically produce new matrix data to a
broker and Spark Streaming and Flink Data Streaming to regularly fetch the
data and run the CD algorithm.

Contents

1 Introduction 4

2 Background 6
2.1 Hadoop Framework . 6
2.2 Spark . 6
2.3 Flink . 7
2.4 Apache Kafka . 9
2.5 Centroid Decomposition Algorithm 11

2.5.1 CD Algorithm . 11
2.5.2 SSV Algorithm . 12

3 Implementation 16
3.1 Data Representation . 16
3.2 CD Processing . 17

3.2.1 Producer and Broker 17
3.2.2 Consumers . 20

3.3 Incremental Computation of V 21

4 Empirical Evaluation 23
4.1 Scalability with Large Matrices 23
4.2 Scalability to Hardware Provisions 28
4.3 Performance impact of value properties of matrix data 29
4.4 Algorithms Break-Down . 30
4.5 Difference Between Two V-Computation Strategies 33
4.6 Comparison between two long time series CD consumers . . . 34

5 Conclusions 37

1

List of Figures

2.1 Hadoop vs. Spark Iterations 7
2.2 Spark vs. Flink Streaming . 8
2.3 CD processing of long time Series 10
2.4 Example 1 of Centroid Decomposition 12
2.5 Illustration of SSV Algorithm Break-Down 14

3.1 Producer and Broker of CD Processing Programmes 18
3.2 Consumers of CD processing Programs 20

4.1 Scalability to Matrix Size-Row Increase 26
4.2 Scalability to Matrix Size-Column Increase 27
4.3 Scalability to Matrix Size-Row & Column Increase 27
4.4 Scalability to Changes of Hardware Provision 29
4.5 Influences from Different Types of Matrix Data 30
4.6 Spark CD algorithm Break-Down 31
4.7 Flink CD algorithm Break-Down 31
4.8 Spark SSV algorithm Break-Down 32
4.9 Flink SSV algorithm Break-Down 32
4.10 Long Time Series CD Algorithm 35

5.1 Single-Machined vs. Distributed CD Algorithm 37

2

List of Tables

3.1 CD Batch Processing Time Consumption 19

4.1 Time Costs for Row Increase - Vector Based CD Algorithm . . 24
4.2 Time Costs for Column Increase - Vector Based CD Algorithm 24
4.3 Time Costs for Row Increase - Record Based CD Algorithm . 25
4.4 Time Costs for Column Increase - Record Based CD Algorithm 25
4.5 Time Costs for Row & Column Increase - Vector Based CD

Algorithm . 25
4.6 Time Costs for Row & Column Increase - Record Based CD

Algorithm . 26
4.7 Original Strategy of Computing V 33
4.8 Alternative Strategy of Computing V 34

3

Chapter 1

Introduction

Matrix decomposition techniques are widely applied for time series data in
a number of real world applications, such as data prediction, recommender
systems, image compression, recovery of missing values, stocks, etc.

The Centroid Decomposition (CD) algorithm was initially introduced as
an approximation of the Singular Value Decomposition (SVD)[1]. It performs
a decomposition of an input matrix X into the product of two matrices, i.e.
X = L×RT , where L is the Loading matrix and R is the Relevance matrix
(RT denotes the Transpose of R). Every Loading and Relevance Vector is
determined by a maximal Centroid Value, i.e., max ‖XT × Z‖, which equals
to the norm of the product between the transpose of the input matrix X and
the sign vector Z consisting of 1s and -1s. Therefore, finding the maximal
sign vector Z that maximizes the centroid value is the main part of CD
algorithm.

Three approaches to find the maximal sign vector, Z, have been pro-
posed in the literature. The first one enumerates all possible sign vectors
and chooses the one which maximizes the centroid value[2]. This approach
has linear space complexity since no data structures other than the input
matrix are needed, but exponential runtime complexity. The second ap-
proach introduced by Chu and Funderlic[3] is more efficient than the first
one, has quadratic runtime complexity, but has quadratic space complexity.
The third one proposed by Khayati et al.[4], has also quadratic runtime cost
(worst case) but linear space complexity. In this thesis we adopt Khayati’s
approach since it is the most space efficient and scalable one.

Based on the fact that the most efficient algorithm to compute the CD
algorithm has quadratic runtime complexity and thus is hard to scale to
large datasets, we propose in this thesis to distribute the computation of CD
algorithm.

The remainder of this thesis is as follows. In Chapter 2, basic concepts in-

4

cluding CD algorithm are introduced. In Chapter 3, the details about respec-
tively the two strategies’ implementations of Spark and Flink are described.
Chapter 4 describes the empirical evaluation and the different experiments
we ran. Chapter 5 summarizes the thesis and points out future work that
could extend the current thesis.

5

Chapter 2

Background

This chapter describes the main concepts used throughout this thesis. The
details of the two algorithms implemented in this work, i.e., CD algorithm
and SSV algorithm, are also illustrated.

2.1 Hadoop Framework

The Apache Hadoop software library is a framework that allows to perform
distributed processing of large data sets across clusters of computers using
simple programming models. It is designed to scale up from single server to
thousands of machines, each offering local computation and storage[5].

Hadoop Distributed File System is designed to store large data across
multiple distributed machines, typically inside a cluster system with large
number of machines. The reliability is inherent for HDFS storage.

YARN is a framework for job scheduling and cluster resource manage-
ment. Together with its counterpart Apache Mesos, they are both used to
facilitate the management and coordination of distributed machines[6].

2.2 Spark

Apache Hadoop platform is not suitable to apply for algorithms that involve
iterative tasks. In fact, as shown in Figure 2.1, though Apache Hadoop
provides an abstraction for accessing computational resources, it lacks ab-
stractions that allow access to the clusters’ main memory[7]. The only way
that a user can share results among multiple map reduce tasks is by writing
them to HDFS. However, to preserve the fault tolerance, HDFS replicates
the written files among nodes yielding an overhead in disk I/Os.

6

Figure 2.1: Hadoop vs. Spark Iterations1

Zaharia et al.[8] introduced a new distributed framework for iterative al-
gorithms called Spark[9]. It provides a computational framework that gives
an abstraction to access the distributed main memory, i.e., the Resilient Dis-
tributed Datasets (RDDs). RDDs are partitioned collections of objects which
are distributed in the main memory of a cluster (as in Figure 2.1). They are
resilient meaning that they are fault tolerant. RDDs handle the map and
reduce operations as chainable coarsed-grained transformations which means
that the data get read once from the HDFS and all subsequent transforma-
tions will take place in memory. Besides, transformations are lazy, i.e., they
will be executed only when an action is requested.

2.3 Flink

Apache Flink[10][11] (Stratosphere[12]) is a general-purpose data processing
framework. It is a top level project of the Apache Software Foundation (ASF)
and has a wide field of application for dozens of big data scenarios. The main
difference between Flink and Spark is that the former takes a declarative ap-
proach that is quite similar to the optimization methods of typical Relational
DBMS applies where the latter does not. In this declarative approach users

1Source:http://www.nextplatform.com/2015/02/22/flink-sparks-next-wave-of-
distributed-data-processing/

7

don’t need to write down painstaking details about how the data is to be
processed, but rather to describe in a higher level what they want to com-
pute. This is similar to the transformations from “Logical Execution Plans”
to optimized “Physical Execution Plans” in RDBMS for SQL queries. Flink
extends this approach to scalable data processing with many dimensions of
optimization potentials, in particular, optimizations aiming to minimize the
amount of data shuffling. For example, when users write down a data pro-
cessing pipeline in Flink, the Flink Data Processing Runtime will further
optimize the pipeline and turn it into a physical representation by using re-
ordering the operations, and selecting the appropriate algorithms yielding
the best performance.

Another difference between the two systems lies on the way they deal with
streaming. In fact, data streams are processed in Flink Streaming as true
streams, i.e., data elements are immediately pipelined through a streaming
programme as soon as they arrive (see Figure 2.2(b)). This allows to perform
flexible window operations on streams[13].Besides, Flink uses one common
runtime for data streaming applications and batch processing applications,
which is called the Kappa Architecture[14][15]. Batch processing applications
run efficiently as special cases of stream processing applications (As shown in
Figure 2.2(b)).While in Spark, data streams are processed as micro batches
(see Figure 2.2(a)). And batch processing applications and stream processing
applications are separately processed, the Lambda Architecture[16].

(a) Spark Streaming.

(b) Flink Streaming.

Figure 2.2: Spark vs. Flink Streaming

8

2.4 Apache Kafka

Apache Kafka[17] is a distributed, partitioned and replicated commit log
service, which provides the functionality of a messaging system. Kafka
maintains feeds of messages in categories called topics. The producers pub-
lish messages to a Kafka topic/kafka topics. The consumers subscribe to a
topic/topics and process the feed of published messages. In this thesis, Kafka
is used as a data feed to periodically generate multi-lined matrix data. Each
of the Kafka messages is consisted of a unit of time slots from the long time
series and is several columns of the sending matrix. The consumer is the
Spark Streaming framework and the Flink Data Streaming runtime, which
regularly receive the matrix data. After receiving the matrix data, the Spark
streamingContext and the Flink StreamExecutionEnvironment respectively
run the Centroid Decomposition algorithms on the input matrix data. Fig-
ure 2.3 gives an overview of the architecture for our Kafka-enabled long time
series CD processing programme. In it, Kafka Producer (one of the Daplab
cluster machine) periodically generates time unit (in our case, it represents
10 columns of the input matrix) matrix message. Afterwards, it sends the
message to the Broker, i.e. the distributed message queue on the Daplab clus-
ter. The Spark-based CD consumer (Figure 2.3(a)) runs the micro-batched
CD algorithm every time when the time threshhold reaches, which is pointed
when initializing the Spark DStream object. By contrast, the Flink-based
CD consumer (Figure 2.3(b)) runs the CD algorithm whenever there is a new
message generated on the Kafka Broker, which means it processes the matrix
data as a continuous data flow without identification of micro-batches. The
complete procedures for both CD consumers are as below:

1) There is ‘message receiver’ in both of Spark-based and Flink-based
consumer programmes. It is responsible for fetching Kafka messages
from Kafka Broker.

2) After the receiver obtains new message, the CD method is invoked.
During the period of CD computation on the incoming matrix data,
the receivers in both the Spark-based and Flink-based consumer pro-
grammes can not fetch new matrix data since current CD computation
has not been accomplished. Therefore, in Spark, when DStream object
is initialized, it has to identify a time interval for the CD computation,
whereas, in Flink although the time interval can not be controlled by
the consumer programme, it should be identified by the Kafka producer
programme when it sends the messages.

9

3) After one CD computation is completed, the resulted Loading and Rel-
evance matrices are written into HDFS text files on Daplab cluster.

(a) Spark

(b) Flink.

Figure 2.3: CD processing of long time Series

10

2.5 Centroid Decomposition Algorithm

In this section, we describe in detail the CD algorithm and its embedded
SSV procedure. The latter iteratively computes a sign vector Z and is the
most computationally expensive step in CD algorithm.

2.5.1 CD Algorithm

Algorithm 1 describes the decomposition performed by CD technique. It it-
eratively computes the Loading matrix, L and the Relevance matrix, R, once
per column. At each iteration i, the procedure ScalabeSignV ector(X,n,m)
determines the sign vector Z that yields the maximal ‖XT ·Z‖ (where ‖XT ·Z‖
is the norm of m× 1 product vector). Then, the centroid column vector C∗i
is obtained. Finally, vectors L∗i and R∗i are respectively computed.

Algorithm 1: CD(X, n, m)

Input: n×m matrix X
Output: L, R

1 L = R = [];
2 for i = 1 to m do
3 Z = ScalableSignV ector(X, n,m);
4 C∗i = XT · Z;

5 R∗i = C∗i
‖C∗i‖ ;

6 R = Append(R, R∗i);
7 L∗i = X ·R∗i;
8 L = Append(L, L∗i);
9 X := X− L∗i ·RT

∗i;

10 return L, R

Example 1 Consider a 4 × 3 matrix X = {X1, X2, X3} which is consisted
of three time series vectors, i.e., X1 = {3, 2, 5,−2}, X2 = {−2, 1,−3, 0} and
X3 = {−1,−4, 1,−2}. CD algorithm decomposes X by finding the Loading
and the Relevance vectors as shown in Figure 2.4.

X =


3 −2 −1
2 1 −4
5 −3 1
−2 0 −2



11

CD(X) =


3.592 0.296 1.005
2.186 3.900 −1.005
5.466 −2.046 0.968
−1.562 2.151 0.968


︸ ︷︷ ︸

L

,

 0.937 −0.099 −0.335
−0.312 0.192 −0.930
−0.156 −0.977 −0.149


︸ ︷︷ ︸

R

such that

X =


3 −2 −1
2 1 −4
5 −3 1
−2 0 −2



=


3.592 0.296 1.005
2.186 3.900 −1.005
5.466 −2.046 0.968
−1.562 2.151 0.968


︸ ︷︷ ︸

L

×

 0.937 −0.312 −0.156
−0.099 0.192 −0.976
−0.335 −0.930 −0.149


︸ ︷︷ ︸

RT

Figure 2.4: Example 1 of Centroid Decomposition

2.5.2 SSV Algorithm

The Scalable Sign Vector (SSV) algorithm is described in Algorithm 2. On
single machine, it has quadratic runtime complexity but requires only linear
space. We expect to significantly reduce the quadratic runtime complexity of
SSV algorithm when execute it in the distributed environment, however, both
the SSV and CD algorithm are based on incremental iterations, therefore, in
Spark, the improvement of time complexity for both SSV and CD algorithm
is less than in Flink, since Flink has native closed-loop iteration operators
to optimize the executions[18]. Later in Chapter 4, the reduction of time
consumptions of SSV and CD algorithm in the distributed environment will
be illustrated in detail.

12

Algorithm 2: SSV(X, n, m)

Input: n×m matrix X
Output: maximizing sign vector ZT = [z1, . . . , zn]

1 pos = 0;
2 repeat

// Change sign

3 if pos = 0 then ZT = [1, . . . , 1];
4 else change the sign of zpos;

// Determine S and V
5 S =

∑n
i=1(zi × (Xi∗)

T);
6 V = [];
7 for i = 1 to n do
8 vi = zi × (zi ×Xi∗ · S −Xi∗ · (Xi∗)

T);
9 Insert vi in V ;

// Search next element

10 val = 0, pos = 0;
11 for i = 1 to n do
12 if (zi × vi < 0) then
13 if |vi| > |val| then
14 val = vi;
15 pos = i;

16 until pos = 0;
17 return Z;

The SSV algorithm calculates V from row vectors of X, one row per time:
from the computation of intermediate vector S to computation of individual
elements of V , searching for the index (pos) of the element vi ∈ V with
the largest absolute value where vi and zi ∈ Z have different signs, i.e.
zi× vi < 0. If such an element exists, the sign of zi is changed. A new vector
V is computed, which is different from the vector in the previous iteration
due to the sign change of zi. The iteration terminates when the signs of all
corresponding elements in V and Z are the same. The vector Z in the final
iteration is the maximizing sign vector that maximizes ZT · V . The SSV
algorithm terminates with at most n iterations and with only O(n) space
complexity. In the worst case, the sign of each element of Z is changed.

Example 2 Figure 2.5 illustrates the complete procedures of SSV Algorithm.
It uses the input matrix X introduced in Example 1 as follows

13

X =


3 −2 −1
2 1 −4
5 −3 1
−2 0 −2


The Sign Vector Z is initialized to Z = {1, 1, 1, 1}T , and S and V are

computed as shown in Figure 2.5:

S =

 3
−2
−1

 +

 2
1
−4

 +

 5
−3

1

 +

−2
0
−2

 =

 8
−4
−6



v1 = [3 − 2 − 1]×

 8
−4
−6

− [3 − 2 − 1]×

 3
−2
−1

 = 24

v2 = [2 1 − 4]×

 8
−4
−6

− [2 1 − 4]×

 2
1
−4

 = 15

v3 = [5 − 3 1]×

 8
−4
−6

− [5 − 3 1]×

 5
−3

1

 = 11

v4 = [−2 0 − 2]×

 8
−4
−6

− [−2 0 − 2]×

−2
0
−2

 = −12

i.e

Z(1) =


1
1
1
1

 and V (1) =


24
15
11
−12


Figure 2.5: Illustration of SSV Algorithm Break-Down

14

Only one element of Z(1) has a different sign from the corresponding ele-
ment in V (1). Therefore, the index of the element vi in V (1) with the largest
absolute value is pos = 4. In the next iteration, the element z4 in Z(1) is
changed with different sign to −1, and the new Sign Vector Z(2) is used to
compute V (2). Similar to the computation of previous iteration, we get

Z(2) =


1
1
1
−1

 and V (2) =


32
7

35
−12


Since all corresponding elements in Z(2) and V (2) have the same sign, hence,
the SSV Algorithm terminates and returns Z(2) as the maximizing Sign Vector
which maximizes ZT · V .

15

Chapter 3

Implementation

This chapter describes the implementation part of this thesis. First, we define
two types of in-memory data structures that we apply to manipulate matrix
data. Afterwards, we describe in detail the implementation of the long time
series Kafka and Spark/Flink Streaming CD processing solutions.

The proposed implementation takes full advantages of Spark and Flink
API and splits CD algorithm into four separate packages:

1) world.clq.CD.spark/flink.core

2) world.clq.CD.spark/flink.matrixoperations

3) world.clq.CD.spark/flink.validation

4) world.clq.CD.spark/flink.streaming (used only for streaming process-
ing)

The first package contains the implementation of CD and SSV algorithms,
and includes the job submission codes on SparkContext/Flink ExecutionEn-
vironment. The second package is the basic matrix operations implemented
by Spark/Flink API. The third package is a validation programme to check
the correctness of the final results from CD algorithm, i.e. to check the
equality X = L ·RT with five fractional digits accuracy. The last package is
used only for the Spark/Flink streaming processsing as the consumers of the
Kafka messages.

3.1 Data Representation

In this thesis, we use two different in-memory data structures for matrix
manipulations, which are respectively related to two different non-streaming
implementation strategies. The two data structures are:

16

1) JavaPairRDD<String, Double>/DataSet<Tuple2<String, Double>>

2) JavaPairRDD<String, Double[]>/DataSet<Tuple2<String, Double[]>>

where the first data structure is matrix element based and the second data
structure is matrix row vector based.

In Chapter 4, we will illustrate that the vector based in-memory data
structure has better execution performance than the element based in-memory
data structure. This scalability results from the significant reduction of the
amount of join, grouping transformations yielding the reduction of the num-
ber of data shuffling. For example, let’s consider the basic matrix multipli-
cation operation between two matrices A and B. If the multiplication is
implemented by the element based structure, then firstly we need to group
matrix A by row and group matrix B by column. Afterwards, we need to
collect matrix B, and transform matrix A to execute a vector dot product
with every column vector of B. Whereas, if we implement the matrix mul-
tiplication operation with the vector based structure, then we only need to
collect matrix B and a direct vector dot product operation is enough will be
enough to get the correct result.

3.2 CD Processing

Using the above non-streaming implementation of CD algorithm, Spark Stream-
ing framework and Flink Data Streaming runtime as Kafka Consumers, we
further implement two long time series CD processing programmes, i.e. two
separate CD processing programmes that can handle continuously generated
input matrices.

1. The Spark streaming based CD processing programme and

2. The Flink data streaming based CD processing programme

Each of these streaming-based CD processing Programme is split into
three modules, the Producer module, the Broker module and the Consumer
module.

3.2.1 Producer and Broker

The Producer module for both of the two streaming-based CD Processing
Programmes is same and is implemented by Apache Kafka Producer API,
the KafkaProducer class. For the Broker module, we use the existing Daplab

17

Figure 3.1: Producer and Broker of CD Processing Programmes

Hadoop & Kafka cluster for both of the two streaming-based CD processing
Programmes [19].

Figure 3.1 illustrates that the producer periodically sends multi-lined ma-
trix data to the Topics on the Broker. Each of the messages represents one
unit of time slots in the long time series and several columns of the matrix
(in the tests, we parameterize it as 10 columns). To consider that the Spark
Streaming framework consumes all the new messages within every time slice,
and Flink Data Streaming runtime continuously pulls the incoming matrix
data whenever there is a new one on the Broker, the producer has to leave
enough time (typical CD batch processing time on different scales of matrices
as shown in Table 3.1) for the consumers to accomplish the CD processing
for the received matrix data.

In what follows, we consider the example of an input matrix with rel-
atively small size for the CD processing (since too big matrix size requires
large quantity of time for each of the CD processing). Table 3.1 presents
some of the time consumptions for the non-streaming CD Processing.

Based on Table 3.1, considering that using enough big input matrix as
well as completing computation within an reasonable time period, we take
the magnitude of 500 × 10 for all the tests. Hence, the producer should
send 1 message to a topic every 50 minutes, considering CD processing time,
streaming initialization time and other cluster coordination time. For each
message, the content is the Comma Separated Values (CSV), which includes
500 rows, 10 columns matrix records. The values for each record is generated
by a independent and identically distributed (i.i.d.) random double value

1All the processing times are computed on the cluster with 6 executors and 4 cores for
each of the executors

18

Matrix Size Processing Time(s)1

Spark Flink
100× 10 248 240
500× 5 945 930
500× 10 1927 1900
1000× 10 7300 7200
10000× 10 33800 32850
100000× 10 261600 259980

Table 3.1: CD Batch Processing Time Consumption

generator. To improve the system throughput, the producer simultaneously
sends 5 messages(5∗(500×10)matrices) to five topics per time, which means
for every 40 minutes the producer sends 5 messages (totally 2500 rows in five
topics), one message per topic to the Broker. The total rows of the matrix is
parameterized when the Producer program is started. If the given rows for
sending are bigger than 2500, the Producer will firstly divide the given rows
by 2500, and then distribute them to the 5 Topics in a Round Robin fashion
and to several times. The number of columns (noc) of sending matrices is
also parameterized when the Producer programme is started. It controls the
time slots in the long time series. If the (noc) is more than ten, then we
repeat the previous sending procedures by (noc/10) rounds, e.g., we need to
send a 5000 × 20 matrix. On the Broker we have five Topics from CD1 to
CD5. The Producer program works as follows:

1) dividing 5000 by 2500 gives 2 times without remainder, dividing 20(noc)
by 10 gets 2 rounds without remainder.

2) First round, sending Message<[1 to 500] [1 to 10] [double]> to CD1,
Message<[501 to 1000] [1 to 10] [double]> to CD2 Message<[2001
to 2500] [1 to 10] [double]> to CD5, after sending, wait for 40 minutes.

3) sending Message<[2501 to 3000] [1 to 10] [double]> to CD1, Mes-
sage<[3001 to 3500] [1 to 10] [double]> to CD2 Message<[4501 to
5000] [1 to 10] [double]> to CD5, after sending, wait for 40 minutes.

4) Second round, sending Message<[1 to 500] [11 to 20] [double]> to CD1,
Message<[501 to 1000] [11 to 20] [double]> to CD2 Message<[2001
to 2500] [11 to 20] [double]> to CD5, after sending, wait for 40 minutes.

5) sending Message<[2501 to 3000] [11 to 20] [double]> to CD1, Mes-
sage<[3001 to 3500] [11 to 20] [double]> to CD2 Message<[4501

19

to 5000] [11 to 20] [double]> to CD5, the program terminates.

3.2.2 Consumers

This section illustrates the Consumer module for the two streaming-based
CD Processing Programmes shown in Figure 3.2.

(a) Spark Consumers.

(b) Flink Consumers.

Figure 3.2: Consumers of CD processing Programs

The complete Consumer implementation code is furtherly separated into
three sub-modules, the ‘Message Receiver’ module, the ‘CD Processing’ mod-
ule and the ‘HDFS Output’ module. Seeing that the differences between
Spark Streaming and Flink Data Streaming, there exist some small logical
discrepancies between the two implementations of the ‘Message Receiver’. In
Spark Streaming framework, the DStream object is micro-batch based, there-
fore the time interval for each batch can be set. Each of the time interval is
used for the ‘CD processing’ on the received 500 × 10 matrix. Whereas in
Flink Data Streaming framework, taking account of the continuous streaming
characteristic of DataStream object, it is not necessary to set the time inter-
val on the Consumer side. Whenever the Producer sends data to the Broker,
the Flink implemented ‘Message Receiver’ will start to receive. Therefore
every CD execution on the 500× 10 matrix is controlled by the Producer.

There are two main problems for the Spark micro-batch based stream
processing framework. One is the back pressure problem, the other is the data
out-of-order problem. The back pressure problem occurs when the volume of

20

events coming across a stream is more than the stream processing engine can
handle. The data out-of-order problem states that in a micro-batch based
streaming processing framework it is more difficult to know if events arrived
out of order or not. However, In Spark version 1.5, there have been changes
that enable more dynamic ingestion rate capabilities and make back pressure
less problematic. In addition, more work has been performed to enable user-
defined time extraction functions. This enables developers to check event
time against events already processed.

In our case, the incoming 500 × 10 matrices are independent from each
other, which means no data out-of-order problem for our CD processing al-
gorithm. And the back pressure problem is resolved by the time interval
definition of DStream object in Spark. In order to increase the throughput
of both Consumer programmes, a multi-threaded execution pool is adopted.
This adoption enables five ‘CD processing’ tasks to be simultaneously exe-
cuted on the Cluster, which means that both of the Consumer programmes
can handle a 2500 × 10 input matrix during each of the 50 minutes time
intervals.

3.3 Incremental Computation of V

In Algorithm 2, vector V is computed as follows:

for i = 1 to n do
vi = zi × (zi ×Xi∗ · S −Xi∗ · (Xi∗)

T)

For the sake of comparison, we implement another incremental method
to compute V , as follows:

V k = V k−1 − 2 ·


X∗1 ·XT

pos

X∗2 ·XT
pos

X∗3 ·XT
pos

...
X∗n ·XT

pos


Where X∗i is the i-th vector of the input matrix X, pos is the position of the
element in Z that has been changed at iteration k.

In the incremental method, except the first round computation (V 1), all
the other iterations (V k) for V computation are based on the result from pre-
ceding iteration (V k−1). We expect that the incremental method of V com-
putation has better performance than the method adopted in Algorithm 2,
since every subsequent V computation of the alternative incremental method

21

is based on the existing result from preceding iteration except the first round,
which means less matrix operations than the original V computation method.

In Chapter 4, the performance difference between the two methods is
evaluated.

22

Chapter 4

Empirical Evaluation

Chapter 4 presents the test results of the experiments and their interpreta-
tions. The experiments have been performed on the Daplab YARN cluster
(Hortonworks Data Platform(HDP) 2.3.2)[19] composed of 26 nodes with per
node from 32GB to 128GB available memory. For the software platforms, we
adopted Java SE 1.7, Apache Spark 1.4.1, Apache Flink 0.9.1, and Apache
Kafka 0.8.2.2. The test suite is split into 5 categories listed as follows:

1. Scalability with large matrices.

2. Scalability with hardware provisions.

3. Performance impact of value properties of matrix data.

4. Algorithms Break-down.

5. Difference between V-computation strategies.

6. Comparison between two long time series CD consumers.

4.1 Scalability with Large Matrices1

In order to evaluate the scalability of the CD algorithm with large order-of-
magnitude of matrices, we compare different sizes of matrices as follows:

• varying # rows: 10×10, 100×10, 1′000×10, 10′000×10 and 100′000×
10, 1′000′000× 10.

1All the experiments in this section are executed on the YARN cluster with 6 nodes (4
cores, 20G memory for each node). Later in next section, we will see that this configuration
has best performance for both Spark implemented and Flink implemented CD algorithms.

23

• varying # columns: 10 × 10, 10 × 100, 10 × 1′000 and 10 × 10′000,
10× 100′000, 10× 1′000′000.

• varying # rows & columns: 10× 10, 100× 100, 1′000× 1′000, 10′000×
10′000, 100′000× 100′000, 1′000′000× 1′000′000

Table 4.1 shows the time costs for the matrices with different rows and
Table 4.2 shows the time costs for the column increased matrices. Both of
the two tables are based on the vector-based CD algorithm. For the element-
based CD algorithm, the time costs are illustrated in Table 4.3 and Table 4.4,
followed by Table 4.5 and Table 4.6, increase of both rows and columns.

Matrix Size Processing Time(s)
Spark Flink

10× 10 71 67
100× 10 248 240

1′000× 10 7’300 7’200
10′000× 10 33’800 33’200
100′000× 10 261’600 260’380

1′000′000× 10 2’559’600 2’557’480

Table 4.1: Time Costs for Row Increase - Vector Based CD Algorithm

Matrix Size Processing Time(s)
Spark Flink

10× 10 71 67
10× 100 188 181

10× 1′000 7’300 7’202
10× 10′000 33’800 33’203
10× 100′000 261’000 260’000

10× 1′000′000 2’559’000 2’557’000

Table 4.2: Time Costs for Column Increase - Vector Based CD Algorithm

24

Matrix Size Processing Time(s)
Spark Flink

10× 10 144 139
100× 10 498 490

1′000× 10 14’700 14’600
10′000× 10 67’700 67’100
100′000× 10 523’300 522’090

1′000′000× 10 5’119’000 5’117’300

Table 4.3: Time Costs for Row Increase - Record Based CD Algorithm

Matrix Size Processing Time(s)
Spark Flink

10× 10 144 139
10× 100 378 371

10× 1′000 14’500 14’403
10× 10′000 67’500 66’990
10× 100′000 523’000 521’900

10× 1′000′000 5’118’990 5’117’000

Table 4.4: Time Costs for Column Increase - Record Based CD Algorithm

Matrix Size Processing Time(s)
Spark Flink

10× 10 71 67
100× 100 440 425

1′000× 1′000 14’600 14’200
10′000× 10′000 67’600 66’200

100′000× 100′000 522’600 520’090
1′000′000× 1′000′000 5’115’000 5’111’300

Table 4.5: Time Costs for Row & Column Increase - Vector Based CD Algo-
rithm

25

Matrix Size Processing Time(s)
Spark Flink

10× 10 144 139
100× 100 870 850

1′000× 1′000 29’200 29’000
10′000× 10′000 135’200 134’600

100′000× 100′000 1’046’300 1’041’600
1′000′000× 1′000′000 10’237’990 10’229’895

Table 4.6: Time Costs for Row & Column Increase - Record Based CD
Algorithm

Figure 4.1: Scalability to Matrix Size-Row Increase

To better compare the time costs of element-based and vector-based CD
algorithms implemented by Apache Spark and Apache Flink for different
sized matrices, Figure 4.1 sumarizes all the above tables in one diagram,
in which ‘vSpark’ represents the vector-based Spark implemented CD al-
gorithm, ‘vFlink’ represents the vector-based Flink implemented CD algo-
rithm, by contrast, ‘rSpark’ means the element-based Spark implemented
CD algorithm and ‘rFlink’ means the element-based Flink implemented CD
algorithm.In Figure 4.1, we can see that the vector-based CD algorithm has
distinctly better performance than the element-based CD algorithm because
of less shuffling requirements. Besides, we can also conclude that the Flink
implemented CD algorithm performs better than the Spark implemented

26

Figure 4.2: Scalability to Matrix Size-Column Increase

Figure 4.3: Scalability to Matrix Size-Row & Column Increase

27

CD algorithm since the optimizations for the data pipeline processing as we
mentioned in Chapter 2.

Figure 4.2 presents the time costs of CD algorithms on column increased
matrices. It shows the same tendency as Figure 4.1 that the vector-based CD
algorithm performs better than the element-based CD algorithm and Flink
implemented CD algorithm performs better than the Spark implemented CD
algorithm.

Figure 4.3 exhibits time consumptions when rows and columns of the
matrices increase simultaneously. In it, we can see that the vector-based
CD algorithm still performs better than the element-based CD algorithm
and Flink implemented CD algorithm still performs better than the Spark
implemented CD algorithm, but with higher time costs.

4.2 Scalability to Hardware Provisions2

Parallel processing is a key feature of big data infrastructures. In order
to evaluate the scalability to different hardware provisions, in this section,
we conduct experiments with both machine scaling out and machine scaling
up. For scaling out, we change the number of task executors from 1 to 8.
Whereas, for scaling up, we add the number of execution cores for each of
the executors. The test results are based on the combinations of different
Scale-Out and Scale-Up configurations.

As shown in Figure 4.4, the vector-based CD algorithm still has bet-
ter performance than the element-based CD algorithm, besides the Flink
implemented CD algorithm gains advantages over Spark implemented CD
algorithm. There is a summit in this Figure, which means the worst perfor-
mance of the CD algorithm when it executes with only 1 machine using 1
core. Conversely, when the CD algorithm runs on 6 machines with 4 cores
for each, it performs best. There is a tendency in this figure that the perfor-
mance enhancement does not achieve linearly along with the scaling up/out
of hardware provisions. The best performance is obtained in between the
minimum and maximum hardware provisions, since the increase of machines
means more network communication costs, to certain number, it impairs the
distributed computation gains.

2All the experiments in this section are executed on 500× 10 sized matrix.

28

Figure 4.4: Scalability to Changes of Hardware Provision

4.3 Performance impact of value properties

of matrix data3

All the previous experiments run on matrix data with independent and iden-
tically distributed (i.i.d.) random double values. However, based on the fact
that the characteristics of the matrix data can have influences on the execu-
tion time of the CD algorithm, in this section, we test CD algorithm on five
different characteristics of matrix data as listed below to see the real impacts:

1) Matrix Data with Complete Positive values
2) Matrix Data with Complete Negative values
3) Matrix Data with Mostly Positive values (only 10 negative values)
4) Matrix Data with Mostly Negative values (only 10 positive values)
5) Matrix Data with i.i.d Random values

According to the characteristic of SSV algorithm, when all values in the
input matrices have same sign, either positive or negative, the number of
iterations in SSV algorithm is least, i.e. all elements of the weight vector
computed in the first iteration of the SSV algorithm, V (1), are positive. The

3All the experiments described in this section are run with 6 nodes (4 cores, 20G
memory for each node), 500× 10 sized matrix.

29

Figure 4.5: Influences from Different Types of Matrix Data

sign vector, Z, that contains only 1s is the maximizing vector[4]. As din-
stinctly illustrated in Figure 4.5 that the matrix data with ‘Complete Nega-
tive’ and ‘Complete Positive’ values have the lowest time consumptions. By
contrast, matrix data with ‘Half-Half’ random values have the highest time
costs. Followed by matrix data with ‘Mostly Positive’ and ‘Mostly Negative’
values. Besides, as previous experiments, CD algorithm based on vectors
has better time performance than the element based CD algorithm, and the
Flink implemented CD algorithm is faster than the Spark implemented CD
algorithm.

4.4 Algorithms Break-Down4

Preceding tests treat the CD algorithm as a whole to obtain the evaluation
results. To better understand the execution mechanism of the CD algorithm
and SSV algorithm, this section breaks down both of these algorithms to see
the distribution of time expenses during their executions.

Figure 4.6 and Figure 4.7 exhibit the time consumptions of each step
in CD algorithm. From them, we can conclude that the FindSignVector
function spends most of the time (69%) during executions in both of the
vector based and element based Spark/Flink CD algorithms, since input
matrices with random values have highest time costs as shown in Section 4.3,

4All the experiments in this section are executed on YARN cluster with 6 nodes (4
cores, 20G memory for each node), 500× 10 sized matrix.

30

Figure 4.6: Spark CD algorithm Break-Down

Figure 4.7: Flink CD algorithm Break-Down

it executes with many iterations. The computation of R takes 10% of the
total computation time, followed by the computation of L and C which have
almost the same time costs, 8% and 8% in both figures.

Figure 4.8 and Figure 4.9 expose the detailed time expense of SSV algo-
rithms. We can clearly see that the computation for V grips the most part
of the time expenses(45%), since it has most computation complexities as
shown in Algorithm 2, followed by the Vi maximization operation 30% and
the calculation of S 25%.

31

Figure 4.8: Spark SSV algorithm Break-Down

Figure 4.9: Flink SSV algorithm Break-Down

32

4.5 Difference Between Two V-Computation

Strategies5

As we mentioned in Section 3.3, in the SSV algorithm, we adopt an alterna-
tive methodology to compute V. In this section, we can see the performance
difference between these two strategies.

We can see in Table 4.7 and Table 4.8 that the detailed execution time
consumptions of algorithm CD and SSV. In them, we can clearly know the
performance discrepancy between the two different V computation strate-
gies. The original strategy has obviously better performance than the alter-
native strategy, since the original one computes V vectror for each iteration
separately, which means independent iterations and higher possibility of par-
allelism, whereas, the alternative one computes V vector in every iteration
(except the first iteration) depending on result from previous iteration, which
means for each iteration (except the first iteration), the computation has to
wait for the accomplishment of previous iteration, therefore, lower possibility
of parallelism.

Matrix Size
vSpark

(S)
vFlink

(S)
eSpark

(S)
eFlink

(S)
Percentage
for Spark

Percentage
for Flink

500x10 1927.0 1900.0 3850.0 3805.0
CD Algorithm

Z 1327.7 1316.7 2652.7 2636.9 68.90% 69.30%
C 154.2 150.1 308.0 300.6 8% 7.9%
R 194.6 188.1 388.9 376.7 10.10% 9.9%
L 154.2 150.1 308.0 300.6 8% 7.9%

other 96.4 95.0 192.5 190.3 5% 5%

Z 1327.7 1316.7 2652.7 2636.9 68.90% 69.30%
SSV Algorithm

S 327.9 327.9 655.2 656.6 24.70% 24.90%
V(Original V) 601.4 593.8 1201.7 1189.2 45.30% 45.10%

Max Vi 398.3 395.0 795.8 791.1 30% 30%

Table 4.7: Original Strategy of Computing V

5All the experiments in this section are executed on YARN cluster with 6 nodes (4
cores, 20G memory for each node), 500× 10 sized matrix.

33

Matrix Size
vSpark

(S)
vFlink

(S)
eSpark

(S)
eFlink

(S)
Percentage
for Spark

Percentage
for Flink

500x10 1987.8 1957.0 3911.0 3862.0
CD Algorithm

Z 1388.5 1373.7 2713.6 2693.9 69.54% 69.90%
C 154.2 150.1 308.0 300.6 8% 7.75%
R 194.6 188.1 388.9 376.7 9.89% 9.71%
L 154.2 150.1 308.0 300.6 8% 7.75%

other 96.4 95.0 192.5 190.3 5% 5%

Z 1388.5 1373.7 2713.6 2693.9 69.54% 69.90%
SSV Algorithm

S 327.9 327.9 655.2 656.6 23.97% 24.20%
V(Alternative V) 662.3 650.8 1262.6 1246.2 46.92% 46.64%

Max Vi 398.3 395.0 795.8 791.1 29.11% 29.16%

Table 4.8: Alternative Strategy of Computing V

Table 4.8 also exhibits us that along with the increase of time consump-
tions of V computation, its proportion in total time consumptions also in-
creases.

4.6 Comparison between two long time series

CD consumers6

All the above sections evaluate the non-streaming CD algorithm, this section
compares the two streaming versioned long time series CD algorithm.

From Figure 4.10 we can clearly see that because Spark and Flink im-
plement two different data pipeline architecture, Lambda architecture for
Spark[16], Kappa architecture for Flink[14], the behaviours for the stream-
ing process are also inconsistent. Spark regards streaming process as micro
batches, between two micro batches, it has to wait for a parameterized time
period, which implies that after Spark Cconsumer gets messages from Kafka
Topics, if the next micro batch execution time does not arrive, the Spark

6All the experiments in this section are executed on YARN cluster with 6 nodes (4
cores, 20G memory for each node), evaluation lasts for 160 minutes, which means three
rounds(column 0 to 30) of consumptions. For each round, Consumer simultaneously re-
ceives messages from 5 topics, 500 rows matrix per topic, i.e. totally 2500 rows matrices.
The evaluation plot starts plotting after receivers finish registration on the Consumer side.

34

Consumer has to wait. Whereas, in Flink, processings are all based on real

(a) Spark

(b) Flink

Figure 4.10: Long Time Series CD Algorithm

35

streams. Therefore, whenever Flink Consumer obtains messages from Kafka
Topics, the Flink runtime will start the CD processing immediately without
Consumer side waiting.

36

Chapter 5

Conclusions

This thesis aims to improve the quadratic time complexity of single-machined
Centroid Decomposition algorithm in distributed environment and to scale
the CD algorithm to large matrices, as shown in Figure 5.1. It implements
both non-streamed and streamed CD algorithm, with Apache Spark and
Flink APIs and compares the two platforms. We firstly empirically evaluate
the non-streamed CD processing algorithm under different circumstances.
Afterwards, we compare the execution characteristics of the two long time
series CD algorithm.

Figure 5.1: Single-Machined vs. Distributed CD Algorithm

37

The result of our experiments show that the vector based implementa-
tion has better performance than the element based implementation. Ad-
ditionally, since Flink has inherent optimizations when executing the data
processing pipelines, it has distinctly better performance than Spark, at least
in our case. Besides, Flink has native closed-loop iteration (cyclic data flow)
operators, it has more performance advantanges when executing incremental
iterations over Spark[20].

Seeing that in Spark MLLib there is specific data structures, such as the
’DenseMatrix’, ’DistributedMatrix’, etc. The next step for us would be to
implement our CD algorithm with these whole matrix data structure, since
there have already been complete distributed version of basic matrix oper-
ations implemented in these classes for Spark MLLlib. However, although
there is also same ’DenseMatrix’ class in Flink, there haven’t been imple-
mented relating basic matrix operations in this class yet until Flink 0.10.0.

38

References

[1] “Singular Value Decomposition,
http://mathworld.wolfram.com/singularvaluedecomposition.html.”

[2] K. Karadimitriou and J. Tyler, “The centroid method for compressing
sets of similar images,” Pattern Recognition Letters, vol. 19, no. 7, pp.
585-593, 1998.

[3] R. Funderlic and M. Chu, “The centroid decomposition: Relationships
between discrete variational decompositions and svds,” SIAM J. Matrix
Anal. Appl., vol.23, no. 4, pp. 1025-1044, 2001.

[4] M. Khayati, M. Boehlen, and J. Gamper, “Memory-efficient centroid
decomposition for long time series,” ICDE, 2014.

[5] “Apache Hadoop, https://hadoop.apache.org/.”

[6] “Apache YARN,
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/yarn.html.”

[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” NSDI,
2012.

[8] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Spark: cluster computing with
working sets,” HotCloud, 2010.

[9] “Apache Spark, http://spark.apache.org/.”

[10] “Apache Flink, https://flink.apache.org/.”

39

[11] “Apache flink what how why who where,
http://www.slideshare.net/sbaltagi/apacheflinkwhathowwhywhowherebyslimbaltagi-
57825047.”

[12] “Stratosphere, http://stratosphere.eu/.”

[13] S. E. et al, “Spinning fast iterative data flows,” VLDB, 2012.

[14] L. Foundation, “Kappa architecture: Our experience,” Linux Founda-
tion Press Release.

[15] “Lambda vs. Kappa architecture, http://www.ericsson.com/research-
blog/data-knowledge/data-processing-architectures-lambda-and-
kappa/.”

[16] “Lambda architecture, http://lambda-architecture.net/.”

[17] “Apache kafka, http://kafka.apache.org/documentation.html.”

[18] “Iterations,https://ci.apache.org/projects/flink/flink-docs-release-
0.10/apis/iterations.html.”

[19] “Daplab, http://daplab.ch/.”

[20] F. Hueske, “Apache flink fast and reliable large-scale data processing,”

40

