
UNIVERSITY OF FRIBOURG

BACHELOR THESIS

Empirical Comparison of Incremental
Matrix Decomposition Techniques

Zakhar Tymchenko

from Ukraine

September 2017

SUPERVISORS Dr. Mourad Khayati

Prof. Dr. Philippe Cudré-Mauroux

RESEARCH GROUP University of Fribourg

Department of Informatics

eXascale Infolab (XI)

2

Abstract

Data analysis often relies on matrix decomposition techniques, such as Cen-
troid Decomposition, or Singular Value Decomposition. These techniques have
been used extensively to solve batch time series tasks, e.g., recovery of missing
values, noise reduction, compression, etc. The application of these techniques to
streaming data requires efficient incremental decomposition algorithms. Moreover,
most streaming implementations of SVD and CD (and their variants) are in differ-
ent high-level programming languages and, to the best of our knowledge, there
does not exist any direct empirical comparison between them.

In this thesis, we describe a few selected matrix decomposition techniques, pro-
vide a C++ implementation for them and conduct an empirical comparative anal-
ysis of those techniques using real-world data sets containing up to 1 million of
values. More specifically, we compare different incremental CD implementations
and compare them against a variant of incremental SVD. We show that, thanks to
the caching procedure, the incremental CD algorithm outperforms all other vari-
ants of incremental SVD in performance on both rank-1 and rank-k incremental
updates.

3

4

Chapter 1

Introduction

1.1 Context

Matrix decomposition techniques are extremely powerful tools and have been
applied in various domains, such as the data analysis of time series. Decomposition
techniques have different computational time and memory consumption, yielding
the need to analyze them in order to assign each technique to its specific task.
In this thesis, we are interested in the comparison of two matrix decomposition
techniques: the Centroid Decomposition and the Singular Value Decomposition.

Centroid Decomposition (CD) [1] has been successfully applied to recover
missing values in time series (cf. ReVival tool [2]). CD gives statistical infor-
mation about a decomposed matrix, which is leveraged to perform the analysis
task at hand. CD factorizes input matrix into a loading matrix and relevance ma-
trix. Every element of the input matrix is a linear combination of loading values
weighed by their relevance.

The Singular Value Decomposition (SVD) [3] technique is one of the most
powerful matrix decomposition techniques that has been used to perform various
data analysis tasks. SVD factorizes input matrix into two orthogonal matrices and
a diagonal matrix containing singular values. Orthogonal matrices conjugate input
to obtain a diagonal one. For instance, SVD has been used for the recovery of
missing values, e.g., GROUSE technique [4], REBOM [5], etc.

Data analysis has been on the rise in recent years due to increase in the amount
of generated data and the capabilities to process it. Streaming data, i.e. when
the original time series is updated from time to time, is an important part of this
process since data analysis is not only needed as a retrospect, but also in real-time
processing. The extensive use of streaming processing, calls for the need of online

5

decomposition techniques that can achieve real-time responsiveness.

Thus, we are interested in exploring different incremental implementations of
the CD and SVD techniques. Most of the existing implementations of CD and
SVD, both batch and incremental variants, are in different programming languages,
making it difficult to conduct a direct empirical comparison between them. More-
over, the existing implementations are also using high level languages creating an
overhead of automatic memory management and particularities of managed lan-
guages (virtual machine, just-in-time compiler, garbage collection etc.) and safety
runtime checks, like array bounds checks. All of the previous reasons greatly affect
the performance of algorithms that rely on heavy matrix computations.

1.2 Contributions

The main contributions of this thesis are to i) describe the properties of the main
matrix decomposition techniques, ii) provide low-level implementations for batch
and incremental variants of the Singular Value Decomposition and the Centroid
Decomposition techniques in C++ and iii) evaluate all the implemented algorithms
on real-world streams of time series. In this thesis, we are interested only on full
decomposition techniques since the approximated techniques are less accurate then
the full ones yielding a worse data analysis.

All the studied algorithms, unless mentioned otherwise, are implemented from
scratch based on their specifications or implementations in other programming lan-
guages. Such algorithms are tested with static and dynamic code analysis and
different data to ensure correctness. In order to have a good precision, all the
computations and storage of matrix elements are in double-precision floating-point
numbers.

The empirical evaluation of the performance of the algorithms implemented in
C++ is performed on real-world data to measure time complexity. Additionally, the
Centroid Decomposition technique is analyzed from the point of view of its sign
vector search algorithm.

1.3 Outline

Chapter 2 introduces the notations used in this thesis. Chapter 3 studies the
Centroid Decomposition technique and describes available algorithms for batch
and incremental options. Chapter 4 studies available algorithms for Singular Value
Decomposition and focuses on an incremental technique. Chapter 5 presents the

6

evaluation of the algorithms using real-world data sets to study the behavior of the
algorithms with different data. Chapter 6 finalizes the results and concludes the
thesis.

7

8

Chapter 2

Notations

In this Chapter, we introduce all the notations used throughout this thesis.

Bold uppercase letters are matrices, e.g., X. Normal uppercase letters are vec-
tors, e.g., Z, matrix rows and columns are normal font uppercase letters with cor-
responding indices (Xi∗ for rows, X∗i for columns). Matrix elements are normal
font lowercase letters, e.g., xij . A transpose of a matrix X is denoted as XT . All
vectors use the column representation.

Vector norm ||V || is the Euclidean Norm of V = {v1, v2, · · · , vn} defined

as ||V ||2 :=
√∑n

1 v
2
i . Multiplications that involve scalars are denoted using the

symbol ×, otherwise the symbol is · .

In this thesis, we are interested in the application of matrix decomposition tech-
niques to long streams of time series. Thus, we assume as an input a rectangular
matrix X of n rows and m columns where the number of rows is much bigger than
the number of columns, i.e., n � m and contain only real numbers (X ∈ Rn×m,
n,m ∈ N).

9

10

Chapter 3

Centroid Decomposition

In this Chapter, we describe the properties of CD and discuss different batch
and incremental implementations of this technique.

Definition 1 (Centroid Decomposition) Let X ∈ Rn×m be an input matrix, then
CD(X) := { L,R } such that L ·RT = X and where:

• L ∈ Rn×m a matrix of loading values

• R ∈ Rm×m a matrix of relevance values

This decomposition computes centroid values, loading vectors (matrix L) and
relevance vectors (matrix R) to approximate respectively eigenvalues, left singular
vectors and right singular vectors of X.

3.1 Batch Centroid Decomposition

3.1.1 Batch Algorithms

There exists a number of algorithm variants to perform a batch Centroid De-
composition of an input matrix [6]. The most efficient algorithm to compute CD
is called Scalable Sign Vector (SSV) [1]. In this thesis, we use the SSV algorithm
to implement the batch CD. The SSV algorithm computes the decomposition by
iterating over the number of column in the matrix (m times) and performing at
each iteration a two-step process. First, the algorithm determines a sign vector
Z ∈ {+1.0,−1.0}n which maximizes ||XT · Z||. Then, it computes the corre-
sponding loading and relevance vectors which form L and R matrices.

11

To compute sign vectors, the algorithm uses the equivalence of maximization
problem of ||XT ·Z|| with the maximization of ZT ·V , where V (a weight vector)
is defined as V := diag=0(X · XT) · Z and diag=0(A) := A, s.t. aii = 0 ∀i ∈
{1 . . . n}.

Scalable Sign Vector algorithm avoids explicitly creating X ·XT matrix which
has the size of n × n. V = diag=0(X · XT) · Z is equivalent to the following
formula: vi = zi × (zi × Xi∗ · ZT · X− < Xi∗, Xi∗ >) where ZT · X can be
stored in a single vector S. If the sign of a weight vector element vi doesn’t match
the sign of i, we have to flip the sign of zi and calculate the new weight vector.

Example 1 (Scalable Sign Vector) Let X be an input matrix and Z0 be a starting
sign vector:

X =

−1 4
2 −3
3 0

, Z0 =

11
1

, then corresponding V =

−17−8
3

.

Next, the sign in Z on the position i = 1 is flipped, because vi × zi < 0 and
among all the negative values it has the highest absolute value.

With the new Z1 =

−11
1

 new weight vector becomes V =

−1720
9


Now ∀i = 1...3 we have vi × zi > 0, so Z1 is the optimal sign vector.

When the signs of the weight vector and the sign vector match, this ensures
maximization of ZT · V , which is equivalent to maximizing ||XT · Z||.

The SSV algorithm was implemented from scratch according to the aforemen-
tioned paper. In addition to using SSV as a base case for tests, an improvement
to the first stage (finding maximizing sign vector) at every iteration was applied
- incremental weight vector computation [7]. The computation of the incremen-
tal weight vectors improves the efficiency by avoiding the recalculation of weight
vector from scratch while keeping the same memory complexity. In the rest of the
thesis we refer to Batch decomposition (batchCD) as the decomposition based on
the SSV algorithm using either the iterative or the incremental weight vectors.

Example 2 (Centroid Decomposition) First step of the decomposition at itera-
tion m = 1 is to find the maximizing sign vector.

Let X =

−1 4
2 −3
3 0

, then maximizing sign vector is Z =

−11
1


12

Now it is possible to calculate R∗1 and L∗1

R∗1 =
XT ·Z
||XT ·Z|| =

[
0.65
−0.76

]
and then L∗1 = X ·R∗i =

−3.693.58
1.95


Performing the same process for m = 2 and X = X− LT

∗1 ·R∗1 yields:

L =

−3.69 1.84
3.58 −0.43
1.95 2.28

 and R =

[
0.65 0.76
−0.76 0.65

]

3.1.2 Complexity

The runtime complexity of this algorithm is quadratic, as was shown in the
cited paper. This stems from the fact that one iteration of sign vector search is O(n)
and the number of sign vector iterations is at most n, on average n

2 per column.

The highest memory usage of the SSV algorithm occurs during the search of
the sign vectors. The data structures loaded into the heap are i) the input matrix
X of size n × m, ii) current sign vector Z of size n, iii) the weight vector V of
size n and iv) vector S of size m. In addition, we store a list of n scalar products
< Xi∗,Xi∗ > which are needed more than once. The summation of all the data
structures gives a total size of nm+ 3n+m.

Incremental sign vector search can avoid simultaneous storage of S and Z,
but vector Z is best allocated first since it is re-used after the search to reduce
heap fragmentation. Thus, there is no difference in memory usage of iterative and
incremental sign vector search algorithms.

3.2 Incremental Centroid Decomposition

We are going to explore two variants of incremental CD:

• Updating CD (updateCD), a method which stems from an incremental tech-
nique originally developed for SVD [8] and then adapted to Centroid-based
algorithm;

• Cached CD (cachedCD), a method which relies on re-using the old sign vec-
tors to calculate new decomposition.

13

3.2.1 Updating CD

Algorithm Description

Updating CD (updateCD) is an update technique, which is an adaptation of an
incremental SVD technique described in [9] to Centroid method. The algorithm
adds new information to L0 matrix (L matrix of old decomposition) to form an
update matrix S and recalculate its Centroid Decomposition.

This method exploits one of the properties of CD - that matrix L is the station-
ary point of decomposition, i.e. CD(L) = { L, I }. After CD(S) = { LS ,RS } is
calculated, the new L of the decomposition is copied from the LS and new R is a
result of multiplication of RS and R0.

The algorithm considers the possibility of new data increasing the rank of the
matrix, making the rank-k update to the decomposition more complicated. This
problem is partially avoided if we assume that the rank of the matrix is always
maximal (i.e.,m = r), which should never be a problem for long time series. While
there is no analytic solution given for the case when the rank is not increased by
new information and we have a rank-k update with k ≥ 2, the empirical tests show
that applying naive approach produces correct result. We replace a vector of new
information by a matrix and adapt all data structures that follow from it. Then, we
append a transformed matrix to L0 in the same way as if it was a rank-1 update.

The basis of this implementation for both rank-1 and rank-k algorithms is the
Matlab implementation for updateCD [10].

Complexity

The updateCD has to run a full batch Centroid Decomposition, which makes
it at least as slow as a batch decomposition. Additional complexity from updating
process is limited to a few primitive matrix operations which are at most linear on
n, since there are no matrix multiplications of n × n matrices. In case a rank-k
update is applied, the amount of added rows just mimics the complexity of n.

The algorithm requires to keep in memory the modified input matrix L, which
has size of (n + k) × m and the input matrix R of m × m size. Thus, the total
required memory is m2 + (nm + km) + (3n + 3k + m). It is not required to
keep augmented L, so Step 2 of batchCD can overwrite X when performing X =
X − LT

∗1 · R∗1. This is why input matrix for batch CD doesn’t count into total
memory complexity of updateCD.

14

Example 3 (Updating CD) We now expand on Example 2. Let L0 and R0 be
Centroid Decomposition of X:

L0 =

−3.69 1.84
3.58 −0.43
1.95 2.28

 and R0 =

[
0.65 0.76
−0.76 0.65

]

Suppose we add a new row B =
[
−2 1

]T to X. We have to check whether
this update increases the rank of decomposition.

N = RT
0 ·B =

[
−2.06
−0.86

]

Q = B −R0 ·N =

[
−2
1

]
−
[
−2
1

]
=

[
0
0

]
Since new information B doesn’t affect the rank of L0 we proceed to augment

L0 with N :

S :=

[
L
N

]
=


−3.69 1.84
3.58 −0.43
1.95 2.28
−2.06 −0.86


Then running S through CD gives us LS and RS as follows:

L1 = LS =


3.54 2.12
−3.54 −0.70
−2.12 2.12
2.12 −0.70

 and RS =

[
−1.00 −0.08
−0.08 −1.00

]

And finally R1 = R0 ·RS =

[
−0.71 0.71
0.71 0.71

]

3.2.2 Cached CD

Algorithm Description

The incremental updates to the decomposition can also be obtained by caching
of the sign vectors Z of each column of the matrix that we obtain during the appli-
cation of batch decomposition of X [11]. This is equivalent to running the normal
CD algorithm on the new matrix with appended rows and recalculating everything
again, except this time using the old Zi vectors (padded with +1.0 to match the
new row dimension of X) as a starting point, instead of {+1.0}n as the algorithm

15

would normally do.

Complexity

The Cached CD algorithm performs the same calculations as the batchCD, but
since our starting sign vectors are supposed to be closer to the correct ones, we do
a very low number of sign vector iterations, since cached Z is ”closer” (in terms of
Hamming distance) to the optimal Z, which was studied in detail in [11]. When we
perform rank-k update, this distance increases depending on the amount of added
rows. Since the average number of iterations of batchCD is n

2 per column [1], the
number of iterations for batchCD for rank-k update is equal n+k

2 = n
2 + k

2 . But,
since the first n rows are already calculated during the previous decomposition,
then calculating corresponding elements of sign vector is not needed anymore and
the algorithm will perform k

2 iterations for the k added rows. With k
2 iterations per

column, the whole update is k×m
2 iterations (cf. Section 5.2.3).

This algorithm has to hold in memory all the sign vectors for m columns. All
dimensions that use n are also increased by k for rank-k update. Sign vectors add
additional (n + k)(m − 1) elements. Thus, the total of elements that need to be
stored in memory is (2nm+ 2km) + (2n+ 2k +m).

Example 4 (Cached CD) We now repeat the same X and B as in Example 3.

Let X =

−1 4
2 −3
3 0

, and cached sign vector for m = 1 be Z =

−11
1


Suppose we add a new row of B =

[
−2 1

]T to X and append 1.0 to Z. Then
going through the SSV process yields us the following sequence of sign vectors:

Z0 =


−1
1
1
1

, V =


−11
13
3
−19

 −→ Z1 =


−1
1
1
−1

, V =


−23
27
15
−19


And it leaves Z1 as optimal sign vector. Repeating the process form = 2 yields

the updated decomposition:

L =


−3.54 2.12
3.54 −0.71
2.12 2.12
−2.12 −0.71

 and R =

[
0.71 0.71
−0.71 0.71

]

16

Example 3 gives a result which is different, Centroid Decomposition is unique
by signs, but not absolutely unique, since ||XT · Z|| = ||XT · (−1)× Z||.

17

18

Chapter 4

Singular Value Decomposition

In this Chapter, we describe the properties of SVD and discuss different batch
and incremental implementations of this technique.

Definition 2 (Singular Value Decomposition) Let X ∈ Rn×m be a matrix, then
SV D(X) = {U,Σ,V}, such that X = U ·Σ ·VT and where:

• U ∈ Rn×n is an orthogonal matrix containing left-singular vectors of X.
These vectors represent orthonormal Eigenvectors of X·XT

• V ∈ Rm×m is an orthogonal matrix containing right-singular vectors of X.
These vectors represent orthonormal Eigenvectors of XT ·X

• Σ ∈ Rn×m is a matrix with singular values of X on the main diagonal
and zeroes elsewhere. The singular values represent a set of square roots of
eigenvalues of X·XT .

There exists a variant of SVD called Truncated SVD (or Thin SVD, TSVD) for
matrices where n > m.

Definition 3 (Truncated SVD) Let X ∈ Rn×m be an input matrix and SVD(X)
= { U,Σ,V } is a decomposition of X. Then, TSVD(X) := { Ũ, Σ̃,V } is a
Truncated SVD such that:

• Ũ ∈ Rn×m is a matrix that contains the first m columns of U

• Σ̃ ∈ Rm×m is a matrix that contains the upper square block of Σ

19

TSVD satisfies the equation X = Ũ · Σ̃ ·VT . Because Σ of SVD is always
zero below the upper m × m block, so this lower n − m × m block also zeroes
out the part of U that is truncated (columns m+ 1 to n). Thus, with both of them
truncated, the reconstruction of the original matrix is exactly the same, there’s no
loss of information.

4.1 Batch SVD

SVD is often calculated in a two-step process. First, a reduction of a matrix to a
bi-diagonal form (all elements outside of main diagonal and one auxiliary diagonal
are zero) using Householder reflections is applied. Second, a diagonalization of
this bi-diagonal form using Givens rotations is performed [3].

Definition 4 (Householder reflections) Householder matrix is an orthogonal and
symmetric matrix of the form H = I− 2 · V · V T , where |V | = 1.

When multiplied with a vector, Householder matrices allow to zero out all its
elements except one. Sequential application of those matrices on the left and on
the right allow the transformation of the matrix into a bi-diagonal form by zeroing
columns below main diagonal and rows to the right of upper second diagonal. For
X, an input matrix, B = H ·X · S is a bi-diagonal transformation of X, where H
and S are products of householder matrices.

Definition 5 (Givens rotation) Givens matrix G is an orthogonal matrix G with
gii = gjj = s, gij = −gji = c, gkk = 1 ∀k 6= i, j and zeroes elsewhere. s =sin(φ)
and c =cos(φ) for some angle φ.

Products of Givens matrices (G and P) are then used to zero out second diag-
onal: Σ = G ·B ·P. Then, the obtained SVD is {U,Σ,V } where U = G ·H
and VT = S ·P.

4.1.1 Full and Truncated SVD

Full SVD is not suitable for long time series because it has quadratic memory
complexity [1]. Matrix U which is received as an output, is n × n. Assuming
we work with double-precision numbers, the memory consumed by this matrix is
n2 × 8 bytes. Using single-precision floating point numbers reduces the memory

20

requirement by a factor of two, but it sacrifices numerical precision and is still not
enough for bigger data samples.

Truncated SVD reduces both time and memory complexity of the decomposi-
tion, because last n − m columns of the decomposition don’t need to be formed
explicitly and do not take up memory. For most practical applications in time series
(i.e. where n � m), there is little interest in full SVD for those matrices, since it
becomes too complex.

4.2 Incremental Singular Value Decomposition

We explored a number of different incremental techniques. But only one suit-
able to the task was selected. There is a very used compilation of incremental SVD
techniques IncPACK [12], but all the algorithms which it contains aim at low-rank
approximation of big matrices to find eigenvalues or singular values and not the
actual full update of the decomposition. The only algorithm which was doing an
update to the decomposition is Updating SVD.

4.2.1 Updating SVD

Working with data streams can require both rank-1 and rank-k updates to the
decomposition. The Incremental SVD [8] performs an update to an existing de-
composition, constructs an augmented Σ which is appended by new information
that an update introduces to the matrix. Then, it re-diagonalizes the appended Σ
by running it through truncated SVD.

The algorithm needs to find a component of a new data orthogonal to the input
matrix U, this is required to do a projection of new information onto the orthogonal
basis U and to determine whether the update increases the rank of decomposition.
The QR decomposition [3] is applied to find this component.

QR Factorization

Definition 6 (QR Decomposition/Factorization) Let X ∈ Rn×m be an input ma-
trix, then QR(X) = {Q,R}, such that X = Q ·R and where:

• Q ∈ Rn×n is an orthogonal matrix

• R ∈ Rn×m is an upper triangular matrix

21

QR factorization is performed using Householder reflections to zero out the
input matrix below main diagonal. Since the matrix Q is a product of orthogonal
transformations, it is orthogonal too. Also, Q spans the same subspace of Rn as
X. This property is used by the algorithm to find an orthogonal component of new
information with relation to U, and matrix Q can give it.

An implementation by [13] (updateSVD) was used as a basis for C++ imple-
mentation of the algorithm. This implementation works exclusively with truncated
SVD - as an input, re-diagonalizing Σ and an updated output.

Complexity

We are interested in the runtime complexity on n and k (amount of added rows
from rank-k update) since those are the only varying arguments. The number of
columns is not supposed to change when augmenting the decomposition.

QR decomposition, which is used in the process, has a runtime complexity of
approximately 2nm2 and quadratic memory complexity on n, the exact amount of
consumed memory is up to implementation.

Assuming that we perform rank-k update and always have the worst case (rank
mismatch in step 1 and step 2), the runtime complexity of updateSVD consists of:

1. Two calls of QR - one on n× (m+ k) matrix, another on m× (m+ k)

2. Truncated SVD runs on augmented Σ, which is (m+ n+ k)× (2m+ k)

3. Matrix copying, this process is always linear on any single dimension, unless
there are square matrices

4. A few additional matrix multiplications -m×m bym×k, n×m bym×m,
n× n by n×m and m×m by m×m.

To finalize everything we have the following runtime complexity:

• Complexity on the amount of rows (n): QR is linear on rows and thus linear
on n, matrix copying is at most linear, TSVD is linear on rows, matrix multi-
plication is quadratic in case of n×n by n×mmatrix. The total complexity
is quadratic on n.

• Complexity on the amount of added rows (k): QR is quadratic on rows if we
form Q explicitly and thus quadratic on k, TSVD is quadratic on columns
(if it needs an additional basis from Step 2, else it is linear), matrix multipli-
cations involving k are linear. The total complexity is quadratic on k.

22

With constant number of columns and rank-k update, memory peaks while the
algorithm constructs a concatenated matrix (U|P) (see [10], Step 3). This matrix
has to contain, worst-case, two matrices of n×n− r and n×n. Required memory
consists of nm+n+m2 for input, n2−nm for those two matrices and the results
of augmented Σ decomposition - (m+n+k)(2m+k)+(m+n+k)+(2m+k)2.
This gives a total of (n2 + 7m2 + 2k2) + (2nm + nk + 7mk) + (2n +m + k)
elements which need to be stored in the memory.

Example 5 (Updating SVD) We take as input the same X and B as in Example
3.

Let X =

−1 4
2 −3
3 0

, r = rank(X) and SVD(X):

U =

−0.71 0.41
0.65 0.07
0.27 0.91

, Σ =

[
5.56 0
0 2.84

]
, V =

[
0.51 0.86
−0.86 0.51

]

Let’s assume that a new row of B =
[
−2 1

]T is added to X and U is ap-

pended with a row of zeroes. According to the algorithm A =
[
0 0 0 1

]T and
(U |A) together with (V |B) are constructed to apply QR on them.

(U |A) =


−0.71 0.41 0
0.65 0.07 0
0.27 0.91 0
0 0 1

 = QUA ·RUA

=


−0.71 −0.41 0 0.57
0.65 −0.07 0 0.76
0.27 −0.91 0 −0.32
0 0 −1 0

 ·

1 0 0
0 −1 0
0 0 −1
0 0 0



Since rank(Q) 6= r, an additional basis P is required.

(V |B) =

[
0.51 0.86 −2
−0.86 0.51 1

]
= QV B ·RV B

=

[
−0.51 0.86
0.86 0.51

]
·
[
−1 0 1.88
0 1 −1.21

]

Since rank(Q) = r, no additional basis Q is required.

23

After the construction of Saug =


5.56 0
0 2.84

1.88 1.21
0 0

, SVD(Saug) =

US =


0.94 0.16
0.04 −0.93
0.34 −0.34
−0 0

, ΣS =

[
5.89 0
0 3.06

]
, VS =

[
1 0.09

0.09 −1

]

Afterwards, the update to original decomposition goes as follows:

Σ1 = ΣS , U1 = (U|P) ·US , V1 = (V|Q) ·VS

And the updated decomposition looks like:

U1 =


−0.65 −0.50
0.61 0.04
0.30 −0.80
−0.34 0.34

, Σ1 =

[
5.89 0
0 3.06

]
, V1 =

[
0.58 −0.81
−0.81 −0.58

]

24

Chapter 5

Evaluation

We evaluate the algorithms by running the implementations of different algo-
rithms against each other 1. First, we evaluate the memory allocation of the used
data structures, then perform an evaluation on two implementations of Scalable
Sign Vector algorithm – iterative and incremental methods of calculating weight
vector. We show that the incremental weight vector computation is more efficient
than the iterative one. We use the incremental computation as basis for batchCD
and cachedCD implementations.

Then, we switch to the incremental algorithms and evaluate them on rank-1
and rank-k updates to the decomposition. We show that updateSVD is not scalable
for long time series and we perform the remaining analysis on different Centroid
Decomposition algorithms to measure their performance with respect to their key
component - Sign Vector search.

5.1 Setup

The machine we used to run the experiments has the following specifications:

• CPU: Intel(R) Core(TM) i7-3770, 4 cores, 8 threads @ 3.40GHz;

• RAM: DDR3 16GB @ 1600 MHz;

• OS: Ubuntu 12.04.5 LTS (GNU/Linux 3.5.0-37-generic x86 64);

• C++ compiler: gcc 5.4.1 20160904;

1Code for implementations can be accessed through:
https://github.com/eXascaleInfolab/InCD Benchmark

25

• Compiler options: -std=C++14 -Wall -Wextra -Werror -pedantic -O3.

The data sets used for the experiments are the following:

• Hydrological data [14], time series are randomly sampled from the data set
and concatenated to create longer time series than available: 4 time series up
to 1M elements;

• North America climate data [15], 4 columns taken – CO2, H2, WET, CLD
to create 4 time series of up to 10K rows.

For the updateSVD algorithm, the QR implementation used is the one in GNU
Scientific Library [16], with library being linked to the project. The C++ imple-
mentation for truncated SVD is based on [17].

5.2 Results

All experiments use hydrology data unless stated otherwise.

5.2.1 Memory analysis

Figure 5.1 shows the memory allocation of the algorithms at a rank-1 update
with m = 10 and n varying rows from 100K to 1M.

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1 2 3 4 5 6 7 8 9 10

m
e
m

o
ry

 (
M

B
)

data size (100K)

updateCD
cachedCD

batchCD
updateSVD

Figure 5.1: Memory consumption of incremental algorithms (log scale)

All Centroid Decomposition variants have a very low and near-identical mem-
ory usage. While updateSVD stands out with immense memory consumption in

26

comparison. Reliance on full QR decomposition and its result to obtain an n × n
matrix severely reduces the usability of this algorithm.

5.2.2 Runtime analysis

Sign vector search algorithm

Figure 5.2 compares two techniques of calculating a sign vector for Centroid
Decomposition. The original matrix has m = 4 columns and n rows which vary
from 10k to 100k.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

ru
n
n
in

g
 t
im

e
[1

0
K

]
(m

s
)

data size [K]

incremental weight vector
iterative weight vector

Figure 5.2: Runtime of sign vector computation methods

The results of this experiment show that both techniques have the same quadratic
complexity but incremental algorithm is at least 3 times faster than the iterative one.
This is explained by the fact that the former algorithm avoids a lot of calculations
by reusing the old weight vector to calculate the new one. In the remaining exper-
iments, we use the incremental weight vector algorithm as a basis for the batchCD
and cachedCD algorithms.

Incremental techniques

To evaluate the efficiency of the incremental techniques, we first perform a set
of rank-1 update experiments where we vary the number on rows, then we conduct
a set of rank-k update experiments where we fix the number of rows and vary the
number of added rows.

In the first experiment evaluating the rank-1 update, the number of columns m
is set to 4 while the number of rows n varies from 5K to 1M.

27

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 10 20 30 40 50 60 70 80 90 100

ru
n
n

in
g

 t
im

e
[K

]
(m

s
)

data size (10K)

updateCD
cachedCD

batchCD
updateSVD

(a) Linear scale.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 10 20 30 40 50 60 70 80 90 100

ru
n
n

in
g

 t
im

e
[K

]
(m

s
)

data size (10K)

updateCD
cachedCD

batchCD
updateSVD

(b) Log scale.

Figure 5.3: Runtime of incremental algorithms, rank-1 update with varying rows

The results of Figure 5.3 show that updateCD and batchCD are quadratic with
n, the last spike on updateCD is within the normal fluctuations of sign vector cal-
culation caused by introducing new type of data (see later part on sign vector it-
erations). CachedCD is linear with n and remains at extremely low levels on the
whole range.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 5 10 15 20 25 30 35 40 45 50

ru
n

n
in

g
 t

im
e

[K
]
(m

s
)

data size (K)

updateCD
cachedCD

batchCD
updateSVD

(a) Linear scale.

 0.001

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40 45 50

ru
n

n
in

g
 t

im
e

[K
]
(m

s
)

data size (K)

updateCD
cachedCD

batchCD
updateSVD

(b) Log scale.

Figure 5.4: Runtime of incremental algorithms, rank-1 update with varying rows;
40K value for updateSVD is off chart

Figure 5.4 shows that updateSVD cannot reasonably handle more than 35k
rows due to memory and computational constraints. The value for 40K rows is
approximately 13 times bigger than the one for 35K (off chart). This happened
due to the fact that the required memory went beyond the physical capacity of
the testing machine (16GB) and performance significantly went down beyond its
normal complexity curve because of heavy Swap file usage.

In the next experiment, we evaluate the efficiency of the algorithms to perform
a rank-k update. We set n to 10k, m to 4 and we vary the added rows from 10 to

28

100.

 0

 50

 100

 150

 200

 250

 300

 350

 10 20 30 40 50 60 70 80 90 100

ru
n
n

in
g

 t
im

e
[K

]
(m

s
)

added rows

updateCD
cachedCD

batchCD
updateSVD

(a) Linear scale.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90 100

ru
n
n

in
g

 t
im

e
[K

]
(m

s
)

added rows

updateCD
cachedCD

batchCD
updateSVD

(b) Log scale.

Figure 5.5: Runtime of incremental algorithms, rank-k update with varying added
rows

Figure 5.5 shows that the runtime of the Centroid-based algorithms is almost
unaffected by the rank of the update. In absolute value, the values are increasing
trend-wise, which is not reflected on the graph, but the increase is extremely slow.
UpdateSVD is significantly impacted by the rank of the update. As was discussed
in Section 4.2, the runtime is quadratic, which is not reflected on the graph. This
result could be explained by the fact that the execution of the algorithm shown on
the graph doesn’t branch into worst-case scenario and QR implementation by GSL
might apply certain optimizations. This point is discussed in Section 6.

The previous experiments show that cachedCD clearly outperforms all other
techniques. UpdateSVD has memory constraints that prevent it from being able
to update matrices of 40K and above on our machine. The runtime complexity
also becomes unreasonable when performing rank-k update. All Centroid-based
techniques can operate on very big data sets, batchCD and updateCD are only
limited by quadratic runtime, which means that they are limited in their usage.
However, cachedCD can update even a big decomposition extremely quickly, both
rank-1 and rank-k.

5.2.3 Sign Vector iterations and different data sets

The results of the previous experiments show that Centroid-based techniques
are more time and space efficient than the incremental SVD. Thus, the next experi-
ments aim to study the incremental CD performance with respect to the key aspect
of the algorithm – the search of maximizing sign vector. The performance metric
we use is the number of flips of the sign of the elements of Zi. All the general
properties of the sign vector remain the same as described by [1].

29

To evaluate the stability of the Centroid-based algorithms, we conduct sign
vector experiments on two different data sets. For updateCD, the number of sign
vector iterations is taken from batch CD that is performed on augmented L0 during
the updating process. First we evaluate the number of sign vector iterations in a
rank-1 update with varying number of rows, then we evaluate a rank-k update with
fixed number of rows.

The first experiment on rank-1 update has a fixed number of columns m = 4
and a varying number of rows from 1K to 10K.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8 9 10

s
ig

n
 v

e
c
to

r
c
h
a

n
g

e
s

data size (K)

updateCD
cachedCD

batchCD

(a) Hydrology, Linear scale.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 2 3 4 5 6 7 8 9 10

s
ig

n
 v

e
c
to

r
c
h
a

n
g

e
s

data size (K)

updateCD
cachedCD

batchCD

(b) Climate, Linear scale.

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

s
ig

n
 v

e
c
to

r
c
h

a
n
g
e

s

data size (K)

updateCD
cachedCD

batchCD

(c) Hydrology, Log scale.

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

s
ig

n
 v

e
c
to

r
c
h

a
n
g
e

s

data size (K)

updateCD
cachedCD

batchCD

(d) Climate, Log scale.

Figure 5.6: Sign vector iterations of incremental CD techniques, rank-1 update
with varying rows

Figure 5.6 shows that the amount of sign vector iterations for batchCD and
updateCD follows a linear trend. The number of iterations on average is approxi-
mately equal to n

2 per sign vector calculated, thus n×m
2 for the whole matrix and

the figure reflects this fact.

BatchCD and updateCD techniques have almost the same number of sign vec-
tor iterations. UpdateCD doesn’t perform better than batchCD on the update be-
cause it has to perform a full CD in the process. Even though matrix L is a station-

30

ary point of decomposition (cf. Section 3.2.1), running CD on augmented L gives
no computational advantage to the algorithm, because all sign vectors have to be
re-calculated.

 0

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60 70 80 90 100

s
ig

n
 v

e
c
to

r
c
h
a
n
g
e
s

data size (K)

cachedCD

Figure 5.7: Sign vector iterations of cachedCD, rank-1 update, hydrology data

CachedCD outperforms both batchCD and updateCD and performs less sign
flips when the number of rows increases. This is explained by the fact that rank-1
update has bigger impact on a smaller matrix, because of weight vector calculation
(cf. Section 3.1). The runtime has a trend of increasing for rank-1 updates with
increased number of rows, because one iteration in the search of a sign vector has
linear complexity. Figure 5.7 extends the experiment on cachedCD to 100K rows.
This experiment alongside the experiment in Figure 5.6 show that the required
number of iterations is essentially constant for rank-1 updates, because the impact
of one row is extremely limited if the data is not too different from what’s already
in the matrix.

Next experiment is performing rank-k update with k varying from 10 to 100 on
a fixed matrix with m = 4 and n = 10K.

Figure 5.8 shows a linear trend for all techniques when k varies. CachedCD re-
quires more iterations than previously for rank-1 updates. For rank-k update, Zi is
supposed to be on average k

2 elements away from the optimum (cf. Section 3.2.2).
Figure 5.9 shows that the number of iterations of cachedCD is approximately k×m

2
for all values of k. Thus, the trend on k is linear on the added rows, same as on
rows (n).

Figures 5.6 and 5.8 show that incremental CD techniques are stable and do
not show any significant differences in their performance when applied to different
real-world data sets. All observed trends can be traced in both data sets.

31

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 10 20 30 40 50 60 70 80 90 100

s
ig

n
 v

e
c
to

r
c
h

a
n
g

e
s

added rows

updateCD
cachedCD

batchCD

(a) Hydrology, Linear scale.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 10 20 30 40 50 60 70 80 90 100

s
ig

n
 v

e
c
to

r
c
h

a
n
g

e
s

added rows

updateCD
cachedCD

batchCD

(b) Climate, Linear scale.

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80 90 100

s
ig

n
 v

e
c
to

r
c
h
a
n

g
e
s

added rows

updateCD
cachedCD

batchCD

(c) Hydrology, Log scale.

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80 90 100

s
ig

n
 v

e
c
to

r
c
h
a
n

g
e
s

added rows

updateCD
cachedCD

batchCD

(d) Climate, Log scale.

Figure 5.8: Sign vector iterations of incremental CD techniques, rank-k update
with varying added rows

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 10 20 30 40 50 60 70 80 90 100

s
ig

n
 v

e
c
to

r
c
h
a
n

g
e
s

added rows

cachedCD

(a) Hydrology, Linear scale.

 0

 50

 100

 150

 200

 250

 10 20 30 40 50 60 70 80 90 100

s
ig

n
 v

e
c
to

r
c
h
a
n

g
e
s

added rows

cachedCD

(b) Climate, Linear scale.

Figure 5.9: Sign vector iterations of cached CD, rank-k update with varying added
rows

32

Chapter 6

Conclusions and future work

In this thesis, we explored the properties of four incremental matrix decompo-
sition algorithms - updateCD, batchCD, cachedCD and updateSVD. We provided
their C++ implementations and used them to conduct an empirical evaluation of
those algorithms.

Evaluation showed that updateSVD is not efficient enough to be used on bigger
data sets, it falls short on both computational complexity (for rank-k updates) and
memory usage (for matrices with big number of rows). CD variants are much more
memory efficient and almost not impacted by the size of introduced data, which lets
them work with much bigger data sets.

UpdateCD and batchCD fall short on computational complexity. It is not fea-
sible to recalculate the whole decomposition every time new data is introduced
because it can take hours for big matrices. Caching Sign Vectors proved to be ex-
tremely efficient - it drastically reduces the number of sign vector iterations and
allows cachedCD to update the decomposition with linear complexity on both the
size of matrix and the size of introduced data.

In the future, we plan to improve the implementations of the used algorithms.
First of all, improving the existing implementation - optimization, better documen-
tations, making code more universal, usable and improving overall quality. Second,
exploring the possible expansion of the math mini-framework created for this task
and implementing new algorithms based on it. It would be also of interest to inves-
tigate the optimizations that updateSVD applies to reduce the quadratic complexity
(coming from QR) to linear.

33

34

Bibliography

[1] M. Khayati, M. H. Böhlen, and J. Gamper, “Memory-efficient cen-
troid decomposition for long time series,” in IEEE 30th International
Conference on Data Engineering, Chicago, ICDE 2014, IL, USA,
March 31 - April 4, 2014, 2014, pp. 100–111. [Online]. Available:
https://doi.org/10.1109/ICDE.2014.6816643

[2] O. Stapleton and M. Khayati, c-ReVival, Recovery of missing values using
Centroid Decomposition, homepage: http://revival.exascale.info/, 2017.

[3] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.). Baltimore,
MD, USA: Johns Hopkins University Press, 1996.

[4] L. Balzano and S. J. Wright, “On GROUSE and incremental SVD,”
in 5th IEEE International Workshop on Computational Advances
in Multi-Sensor Adaptive Processing, CAMSAP 2013, St. Martin,
France, December 15-18, 2013, 2013, pp. 1–4. [Online]. Available:
https://doi.org/10.1109/CAMSAP.2013.6713992

[5] M. Khayati and M. H. Böhlen, “REBOM: recovery of blocks of missing
values in time series,” in Proceedings of the 18th International Conference
on Management of Data, COMAD 2012, 2012, Pune, India, 2012, pp. 44–55.
[Online]. Available: http://comad.in/comad2012/pdf/khayati.pdf

[6] M. T. Chu and R. Funderlic, “The centroid decomposition: Relationships
between discrete variational decompositions and svds,” SIAM J. Matrix
Analysis Applications, vol. 23, no. 4, pp. 1025–1044, 2002. [Online].
Available: https://doi.org/10.1137/S0895479800382555

[7] M. Khayati, P. Cudré-Mauroux, and M. Böhlen, “Revival: Scalable recov-
ery of missing values using centroid decomposition,” IEEE Transactions on
Knowledge and Data Engineering, 2018.

[8] M. Brand, “Incremental singular value decomposition of uncertain
data with missing values,” in Proceedings of the 7th European
Conference on Computer Vision-Part I, ser. ECCV ’02. London,

35

UK, UK: Springer-Verlag, 2002, pp. 707–720. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645315.649157

[9] J. R. Blevins and M. T. Chu, “Updating the centroid decomposition with ap-
plications in lsi,” 2004, unpublished manuscript.

[10] J. Blevins, “cdupdate.m v1.11,” 2004/08/04 21:32:25, jrb11@duke.edu.
[Online]. Available: https://jblevins.org/research/centroid/cdupdate.m

[11] O. Stapleton, “Real-time centroid decomposition of streams of time series,”
2017. [Online]. Available: https://exascale.info/assets/pdf/students/2017-
Oliver RealTimeCDStreamsTS.pdf

[12] C. Baker, K. Gallivan, and P. Van Dooren, IncPACK Overview, homepage:
https://www.math.fsu.edu/ cbaker/IncPACK/, 2012.

[13] J. Blevins, “updatesvd.m v1.4,” 2004/12/08 21:23:47, jrb11@duke.edu.
[Online]. Available: https://jblevins.org/research/centroid/updatesvd.m

[14] Swiss Federal Office for the Environment, Water discharge time series, home-
page: http://www.hydrodaten.admin.ch/en, 2016.

[15] A. C. Lozano, H. Li, A. Niculescu-Mizil, Y. Liu, C. Perlich, J. Hosking, and
N. Abe, “Spatial-temporal causal modeling for climate change attribution,”
in Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’09. New York, NY,
USA: ACM, 2009, pp. 587–596, data file NA-1990-2002-Monthly-high.csv
from: ”http://www-bcf.usc.edu/ liu32/data.html”. [Online]. Available:
http://doi.acm.org/10.1145/1557019.1557086

[16] GNU Project, “GNU scientific library v2.4, QR decomposition.” [On-
line]. Available: https://www.gnu.org/software/gsl/doc/html/linalg.html#qr-
decomposition

[17] D. Cook, “svd.c c code for computing a grand tour,” 2009, di-
cook@iastate.edu. [Online]. Available: http://www.public.iastate.edu/ di-
cook/JSS/paper/code.html

36

